
Notes for CSCI5525: Advanced Machine Learning

Linear Predictions

Ju Sun∗

March 23, 2021

Overview We first interpret supervised learning from the viewpoint of function approximation,
and then survey classic linear prediction models and algorithms, including linear least squares for
regression, and Perceptron, simple SVM, logistic regression for binary classification.

1 Function approximation view of supervised learning
Given: a data set {(xi,yi)}Ni=1 (called training set) so that yi ≈ f∗(xi) ∀i. Here f∗ is an unknown
underlying function, and for all i ∈ [N], the “≈” sign in yi ≈ f∗(xi) is to allow noise or other errors
over yi = f∗(xi), e.g., yi = f(xi) + εi for Gaussian noise εi. Some terminology:

xi is called the input/predictor (in statistics)/features (in pattern recognition),
yi is called the output/response (in statistics)/label (in pattern recognition).

There are often three steps in a typical supervised learning workflow:

• Step 1: Modeling (or Model selection). Choose a family/set of functions H, called the
hypothesis class or hypothesis set, so that there exists an fH ∈ H that is “close" to f∗. Often,H
should be reasonably large to ensure there is indeed a good approximation fH to f∗, and also
reasonably small/simple so that such an fH can be found in a computationally efficient manner.

• Step 2: Computation (or Training). Design an algorithm to find such an fH. In modern
machine learning, one often first formulates the learning problem as an optimization problem,
and then develops numerical optimization algorithms to solve the optimization problem—this
is why optimization is a crucial component of modern machine learning1.

– Optimization formulation. A family of natural and popular formulation is structural risk
minimization, or SRM (it is called this under certain additional probabilistic assumptions
on the training set; we will talk more about this when introducing statistical learning
theory later.):

min
f∈H

1
N

N∑
i=1

`(yi, f(xi)) +R(f). (1.1)

∗Department of Computer Science and Engineering and Department of Neurosurgery, University of Minnesota at
Twin Cities. Email: jusun@umn.edu.

1ISyE ofUMNoffers a new courseOptimization forMachine Learning that covers popular scalable numerical optimization
methods for solving large-scale (or practical-scale)machine learning problems. Other good resources include [Sra12, Sta].

Page 1

mailto:jusun@umn.edu

Notes for CSCI5525: Advanced Machine Learning

Here ` represents the loss function to be chosen, which measures the difference between
yi and f(xi). Obviously, minf 1/N ·

∑N
i=1 `(yi, f(xi)) tries to ensure that yi ≈ f(xi) for

all i. The second termR(x) is typically called regularizer or regularization term, which puts
certain preference on f that will be found: this is often needed when there are multiple
or even infinitely many fH that are good—perhaps because the H we choose is larger
than necessary—so that we have to restrict our search to certain f ’s that are practically
interesting.

– Optimization algorithm. For very simple problems, Eq. (1.1) may admit a closed-
form analytic solution. But in modern machine learning, that is very rare and iterative
numerical optimization methods are almost always needed to solve Eq. (1.1). Depending
on the problem and formulation choice,
(i) Eq. (1.1) can be an unconstrained or constrained optimization problem. In gen-
eral, unconstrained optimization problems are (much) easier to solve than constrained
problems. So for applications with large-scale datasets, one often is willing to make
reasonable compromise and tries to formulate unconstrained optimization problems or
constrained optimization problems with very simple constraints so that scalable opti-
mization algorithms can be developed;
(ii) Eq. (1.1) can be a convex or nonconvex problem. Wewill provide a quick review
of convex analysis and optimization later. Analysis and optimization of convex problems
are much more mature than nonconvex ones, and so there is an overall preference for
convex formulations. But revival of deep learning after 2010 has substantially changed
this—optimization problems in deep learning are always highly nonconvex.

• Step 3: Generalization. Measure how close the fH found from Step 2 is to f∗. Since we often
do not know the true f∗, generalization can only be measured indirectly, e.g., by evaluating
the mean of

d(f∗(xi), fH(xj)) ≈ d(yj , fH(xj)) (1.2)

over unseen (i.e., test) dataset {(xj ,yj)}Mj=1. Here d(·, ·) is a difference (error) function that
may or may not be the same as the ` above. To study generalization in a rigorous manner,
especially to quantify the relationship between the size of training set (i.e., sample complexity)
and generalization, we need to put additional assumptions on the training set, e.g., the data
points are sampled iid (i.e., independent and identically distributed) from an underlying
probability distribution. We will talk about this in later lectures on statistical learning theory.

Below, we start with linear regression and linear classification problems, and illustrate Steps 1 &
2. We will derive their generalization properties in the learning theory lectures.

When yi’s in the training set are categorical, i.e., indicating the memberships of the inputs xi’s
in a set of categories (e.g., {cat,dog, else} for image inputs, {COVID,Non-COVID} given patients’
symptoms), the learning problem is often modeled as classification. Otherwise, it will be modeled
as regression.

2 Linear regression
For simplicity, we assume that xi ∈ Rd and yi ∈ R for all i ∈ [N] (remember our convention is that
scalars are non-bold small letters.). In linear regression, we model the relationship between x and

Page 2

Notes for CSCI5525: Advanced Machine Learning

y as linear—arguably the simplest possible:
yi ≈ 〈w,xi〉+ b ∀ i ∈ [N], w ∈ Rd, b ∈ R. (2.1)

In words, the hypothesis class is the set of all linear functions in x, which we can write as2

HL =
{
x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R

}
. (2.2)

2.1 Formulation

Once we decide the hypothesis class, we are ready to formulate the problem in an optimization
problem. When employing the SRM framework, we need to choose an appropriate loss ` and
regularizerR. For simplicity, let’s choose squared loss, i.e., `(yi, f(xi)) = (yi − f(xi))2 for all i, and
suppose that we do not need regularization now. This leads to a least-squares formulation:

min
w∈Rd,b∈R

1
N

N∑
i=1

(yi − 〈w,xi〉 − b)2. (2.3)

Now we are to turn this formulation into an equivalent yet compact form using matrix notations—
this facilitates more direct translation of the mathematical expressions into modern numerical
programming languages that are optimized for matrix computations. We append each xi with an
additional coordinate 1, so that x′i = [xi

1] ∈ Rd+1; correspondingly, we concatenate w and b into
w′ = [wb] ∈ Rd+1. It is easy to verify that〈

w′,x′i
〉

= 〈w,xi〉+ b ∀ i ∈ [N]. (2.4)
We call this the homogeneous form of linear functions. This allows us to write Eq. (2.3) as

min
w′∈Rd+1

1
N

N∑
i=1

(
yi −

〈
w′,x′i

〉)2
. (2.5)

The prime notation (·)′ looks messy. Since we often use the homogeneous form, with slight abuse of
notation, we will just remove the (·)′ fromw′ and x′i, with the understanding that the homogeneous
notation will be either explicitly stated or can be inferred from the dimension of w (i.e., w ∈ Rd+1).
So we have

min
w∈Rd+1

1
N

N∑
i=1

(yi − 〈w,xi〉)2. (2.6)

Last step, if we write

y =

 y1
...
yN

 and X =

x
ᵀ
1...

xᵀN

 , (2.7)

and recall the definition of vector `2 norm, we arrive at a compact form of Eq. (2.6):

min
w∈Rd+1

g(w) .= ‖y −Xw‖22, (2.8)

where we have omitted the factor 1/N in the objective, as it does not affect the solution. Our next
job is to solve the optimization problem Eq. (2.8) to find a good linear model that fits the data well.

2Recall thatwe typically represent a set as: {generic form of elements in the set : constraints on elements in the set if any}.
In Eq. (2.2), a generic linear function in x can be represented as x 7→ 〈w,x〉 + b, and the constraints are w ∈ Rd and
b ∈ R—which are vacuous.

Page 3

Notes for CSCI5525: Advanced Machine Learning

2.2 Solution via optimality condition

Our least-squares problem is unconstrained, and also the objective function g(w) is relatively simple.
So we shall try optimality conditions to see if they lead to somewhere.

We now quickly review optimality conditions for unconstrained optimization problems. Con-
sider a minimization problem

min
z∈Rn

f(z). (2.9)

It is sufficient to considerminimization problems, asmaximization problems of the formmaxz∈Rn f(z)
are equivalent to minz∈Rn −f(z)—they have the same optimizer(s).

A point z0 ∈ Rn is a local minimizer of f(z) if there exists a radius η so that f(z0) ≤ f(z) for all
z satisfying ‖z − z0‖2 ≤ η; in words, if f(z0) is no larger than any other f(z) in an η-ball around z0.
The value f(z0) is called a local minimum. So minimizers concern the optimization variables, and
minimums (or minima) concern the objective value.

For minimization problems, optimality conditions are mathematical conditions that any local
minimizer must satisfy, and hence they are helpful for locating local minimizers either analytically,
or numerically.

Theorem 2.1 (First-order necessary condition of optimality for unconstrained problems). Assume f
is first-order differentiable at z0. If z0 is a local minimizer, then ∇f(z0) = 0.

The zero-gradient condition is a necessary condition for local minimizers, but not sufficient.
A point where the gradient is zero (also called first-order stationary point, or FOSP) can be a local
minimizer, local maximizer, or saddle point. It turns out the condition becomes sufficient for the
family of convex functions—more on this when we talk about support vector machines and kernel
methods. A salient feature of convex functions is that a local minimizer is also a global minimizer3.
One way to tell convexity is through the Hessian.

Lemma 2.2 (Convexity through Hessian). Assume f is second-order differentiable. Then f is convex if
and only if∇2f(z) � 0 for all z.

Theorem 2.3 (First-order sufficient condition of optimality for unconstrained convex problems).
Assume f is convex and first-order differentiable at z0. If∇f(z0) = 0, then z0 is a local and global minimizer
of f .

There is a more refined characterization of local minimizers using both gradient and Hessian.

Theorem 2.4 (Second-order necessary condition of optimality for unconstrained problems). Assume
f is second-order differentiable at z0. If z0 is a local minimizer, then ∇f(z0) = 0, and ∇2f(z0) � 0, i.e.,
Hessian at z0 is positive semidefinite.

A point z0 satisfying ∇f(z0) = 0 and ∇2f(z0) � 0 is called a second-order stationary point, or
SOSP. Similar to FOSP, a SOSP can be a local minimizer, local maximizer, or saddle point. A stronger
condition can ensure a local minimizer.

Theorem 2.5 (Second-order sufficient condition of optimality for unconstrained problems). Assume
f is second-order differentiable at z0. If ∇f(z0) = 0, and ∇2f(z0) � 0, i.e., Hessian at z0 is positive
definite, then z0 is a local minimizer.

3A convex function has a unique local minimum—which is also the global minimum, but could have multiple local
minimizers that are also global minimizers.

Page 4

Notes for CSCI5525: Advanced Machine Learning

For our problem Eq. (2.8), the least squares objective is a quadratic polynomial and hence is
second-order differentiable. The Hessian is 2XᵀX , which is positive semidefinite. So g(w) is a
convex function.

Invoking Theorem 2.1, if w0 ∈ Rd+1 is a local minimizer, then

∇g(w0) = 2Xᵀ(y −Xw0) = 0 =⇒XᵀXw0 = Xᵀy. (2.10)

• IfX ∈ RN×(d+1) has full column rank, i.e., with linearly independent columns, or equivalently
the N data points inX span the (d+ 1)-dimensional input space, thenXᵀX has full rank
and hence is invertible. Then

w0 = (XᵀX)−1Xᵀy. (2.11)

Obviously, w0 is uniquely defined by the right side of Eq. (2.11) and so is the unique global
minimizer of g(w).

• Otherwise, XᵀX is not invertible and there are multiple (in fact, infinitely many) global
minimizers. A particular global minimizer can be found through the pseudo-inverse. Recall
that for any matrixM ∈ Rm×n of rank r ≤ min (m,n), its compact SVD can be written as
M = UΣV ᵀ where U ∈ Rm×r, Σ ∈ Rr×r is diagonal, and V ∈ Rn×r. The pseudo-inverse
ofM is thenM † = V Σ−1Uᵀ ∈ Rn×m. Obviously, pseudo-inverse is defined for any matrix,
square or not. A solution to Eq. (2.10), and hence a global minimizer to g(w), is then

w0 = (XᵀX)†Xᵀy. (2.12)

For a square invertible matrix, its pseudo-inverse coincides with its inverse. So actually this
provides a generic form of global minimizer to g(w), whetherXᵀX is invertible or not.

The closed-form solution we get here seems nice, but probably only for small-scale problems. The
cost of calculatingXᵀX isO(d2N), and invertingXᵀX ∈ R(d+1)×(d+1) costsO(d3). This is daunting
when d and N are large. Can we do better?

2.3 Solution via iterative optimization

In numerical optimization, iterative methods start with an initial guess and produce a sequence of
points that gradually approach a solution. Gradient descent (GD) is a basic yet powerful iterative
method. For an unconstrained problem minz∈Rn f(z), GD runs like this:

Algorithm 1 Gradient descent for minimizing f(z)
Input: initialization z(0), k = 1, stopping precision ε > 0
1: while ‖∇f(z(k−1))‖2 > ε do
2: choose a step size t(k)

3: update the estimate: z(k) = z(k−1) − t(k)∇f(z(k−1))
4: update the counter: k = k + 1
5: end while

Intuitively, to find a local minimizer, one can try to construct a sequence of iterates that carry
monotonically decreasing function values. If we make a small movement d from z, Taylor’s theorem
says

f(z + d) ≈ f(z) + 〈∇f(z),d〉 =⇒ f(z + d)− f(z) ≈ 〈∇f(z),d〉 . (2.13)

Page 5

Notes for CSCI5525: Advanced Machine Learning

We hope to make f(z + d) − f(z) as negative as possible to make rapid progress toward a local
minimizer, and so we can try to make 〈∇f(z),d〉 as negative as possible. Obviously aligning dwith
−∇f(z) ensures the fastest possible progress, as

− ∇f(z)
‖∇f(z)‖2

= arg min
d: ‖d‖2=1

〈∇f(z),d〉 . (2.14)

This is where GD comes from.
Of course, the step sizes t(k)’s are controlling the magnitudes of movement. On one hand, they

should be made as large as possible to allow fast progress. One the other, they should be reasonably
small to make the first-order Taylor approximation in Eq. (2.13) reasonably accurate. There are two
popular strategies for choosing the step sizes:

• Fixed step size Choose a sufficiently small constant as the step size for all iterations. If the
value is not sufficiently small, typically the objective value will blow up after a while. Pros:
simple; Cons: could be conservative for most iterations.

• Adaptive step size via backtracking line search Search for an appropriate (large) step size
adapted to local landscape of the function.

Algorithm2Gradient descent forminimizing f(z)with backtracking line search
Input: initialization z(0), k = 1, stopping precision ε > 0 close to 0
1: while ‖∇f(z(k−1))‖2 > ε do
2: choose initial step size t, ρ ∈ (0, 1), and η ∈ (0, 1)
3: while f(z(k−1) − t∇f(z(k−1)))− f(z(k−1)) > −ηt‖∇f(z(k−1))‖22 do
4: decrease the step size: t = ρt
5: end while
6: set the step size: t(k) = t
7: update the estimate: z(k) = z(k−1) − t(k)∇f(z(k−1))
8: update the counter: k = k + 1
9: end while

Pros: relatively large step size, and hence fast movement and rapid convergence
Cons: slightly more computation each iteration for searching the good step size

The backtracking line-search strategy is highly recommended for practical implementation of GD.
See Appendix B for the intuition behind the backtracking line search rule.

Since∇f(z) = 0 is the necessary condition for z being a local minimizer, we set the stopping
criterion as checking if ‖∇f(z)‖2 is sufficiently close to 0.

When we apply GD to our least-squares problem, the gradient update step is:

w(k) = w(k−1) − t(k)∇g(w(k−1)) = w(k−1) − 2t(k)Xᵀ(y −Xw(k−1)), (2.15)

which costs O(dN). Easy to check computing ‖∇f(z(k−1))‖2 , f(z(k−1) − t∇f(z(k−1))) and alike
costs O(dN) also. So the cost for each iteration is O(dN), and so the total cost is O(dNT) if T
is the total number of iteration taken to find an approximate minimizer. When T � min (d,N),
GD is computationally favorable for our problem compared to computing the solution using the
closed-form formula Eq. (2.11) or Eq. (2.12).

Page 6

Notes for CSCI5525: Advanced Machine Learning

2.4 Popular variants

When XᵀX is not invertible, there are infinitely many global minimizers to our least squares
problem. Particularly, this happens when N < d+ 1, i.e., the number of data points is smaller than
the input dimension. In statistics, this belongs to the family of so-called high-dimensional problems
where typically a regularization term is added.

• Ridge regression takes the form

min
w
‖y −Xw‖22 + λ‖w‖22 (2.16)

for a certain λ > 0. Since our linear model is y ≈ 〈w,x〉 =
∑

j wjxj , regularizing ‖w‖22 ensures
that entries inw are all reasonably small so that any change to the input x only causes a small
change in the predicted value. In other words, the learned model is stable. Since the Hessian
2(XᵀX + λI) � 0 everywhere, the objective is convex. In fact, 2(XᵀX + λI) � 2I4 and so
the objective is strongly convex. Thus, ridge regression has a unique global minimizer.

• Lasso takes the form

min
w
‖y −Xw‖22 + λ‖w‖1 (2.17)

for a certain λ > 0. Compared to ‖w‖22 =
∑

j w
2
j , ‖w‖1 =

∑
j |wj | penalizes large entries of w

much less and small entries much more. The net effect is that regularizing using ‖w‖1 tends
to lead a solution that is sparse—containing very few large entries and the rest negligible in
magnitude. This is usefulwhen one is interested to select only fewmost important features (i.e.,
columns) fromX . Both ‖y −Xw‖22 and λ‖w‖1 are convex, and so the positive combination
is convex. However, in general, Lasso does not have a unique global minimizer either. Elastic
net

min
w
‖y −Xw‖22 + λ1‖w‖1 + λ2‖w‖22 (2.18)

which integrates Lasso and ridge regression is a fix to this and has a unique global minimizer,
alongside other benefits over Lasso, such as stability when selecting correlated features.

Comparisons of various popular linear models for linear regression and classification can be
found here

https://scikit-learn.org/stable/modules/linear_model.html.

3 Review of subspaces and hyperplanes
Consider a line L in R2, as illustrated in Fig. 1 (left).

• If L passes through the origin, there are two ways to represent L. One possibility is to find
a vector v ∈ R2 aligned with the L, then L = {λv : λ ∈ R}, called basis representation. The
other possibility is to find a vector w that is orthogonal (i.e., normal) to L, i.e., orthogonal to
all vector in L, and then L =

{
x ∈ R2 : 〈w,x〉 = 0

}, called normal representation. Obviously,
〈w,v〉 = 0, i.e., w is orthogonal to v.

4For two symmetric matricesM1,M2 ∈ Rn×n,M1 �M2 meansM1 −M2 � 0.

Page 7

https://scikit-learn.org/stable/modules/linear_model.html

Notes for CSCI5525: Advanced Machine Learning

Figure 1: (left) Illustration of subspaces and hyperplanes; (right) Geometric picture of
basis and normal representations. The picture is adapted from Sec 4.1 of the famous linear
algebra book [Str16].

• If L does not pass through the origin, we can find an arbitrary point x0 ⊂ L and write
L = x0 + L′ = {x0 + x : x ∈ L′} for an L′ that passes through the origin. So we can find v
aligned with L′ and w orthogonal to L′, so that

L = {x0 + λv : λ ∈ R}︸ ︷︷ ︸
basis representation

=
{
x ∈ R2 : 〈w,x〉 = 〈w,x0〉

}
︸ ︷︷ ︸

normal representation

. (3.1)

Recall that a set S ⊂ Rn is called a subspace if for any u,v ∈ S, αu + βv ∈ S for all α, β ∈ R,
i.e., any linear combination of u and v stays in the set. Geometrically, subspaces can be thought
of as high-dimensional “flats” in Rn, and they are natural generalizations of lines. Subspaces also
admit both basis and normal representations that generalize the corresponding representation for
lines: for any k-dimensional subspace L ⊂ Rn,

• basis representation: for any k linearly independent vectors {v1, . . . ,vk} that span L, i.e.,
{v1, . . . ,vk} is a basis for L,

L =
{

k∑
i=1

αivi : αi ∈ R ∀ i
}

=
{
V α : α ∈ Rk

}
= col(V), (3.2)

where V .= [v1 . . . vk] and col(·) indicates the column space.

• normal representation: for any n− k linearly independent vectors {w1, . . . ,wn−k} that are
orthogonal to L, i.e., 〈wj ,x〉 = 0 for all j ∈ [n− k] and all x ∈ L,

L = {x ∈ Rn : 〈x,wj〉 = 0 ∀j ∈ [n− k]} = {x ∈ Rn : W ᵀx = 0} = null(W ᵀ), (3.3)

whereW .= [w1 . . . wn−k] and null(·) denotes the null space. Moreover,W spans the unique
(n− k)-dimensional orthogonal subspace L⊥ of L. 5

The geometric aspect of the discussion is summarized in Fig. 1 (right).
5Two subspaces L and L′ are said to be orthogonal to each other if z and z′ are orthogonal to each other, i.e., 〈z, z′〉 = 0,

for all z ∈ L and z′ ∈ L′.

Page 8

Notes for CSCI5525: Advanced Machine Learning

When the subspace L has dimension n− 1, it deserves a special name—hyperplane, which is a
critical element of machine learning; in the next section, we need this object for linear classification.

All subspaces we talk of contain the origin; if we want to emphasize this fact, we prepend the
adjective linear, i.e., call them linear subspaces. This is also to distinguish them with flats that do not
necessarily pass through the origin—as generalization of lines that do not necessarily; we call these
flats affine subspaces.

Similar to how we represent “affine" lines, any affine subspace L is a shifted linear subspace, i.e.,
L = x0 + L′ for certain x0 ∈ L and linear subspace L′. This implies the following basis and normal
representations for L:

• basis representation: assume V ∈ Rn×k spans L′ and x0 ∈ L, then

L =
{
x0 + x : x ∈ L′

}
=
{
x0 + V α : α ∈ Rk

}
. (3.4)

Moreover, dim(L) = dim(L′) = k.

• normal representation: assumeW spans (L′)⊥ and x0 ∈ L, then

L =
{
x0 + x : x ∈ L′

}
= {x0 + x : W ᵀx = 0} = {z ∈ Rn : W ᵀz = W ᵀx0} . (3.5)

A natural question is whetherW ᵀx0 is unique given that x0 is an arbitrary point on L. The answer
is yes, as for any two points x0,x

′
0 ∈ L,W ᵀx0 −W ᵀx′0 = W ᵀ(x0 − x′0) = W ᵀV α for a certain

α ∈ Rn−k. ButW ᵀV = 0, implying thatW ᵀV α = 0 whatever the α is.

Table 1: Summary of representations for linear and affine subspaces

basis representation normal representation
linear subspace L with ba-
sis V and normal basisW
(dim(L) = k)

{V α : α ∈ Rk} = col(V) {x : W ᵀx = 0} = null(W ᵀ)

affine subspaceLwith basis
V , point x0 ∈ L, and nor-
mal basisW (dim(L) = k)

{
x0 + V α : α ∈ Rk

}
= x0 + col(V) {x : W ᵀx = W ᵀx0} = x0 + null(W ᵀ)

As expected, affine hyperplanes are affine subspaces with dimension one less the ambient dimen-
sion. Of special interest in this case is the normal representation

{x ∈ Rn : 〈w,x〉 = 〈w,x0〉} . (3.6)

Of course, linear hyperplane takes the form {x ∈ Rn : 〈w,x〉 = 0}.
Obviously, an affine subspaces can be a linear subspace in our definition. So henceforth, subspaces

are defaulted to affine subspaces, unless the word “linear” is appended; similarly for hyperplanes. We are
now ready for studying linear classification.

4 Linear classification
We focus on binary classification: xi ∈ Rd and yi ∈ {1,−1} for i ∈ [N]. A first idea is to use a linear
function to map any input x to either 1 or−1, but this is unrealistic as the output lies in a continuum

Page 9

Notes for CSCI5525: Advanced Machine Learning

of values. To get around, we pass the output through the simple sign (·) function which naturally
takes value in {1,−1}. 6 This leads to the hypothesis class

HH =
{
x 7→ sign (〈w,x〉+ b) : w ∈ Rd, b ∈ R

}
, (4.1)

which is the set of all hyperplanes.
A natural objective is to find a tuple (w0, b0) so that

sign (〈w0,xi〉+ b0) = yi ⇐⇒ yi(〈w0,xi〉+ b0) > 0 ∀ i ∈ [N]. (4.2)

For convenience, we use the homogeneous representation again with abuse of the notation, and the
goal is to:

find w ∈ Rd+1 s. t. yi 〈w,xi〉 > 0 ∀ i ∈ [N]. (4.3)

This is a feasibility problem in optimization. The training set {(xi, yi)}Ni=1 is said to be linearly separable
if there exists a w0 ∈ Rd+1 that solves problem (4.3), i.e., satisfies yi(〈w0,xi〉) > 0 for all i ∈ [N].

4.1 Classic solution: Perceptron

Perceptron is a classic algorithm designed for solving problem (4.3). Invented by Frank Rosenblatt
in 1958, it helped to fuel the first wave of excitement about neural networks around 60’s, but later on
also helped to kill the excitement and cause major setbacks for neural networks research due to the
famous 1969 book [MM17] that elucidates the limitations of Perceptron. Nonetheless, Perceptron is
a critical milestone in the development of binary classification as well as online learning algorithms.
We describe only the binary classification aspect here.

Algorithm 3 The Perceptron algorithm for binary classification
Input: training set {(xi, yi)}Ni=1, initialization w(0) = 0, k = 1
1: while ∃i s. t. yi〈w(k−1),xi〉 ≤ 0 do
2: update the estimate: w(k) = w(k−1) + yixi

3: update the counter: k = k + 1
4: end while

To get a sense why the update step is sensible, note that for an i ∈ N with yi〈w(k−1),xi〉 ≤ 0,
after the update,

yi

〈
w(k),xi

〉
= yi

〈
w(k−1) + yixi,xi

〉
(4.4)

= yi

〈
w(k−1),xi

〉
+ ‖xi‖22 (4.5)

> yi

〈
w(k−1),xi

〉
, (4.6)

i.e., the value moves toward positive and we are making progress. Here, we assume ‖xi‖2 > 0
for all i ∈ [N]. The overall convergence behavior of the Perceptron algorithm is captured by the
following theorem.

6We define the sign function as sign (z) =
{

1 z > 0
0 z ≤ 0

.

Page 10

Notes for CSCI5525: Advanced Machine Learning

Theorem 4.1. Assume the training set {(xi, yi)}Ni=1 is linearly separable, and define the data radius
R
.= maxi∈[N] ‖xi‖2 and the margin parameter7 M = min {‖w‖2 : yi 〈w,xi〉 ≥ 1 ∀i ∈ [N]}. Then, the

Perceptron algorithm will take at most (RM)2 steps to find a feasible w, when it stops.

Figure 2: Separating hyperplane in
binary classification and interpreta-
tion of the Perceptron convergence
theorem.

Proof of this theorem is in Appendix A. The radius R here
is not important, as we can always rescale all our xi’s to make
R = 1. InterpretingM is slightly more tricky. The condition
forM is yi 〈w,xi〉 ≥ 1 for all i ∈ [N], which requires not only
w is feasible for problem (4.3), but also |〈w,xi〉| ≥ 1 for all
i ∈ [N], i.e.,

|〈w,xi〉| = ‖w‖2‖xi‖2|cos∠(w,xi)| ≥ 1 ∀ i ∈ [N]. (4.7)

Assume that xi’s are comparable in magnitude. For all i,
smaller the |cos∠(w,xi)| or closer the angle ∠(w,xi) near 90◦,
larger the ‖w‖2 needed to guarantee that Eq. (4.7) holds. In
view of Fig. 2, when the positive and negative classes get closer
and harder to separate, |cos∠(w,xi)| can be arbitrarily small
for certain i leading to anM—which is the measure of the lin-
ear separability of the training set—that can be exponentially
large in dimension d.

So there are at least two limitations of Perceptron: 1) it cannot deal with linearly non-separable
training data, and the algorithm will not even stop in those scenarios; 2) even if the training data are
separable, the running time can be exponential in the worst case. Below, we introduce two modern
methods that address the limitations of Perceptron.

4.2 Modern solution I: plain SVM

One solution is to reformulate problem (4.3) into a form that is amenable to numerical optimization
methods. Iterative methods often work with compact constraint sets so that convergence could
be established, where none of the inequalities is strict. Note that for any w0 satisfying 〈w0,xi〉 >
0 ∀ i ∈ [N], there exists an η > 0 so that 〈w0,xi〉 ≥ η ∀ i ∈ N . So there exists a λ > 0 so that
〈λw0,xi〉 ≥ 1 ∀ i ∈ [N]. So problem (4.3) is equivalent to

find w ∈ Rd+1 s. t. yi 〈w,xi〉 ≥ 1 ∀ i ∈ [N]. (4.8)

For any feasible w0 for problem (4.8), obviously λw0 for all λ > 1 is also feasible. We can further
refine the formulation by controlling the magnitude of w, say using

min
w
‖w‖2 s. t. yi 〈w,xi〉 ≥ 1 ∀ i ∈ [N]. (4.9)

This is the homogeneous form of hard-margin SVM that we will discuss later. Obviously, the `2 norm
we use here is arbitrary; in principle, one can use any function that is monotonically increasing in
the “magnitude” of w, e.g., all vector norms.

When the training set is not linearly separable, there is no feasible solution for problem (4.8).
One can add in controlled slackness to allow slight constraint violation, e.g., via

min
w
‖w‖2 + C

N∑
i=1

ξi s. t. yi 〈w,xi〉 ≥ 1− ξi, ∀ i ∈ [N]. (4.10)

7This will become clear when we talk about the max-margin aspect of SVMs.

Page 11

Notes for CSCI5525: Advanced Machine Learning

Here the changed lower bounds 1− ξi in the constraints introduce slackness, and the term∑N
i=1 ξi

in the objective controls the size of the slackness. This is the homogeneous form of soft-margin SVM.
Both problems in Eqs. (4.9) and (4.10) are convex (quadratic) optimization problems and can

be solved efficiently.

4.3 Modern solution II: logistic regression

First note that the logistic function (see Fig. 3)

φ(z) = 1
1 + e−z

(4.11)

maps any input naturally into the [0, 1] interval. So
ψ(z) .= 2φ(z)− 1 ∈ [−1, 1], (4.12)

and ψ(z)→ 1 when z →∞ and ψ(z)→ −1 when z → −∞. We can therefore choose the hypothesis
class

Hlogistic =
{
x 7→ 2φ(〈w,x〉)− 1 : w ∈ Rd+1

}
. (4.13)

Figure 3: Logistic function. Figure cour-
tesy of Wikipedia.

To pick an appropriate loss function, note that: when
yi = 1, we hope that ψ(〈w,xi〉) is as large as possible,
or 1 + exp (−〈w,xi〉) is as small as possible; when yi =
−1, we hope that ψ(〈w,xi〉) is as small as possible, or
1 + exp (−〈w,xi〉) is as large as possible. Combining the
two, we hope to make

1 + exp (−yi 〈w,xi〉) (4.14)
as small as possible for all i ∈ [N]. So one can formulate
an optimization problem:

min
w

1
N

N∑
i=1

(1 + exp (−yi 〈w,xi〉)). (4.15)

Although this is a convex problem, the exponential term may cause some numerical issues as the
exponent −yi 〈w,xi〉 may get large for certain i’s. Because making 1 + exp (−yi 〈w,xi〉) small is
equivalent to making log (1 + exp (−yi 〈w,xi〉)) small, we arrive at our logistic regression formulation:

min
w

1
N

N∑
i=1

log (1 + exp (−yi 〈w,xi〉)), (4.16)

which is numerically more stable, as the logarithm function counters the possible blowup of the
exponential term. One can easily verify Eq. (4.16) is also a convex problem by checking the Hessian.

Logistic regression can also be derived from the maximum likelihood principle, as we will
explore in homework.

Further reading
Main reference is Chapter 9 of [SSS14]. Chapters 2–4 of [HTF09] are good supplements. [NW06]
is a highly recommended reference for numerical optimization.

Page 12

Notes for CSCI5525: Advanced Machine Learning

Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.

A Proof of Theorem 4.1
Proof. Since the requirement yi 〈w,xi〉 > 0 for all i ∈ [N] is homogenous in w, we care only
about the direction w

‖w‖2
instead of w itself. Suppose w∗ satisfies 〈w∗,xi〉 ≥ 1 for all i ∈ [N] with

‖w∗‖2 = B. We want to show that w(T) aligns with w∗, i.e.,〈
w∗,w

(T)
〉

‖w∗‖2
∥∥w(T)

∥∥
2

= 1 (A.1)

when T is large enough.
First, for any k,∥∥∥w(k)

∥∥∥2

2
=
∥∥∥w(k−1) + yixi

∥∥∥2

2
=
∥∥∥w(k−1)

∥∥∥2

2
+ ‖xi‖22︸ ︷︷ ︸
≤R2

+ 2yi

〈
w(k−1),xi

〉
︸ ︷︷ ︸

≤0

≤
∥∥∥w(k−1)

∥∥∥2

2
+R2 =⇒

∥∥∥w(k)
∥∥∥2

2
−
∥∥∥w(k−1)

∥∥∥2

2
≤ R2. (A.2)

Using telescoping summation, we obtain
∥∥∥w(T)

∥∥∥2

2
=

T∑
k=1

(∥∥∥w(k)
∥∥∥2

2
−
∥∥∥w(k−1)

∥∥∥2

2

)
≤ TR2. (A.3)

On the other hand, for any k,〈
w∗,w

k
〉
−
〈
w∗,w

k−1
〉

=
〈
w∗,w

k −wk−1
〉

= yi 〈w∗,xi〉 ≥ 1. (A.4)

Applying telescoping summation again, we obtain
〈
w∗,w

(T)
〉

=
T∑

k=1

(〈
w∗,w

(k)
〉
−
〈
w∗,w

(k−1)
〉)
≥ T. (A.5)

Combining Eqs. (A.3) and (A.5), we finally obtain〈
w∗,w

(T)
〉

‖w∗‖2
∥∥w(T)

∥∥
2
≥ T

B
√
TR

=
√
T

BR
. (A.6)

When T ≥ (RB)2,
√
T

BR
≥ 1 =⇒

〈
w∗,w

(T)
〉

‖w∗‖2
∥∥w(T)

∥∥
2
≥ 1. (A.7)

But
〈
w∗,w

(T)
〉
≤ ‖w∗‖2

∥∥∥w(T)
∥∥∥

2
due to theCauchy-Schwarz inequality, implying that 〈w∗,w

(T)〉
‖w∗‖2‖w(T)‖2

≤

1. Thus, it takes at most T = (RB)2 iterations to attain Eq. (A.1), completing the proof. �

Page 13

Notes for CSCI5525: Advanced Machine Learning

B Why backtracking line search?
To simplify the notation, suppose that the current iterate is z and so the gradient is∇f(z). We want
to choose a step size t so that f(z − t∇f(z))− f(z) is as negative as possible in order to minimize
the objective fast. Since we assume that f is first-order differentiable, Taylor’s theorem tells us

f(z − t∇f(z))− f(z) = −t‖∇f(z)‖22 + o(t‖∇f(z)‖2) (B.1)

as t → 0. Now the linear term −t‖∇f(z)‖22 is negative, and the lower-order term o(t‖∇f(z)‖2)
may be either positive or negative. In any case, when t > 0 is sufficiently small, −t‖∇f(z)‖22 will
dominate the right side of Eq. (B.1), and we can reach a level so that

−t‖∇f(z)‖22 + o(t‖∇f(z)‖2) ≤ −ηt‖∇f(z)‖22 (B.2)

for a pre-fixed η ∈ (0, 1). Of course, any smaller t still satisfies this. But since we hope to set t to be
the largest possible, our line search is backward: we start with a large t and gradually decreases it
whenever Eq. (B.2) is violated.

References
[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning,

Springer New York, 2009.

[MM17] Seymour A. Papert Marvin Minsky, Perceptrons, reissue of the 1988 expanded edition with a
new foreword by léon bottou, MIT Press Ltd, 2017.

[NW06] Jorge Nocedal and Stephen J. Wright, Numerical optimization, 2 ed., Springer New York,
2006.

[Sra12] Suvrit Sra, Optimization for machine learning, MIT Press, Cambridge, Mass, 2012.

[SSS14] Shai Ben-David Shai Shalev-Shwartz, Understanding machine learning, Cambridge Univer-
sity Press, 2014.

[Sta] Stanford EE364b - Convex Optimization II, http://stanford.edu/class/ee364b/.

[Str16] Gilbert Strang, Introduction to linear algebra, 5 ed., Cambridge Press, Wellesley, MA, 2016.

Page 14

http://stanford.edu/class/ee364b/

	Function approximation view of supervised learning
	Linear regression
	Formulation
	Solution via optimality condition
	Solution via iterative optimization
	Popular variants

	Review of subspaces and hyperplanes
	Linear classification
	Classic solution: Perceptron
	Modern solution I: plain SVM
	Modern solution II: logistic regression

	Proof of thm:perceptronconvg
	Why backtracking line search?

