
HOMEWORK SET 5
CSCI 5525 Advanced Machine Learning (Spring 2021)

Due 11:59 pm, May 14 2021

Instruction Typesetting your homework in LATEX is optional but encouraged, and you need to
submit it as a single PDF file in Canvas. For programming, include all your codes and running results
in a single Jupyter notebook file and submit it alongside the main PDF (since Jupyter notebook also
allows text editing, feel free to put your textual answers inside the Jupyter notebook sometimes).
No late submission will be accepted.

For each problem, your should acknowledge your collaborators if any. For problems containing
multiple subproblems, there are often close logic connections between the subproblems. So always
remember to build on previous ones, rather than work from scratch.

Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g.,A) for matrices. For a matrixA, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space ofm× n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Boosting with decision stumps; 3.5/12) The standard Adaboost algorithm for binary
classification runs as follows.

Algorithm 1 Adaboost
Input: training set S = {(xi, yi)}Ni=1, weak learner (WL), initial weights w(0) = 1

N 1 ∈ RN , total
rounds T

1: for t = 1, . . . , T do
2: invoke weak learner: ht = WL

(
w(t−1), S

)
3: compute weighted error: εt =

∑N
i=1w

(t−1)
i 1 {yi 6= ht(xi)}

4: compute updating factor: αt = 1
2 log

(
1−εt
εt

)
5: update weights: w(t)

i = w
(t−1)
i exp(−yiαtht(xi))∑N

i=1 w
(t−1)
i exp(−yiαtht(xi))

∀ i

6: end for
Output: the final classifier h (x) = sign

(∑T
t=1 αtht (x)

)

Here, 1 is the all-one vector. The weak learner should perform better than random guessing
and also be cheap to compute. Decision stumps and decision trees are popular hypothesis classes
used in the weak learner. Decision stumps (i.e., decision trees with depth 1) over Rd are functions
of the form

Hds
.= {x 7→ b sign (xi − θ) : θ ∈ R, i ∈ [d], b ∈ {±1}} , (1)

i.e., they are hyperplanes orthogonal to the standard basis vectors {ej}dj=1. Sec. 10.1.1 of [SSS14]
discusses how to efficiently perform empirical risk minimization (ERM) with decision stumps,
which we also covered in class.

1



(a) Let’s use ERM with decision stumps as the weak learner. Implement Adaboost binary clas-
sification on the digits dataset (https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)—treat digits 0–4
as the first class and 5–9 as the second, and compare the classification accuracy with sklearn
built-inAdaBoostClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.AdaBoostClassifier.html). (1/12)

(b) We illustrated in class that linear combination of decision stumps can lead to very powerful
new hypothesis classes. Consider

HT -ds
.=
{
x 7→ sign

(
T∑
t=1

αtht (x)
)

: α ∈ RT , ht ∈ Hds ∀t
}
. (2)

Let dds be the VC dimension of decision stumps in Rd. Prove that

dT -ds
.= dimV C (HT -ds) ≤ O (Tdds log (Tdds)) (3)

following the steps below. Throughout this question, we assume dds, T ≥ 3.

(i) Show that dT -ds ≥ max (T, dds). (1/12)
(ii) Show that

ΠHT -ds
(dT -ds) ≤ d

(dds+1)T
T -ds , (4)

where Π denotes the growth function. (Hint: Sauer’s lemma and its upper bounds, i.e.,
Theorem 3.17 and Corollary 3.18 of [Moh18], are useful here; 1/12)

(iii) Construct a tightest possible lower bound for ΠHT -ds
(dT -ds), and combine the lower and

upper bounds to establish the claimed result in Eq. (3). (0.5/12)

Problem 2 (Generalizations of Adaboost; 6/12) Given a training set S = {(xi, yi)}Ni=1 and a
base hypothesis classH, boosting can be understood as trying to construct a combined predictor
f =

∑T
t=1 αtht where ht ∈ H ∀ t, by minimizing the empirical training error

N∑
i=1

` (f (xi) , yi) (5)

using a greedy method. In each iteration, given a partial predictor f (t−1) that is already constructed,
boosting tries to solve

(αt, ht) = arg min
α, h∈H

N∑
i=1

`
(
f (t−1) (xi) + αh (xi) , yi

)
, (6)

and then updates the predictor as f (t) = f (t−1) +αtht. The canonical Adaboost uses the exponential
loss ` (f (x) , y) = exp (−yf (x)), and the greedy subproblem is:

(αt, ht) = arg min
α, h∈H

N∑
i=1

exp
(
−yif (t−1) (xi)

)
exp (−αyih(xi)) ∝

N∑
i=1

w
(t)
i exp (−αyih(xi)) . (7)

2

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html


Now

min
α, h∈H

N∑
i=1

w
(t)
i exp (−αyih(xi)) ≡ min

α

(
min
h∈H

N∑
i=1

w
(t)
i exp (−αyih(xi))

)
. (8)

For binary classification problems, yih (xi) is either 1 or −1 for all i, for any fixed α,

min
h∈H

N∑
i=1

w
(t)
i exp (−αyih(xi)) = e−α

N∑
i=1

w
(t)
i 1 {yi = h (xi)}+ eα

N∑
i=1

w
(t)
i 1 {yi 6= h (xi)} (9)

=
(
eα − e−α

) N∑
i=1

w
(t)
i 1 {yi 6= h (xi)}+ e−α. (10)

If α ≥ 0, the minimization is equivalent to

min
h∈H

N∑
i=1

w
(t)
i 1 {yi 6= h (xi)} . (11)

For decision stumps and trees, this weighted training error can be easily solved. Then, fix the ht
found, one continues to solve the outer optimization

min
α

N∑
i=1

w
(t)
i exp (−αyiht(xi)) = eαεt + e−α (1− εt) .

Applying the unconstrained first-order optimality condition to g (α) .= eαεt + e−α (1− εt) yields
α∗ = 1

2 log
(

1−εt
εt

)
. Since εt < 1

2 by our assumption on ourweak learner, α∗ > 0. Soαt = 1
2 log

(
1−εt
εt

)
.

(a) Choose ` (f (x) , y) = (f (x)− y)2 and derive the resulting boosting algorithm for binary
classification problems. You should try to present the update steps in the most explicit forms
whenever possible. (Hint: solve for the optimal α first for any given h, and then find the best
h; 1/12)

(b) The gradient boosting generalization takes the 1st-order (functional) Taylor expansion of the
objective in Eq. (6) around f (t−1) (i.e., think of αh (xi) as a small perturbation and assume
α ≥ 0) and tries to optimize the expansion with respect to h:

ht = arg min
h∈H

N∑
i=1

`
(
f (t−1) (xi) , yi

)
+ α

∂`

∂f (xi)
(
f (t−1) (xi) , yi

)
h (xi) (12)

= arg min
h∈H

N∑
i=1

∂`

∂f (xi)
(
f (t−1) (xi) , yi

)
h (xi) . (13)

Afterward, a step αt is taken:

f (t) = f (t−1) + αtht. (14)

The step size can be optimized by one-dimensional optimization as above. But for general
classification and regression problems, it is often set as a small constant, also called the
shrinkage factor, to avoid overfitting. Take ` (f (x) , y) = exp (−yf (x)) again. We have

∂`

∂f (x) = −y exp (−yf (x)) . (15)

3



So to find the best hwe solve

min
h∈H

N∑
i=1
−yi exp

(
−yif (t−1) (xi)

)
h (xi) ∝

N∑
i=1

w
(t)
i (−yi)h (xi) (16)

≡min
h∈H

N∑
i=1

w
(t)
i 1 {yi 6= h (xi)} (17)

for binary classification problems. This reproduces the h step in Adaboost. The power of
gradient boosting is that it can handle arbitrary differentiable loss `, for both classification
and regression problems.

(i) g (z) = log (1 + e−z) is called the logistic loss (log here is the natural log). Is it convex or
not? Why or why not? (0.5/12)

(ii) Prove that g (z) ≤ e−z , i.e., logistic loss is a uniform lower bound of the exponential loss.
(0.5/12)

(iii) Consider the loss ` (f (x) , y) = log
(
1 + e−yf(x)

)
for binary classification, and derive the

rule for finding h based on gradient boosting—phrase it as weighted error minimization
as in Adaboost. (1/12)

Compare the weights used here with that of the canonical Adaboost, what do you
observe? Any potential advantages? (0.5/12)

Implement this version of boosting with the decision stumps, probably try different
step sizes to find the best performance, and compare it with Prob 1(a) on digit classifica-
tion. (1/12)

Why is this interesting? This particular loss is called the deviance, or logistic loss. This is
the default loss choice for the sklearn implementation of gradient boosting (https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.
html). To see why, note that when e−z is small, log (1 + e−z) = e−z + o(e−z), it is very
close to the exponential loss e−z . However, when −z is large, e−z grows exponentially
whereas log (1 + e−z) ≈ −z only grows linearly. So the exponential loss penalizes large
errors harshly (i.e., when −yh (x) gets large), but logistic loss does so much more mildly.
This can be beneficial in terms of robustness when there are stubborn data points, e.g.,
outliers.

(iv) Now let’s switch to boosted regression. Classification and regression trees (CARTs) are
popular base hypothesis classes for both classification and regression in practice. We de-
scribed in class that CART partitions the space hierarchically using decision stumps, and
finally assigns a constant value (label) for each cell based on averaging (voting). Sklearn
implementation of CART for regression can be found here (https://scikit-learn.org/
stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html)

To implement boosted CART based on gradient boosting, we need to solve

arg min
h∈H

N∑
i=1

∂`

∂f (xi)
(
f (t−1) (xi) , yi

)
h (xi) . (18)

4

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html


This turns out to be relatively simple for classification but nontrivial for regression. For
regression, it is common to solve a proxy least squares problem:

arg min
h∈H

N∑
i=1

(
− ∂`

∂f (xi)
(
f (t−1) (xi) , yi

)
− h (xi)

)2
. (19)

One may be tempted to add an optimizable scaling factor c in front of h (xi). But note
that ch ∈ H if h ∈ H whenH is CART, and so the scaling factor is unnecessary.

Derive gradient boosting rule for ` (f (x) , y) = (f (x)− y)2 with CART (CART can
be used as an off-the-shelf module here). (0.5/12)

Implement your boosted CART regression algorithm, and test it on the Boston house
price dataset (https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
load_boston.html). Compare the performance with that of sklearn built-in (https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.
html). (1/12)

Problem 3 (Random forests; 2.5/12)

(a) Read Sec. 8.7 of [HTF09], implement bagging with CART as the base regressor, and test it on
the Boston house price dataset. (1/12)

(b) Read Secs 15.2 & 15.3 of [HTF09] and implement random forests with CART as the regression
tress. Note that inAlgorithm 15.1,m features out of p are randomly picked each time. Carefully
read the documentation of CART implemetation (https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.GradientBoostingRegressor.html) and figure out how to do this.
Test your implementation on the Boston house price dataset also. (1/12)

(c) Compare the performance of your implementation of boosted CART, bagged CART, and
random forest based on CART, and plot the test error vs the number of CARTs used—produce
a figure similar of Fig 15.1 of [HTF09], but you only need to try 10 different numbers for the
horizontal axis. (0.5/12)

References
[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning:

Data mining, inference, and prediction, second edition, SPRINGER NATURE, 2009.

[Moh18] Mehryar Mohri, Foundations of machine learning, 2 ed., The MIT Press, Cambridge, Mas-
sachusetts, 2018.

[SSS14] Shai Ben-David Shai Shalev-Shwartz, Understanding machine learning, Cambridge Univer-
sity Press, 2014.

5

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

