
HOMEWORK SET 4
CSCI 5525 Advanced Machine Learning (Spring 2021)

Due 11:59 pm, Apr 28 2021
Instruction Typesetting your homework in LATEX is optional but encouraged, and you need to
submit it as a single PDF file in Canvas. For programming, include all your codes and running results
in a single Jupyter notebook file and submit it alongside the main PDF (since Jupyter notebook also
allows text editing, feel free to put your textual answers inside the Jupyter notebook sometimes).
No late submission will be accepted.

For each problem, your should acknowledge your collaborators if any. For problems containing
multiple subproblems, there are often close logic connections between the subproblems. So always
remember to build on previous ones, rather than work from scratch.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g.,A) for matrices. For a matrixA, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space ofm× n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Kernel methods; 8/12) Let our input data points be x1, . . . ,xN ∈ Rd. Recall that in
kernel methods we implicitly map all xi’s into a higher-, often times infinite-, dimensional space
H—which is a Hilbert space and hence an inner product can be defined—so that nonlinearity
unfolds into linearity in H. The mapping Φ often is not explicitly constructed, but induced by
a kernel function K that takes any pair of points x,x′ ∈ Rd and maps them to the inner product
〈Φ (x) ,Φ (x′)〉 in H, i.e.,

K
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

∀ x,x′ ∈ Rd. (1)

(a) K has to satisfy certain conditions to be a valid kernel function, i.e., able to induce a Φ
and a valid inner product as described above. One sufficient condition is symmetric positive
definiteness (SPD): K is said to be symmetric positive definite if: 1) K (x,x′) = K (x′,x) for
all x,x′ ∈ Rd, and 2) for all m ∈ N and for all x1, . . . ,xm, the Gram matrix [K (xi,xj)]ij is
positive semidefinite1.

(i) Prove that ifK is a SPD kernel, then the normalized kernel

K
(
x,x′

)
=

0 K (x,x) = 0 or K (x′,x′) = 0
K(x,x′)√

K(x,x)K(x′,x′)
otherwise (2)

is also SPD. (Hint: one possibility is to express the Gram matrix [K (xi,xj)]ij in terms of
the product of [K (xi,xj)]ij with certain other matrices; 1/12)

1Yes, this is not a typo but an inconsistency of conventions between different fields: kernels and their positive
definiteness are notions commonly used in functional analysis and operator theory, whereas positive (semi)definiteness
of matrices in linear algebra and matrix analysis. Warning: different authors use different conventions of positive
definiteness in the kernel method literature; make sure you understand their conventions before trying to digest their
results.
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(ii) Recall that the popular Gaussian (or radial basis function—RBF) kernel is defined as

K
(
x,x′

)
= exp

(
−‖x− x

′‖22
2σ2

)
∀ x,x′. (3)

The Gaussian kernel is a normalized kernel, as

exp
(
−‖x− x

′‖22
2σ2

)
= exp

(
〈x,x′〉 /σ2)√

exp
(
‖x‖22 /σ2

)
exp

(
‖x′‖22 /σ2

) . (4)

So to prove the Gaussian kernel is SPD, it is sufficient to prove that the kernel

K◦
.= exp

(〈
x,x′

〉
/σ2

)
(5)

is SPD. SPD kernels have several closure properties:
• Summation: K1 +K2 is SPD ifK1 andK2 are SPD;
• Product: K1K2 is SPD ifK1 andK2 are SPD;
• Pointwise limit: the limitK = limn→∞Kn is SPD if allKn’s are SPD;
• Power series composition: ∑∞n=0 anK

n is SPD ifK is SPD, an ≥ 0 for all n, andK
takes values inside the convergence radius of the power series∑∞n=0 anx

n (this can
be easily shown from closure under pointwise limit);

• Tensor product/summation: ifK1 is a SPD kernel on Rd andK2 is a SPD kernel on
Rd′ . Then, bothK1K2 andK1 +K2 are SPD kernels on Rd × Rd′ .

Prove thatK◦ is SPD. (Hint: recall that the series expansion ex =
∑∞
n=0

xn

n! holds for all
x ∈ R. 1/12)

(iii) Polynomial kernel of degree-d isK (x,x′) = (〈x,x′〉+ c)d where c ≥ 0 is a parameter to
be set. Prove that polynomial kernels are SPD. (Hint: apply the closure properties above.
1/12)

(b) The soft-margin SVM

min
w,b,ξ′is

1
2 ‖w‖

2
2 + C

N∑
i=1

ξi s. t. yi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 ∀ i (6)

has a convex quadratic objective and linear constraints. So it is a quadratic programming problem
and can be solved using off-the-shelf quadratic programming solvers. Alternatively, one can
also derive its dual problem, which is again a convex quadratic problem.
A modern and scalable approach is to write it as an equivalent unconstrained problem. Note
that the constraints in Eq. (6) are equivalent to

ξi ≥ 1− yi (〈w,xi〉+ b) , ξi ≥ 0 ∀i⇐⇒ ξi ≥ max (0, 1− yi (〈w,xi〉+ b)) ∀ i. (7)

So problem in Eq. (6) is equivalent to

min
w,b,ξ′is

1
2 ‖w‖

2
2 + C

N∑
i=1

ξi s. t. ξi ≥ max (0, 1− yi (〈w,xi〉+ b)) ∀ i. (8)
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Since for any fixed (w0, b0), one can set ξi = max (0, 1− yi (〈w0,xi〉+ b0)) for all i to minimize∑N
i=1 ξi while remaining feasible, the problem Eq. (8) is in turn equivalent to

min
w,b

1
2 ‖w‖

2
2 + C

N∑
i=1

max (0, 1− yi (〈w,xi〉+ b)) . (9)

Problem Eq. (9) can be written compactly as

min
w,b

1
2 ‖w‖

2
2 + C

N∑
i=1

`h (yi (〈w,xi〉+ b)) , (10)

where the `h (z) = max (0, 1− z) is the hinge loss. In principle, we can use gradient-type
methods to optimize Eq. (10). But the hinge loss is not differentiable and hence we need to
develop subgradient methods. Here for simplicity, we instead consider a smoothed version:

min
w,b

1
2 ‖w‖

2
2 + C

N∑
i=1

`2h (yi (〈w,xi〉+ b)) . (11)

(i) Show that the objective in Eq. (11) is continuous differentiable. (0.5/12)
(ii) Derive the gradient and implement gradient descent with backtracking linear search to

optimize Eq. (11). (0.5/12)
(iii) Load the breast cancer dataset from scikit-learn ( https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.
load_breast_cancer), and compare your implementation of soft-margin SVMwith that
of scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html for the binary classification on breast cancer. Note that you should set the linear
kernel in SVC for fair comparison, and also due to our smoothing above, you may not get
the same level of performance with the same C parameter for the two implementations.
Try to tune around C for both to optimize the performance as much as possible. (1/12)

(c) Now let’s apply the kernel trick to move beyond the linear kernel. Suppose we choose a kernel
K which induces a feature mapping Φ. Then Eq. (11) becomes

min
w,b

1
2 ‖w‖

2
2 + C

N∑
i=1

`2h (yi 〈w,Φ (xi)〉) , (12)

where we omit the bias term. The celebrated representer theorem says that for any function f
and any monotonically nondecreasing function R : R+ → R, any optimization problem of the
form

min f (〈w,Φ (x1)〉 , . . . , 〈w,Φ (xN )〉) +R(‖w‖2) (13)

has a global minimizer of the form w =
∑
i∈[N ] αiΦ (xi). If R is strictly increasing, then all

global minimizers take this form. Easy to see that we can apply the representer theorem to
Eq. (12), and turn the problem into:

min
α

1
2

∥∥∥∥∥∥
∑
j∈[N ]

αjΦ (xj)

∥∥∥∥∥∥
2

2

+ C
N∑
i=1

`2h

yi
〈 ∑
j∈[N ]

αjΦ (xj) ,Φ (xi)
〉 (14)
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≡min
α

1
2α

ᵀGα+ C
N∑
i=1

`2h (yi 〈gi,α〉) , (15)

whereG is the Gram matrix generated fromK on our training data points {xi}Ni=1.

(i) Implement gradient descentwith backtracking linear search to optimize Eq. (15). (0.5/12)
(ii) Implement both Gaussian and polynomial kernels, and compare the classification per-

formance on the breast cancer dataset with that of built-in Gaussian (i.e., RBF) and
polynomial kernels with SVC. You may want to set up a small validation set to help you
tune the hyperparameters. (1/12)

(d) One can also use SVM for regression, often called support vector regression, or SVR. In the hard-
margin setting, we consider a predictor of the form 〈w,Φ (x)〉+ b, where Φ is the nonlinear
feature mapping we apply to the input. We require that the predictor makes at most ε error
uniformly on all training samples, i.e., |yi − 〈w,Φ (xi)〉 − b| ≤ ε for all i. So the resulting
optimization problem is

min
w,b

1
2 ‖w‖

2
2 s. t. |yi − 〈w,Φ (xi)〉 − b| ≤ ε ∀ i. (16)

Here obviously

|yi − 〈w,Φ (xi)〉 − b| ≤ ε⇐⇒ yi − 〈w,Φ (xi)〉 − b ≤ ε, 〈w,Φ (xi)〉+ b− yi ≤ ε. (17)

To allow a bit of slackness, similar to the soft-margin SVM, one can introduce two groups of

Figure 1: Illustration of SVR and the loss it uses. Figure taken from [SS04].

slackness variables: ξ′is and ξ∗i ’s and consider the formulation

min
w,b,ξ,ξ∗

1
2 ‖w‖

2
2 + C

N∑
i=1

(ξi + ξ∗i ) s. t. yi − 〈w,Φ (xi)〉 − b ≤ ε+ ξi, ξi ≥ 0

〈w,Φ (xi)〉+ b− yi ≤ ε+ ξ∗i , ξ
∗
i ≥ 0 ∀i.

(18)

(i) Is Eq. (18) a convex optimization problem or not? Why? (0.5/12)

4



(ii) Show that Eq. (18) can be reformulated as an equivalent unconstrained problem

min
w,b

1
2 ‖w‖

2
2 + C

N∑
i=1

max (|yi − 〈w,Φ (xi)〉 − b| − ε, 0) . (19)

(0.5/12)
(iii) Let’s omit the bias term b. How do we implement the kernel trick for SVR? (0.5/12)

Problem 2 (Learning theory) To apply the standard statistical learning theorems, it is crucial to
estimate the complexity of the hypothesis classH under discussion.

(a) ForH with finitely many elements, we only need to provide a reasonable upper bound to its
cardinality |H|.

(i) Consider the set of all conjunctions2 of at most n Boolean literals (a literal is either xi
or the negation xi) from x1, . . . , xn, e.g., x1 ∧ x3 ∧ x4. What’s the cardinality of the set?
(0.5/12)

(ii) Let X be the set of all Boolean functions f : {0, 1}k 7→ {0, 1}, and U be the set of all
subsets of X . What’s |U |? (0.5/12)

(b) Consider binary classification problems. A set of distinct points S is schattered by a hypothesis
classH if every binary label assignment on the set can be realized by a certain h ∈ H, in other
words if H realizes all possible dichotomies of S. The VC dimension of H is the size of the
largest set that can be shattered byH. Hence, to proveH has a VC dimension of d, one needs
to show that

• there exists a set of cardinality d that can be shattered byH, and
• no set of cardinality d+ 1 can be shattered byH.

Please answer the following questions.

(i) Let B be the set of all `2 ball functions on R2, i.e.,

B .=
{
x 7→ 1 {‖x− c‖2 ≤ r} − 1 {‖x− c‖2 > r} : c ∈ R2, r ∈ R

}
⋃{

x 7→ −1 {‖x− c‖2 ≤ r}+ 1 {‖x− c‖2 > r} : c ∈ R2, r ∈ R
}
. (20)

What’s the VC dimension of B? Show your argument. (1/12)
(ii) Show that the VC dimension of the set of Boolean conjunction of at most n Boolean

literals as discussed in (a)(i) is upper bounded by n. (1/12)

(c) For a set of training points S = {(xi, yi)}Ni=1 and a function h ∈ H, we write h (S) .=
[h (x1) , . . . , h (xN )]. The empirical Rademacher complexity is defined as

R̂S (H) = 1
N

Er∼iidRad

[
sup
h∈H
〈r, h (S)〉

]
, (21)

2https://en.wikipedia.org/wiki/Logical_conjunction
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where Rad denotes the Rademacher distribution. Can you provide an upper bound for the
empirical Rademacher complexity of the class of hyperplanes classifiers, i.e.,{

x 7→ sign (〈w,x〉+ b) : w ∈ Rd, b ∈ R
}

? (22)

For your information, the VC dimension of this class is d+ 1, and so the contribution to the
generalization error is C

√
d
N . The corresponding contribution as estimated by the empirical

Rademacher complexity is 2R̂S (H). (1/12)
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