
HOMEWORK SET 3
CSCI 5525 Advanced Machine Learning (Spring 2021)

Due 11:59 pm, Mar 31 2021
Instruction Typesetting your homework in LATEX is optional but encouraged, and you need to
submit it as a single PDF file in Canvas. For programming, include all your codes and running results
in a single Jupyter notebook file and submit it alongside the main PDF (since Jupyter notebook also
allows text editing, feel free to put your textual answers inside the Jupyter notebook sometimes).
No late submission will be accepted.

For each problem, your should acknowledge your collaborators if any. For problems containing
multiple subproblems, there are often close logic connections between the subproblems. So always
remember to build on previous ones, rather than work from scratch.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g.,A) for matrices. For a matrixA, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space ofm× n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Convex analysis & KKT conditions; 7/12) Recall that a set S is said to be convex if
every line segment connecting two distinct points lies in the set, i.e., {tx+ (1− t)y : t ∈ [0, 1]} ⊂ S
for all x,y ∈ S.

Let X be a convex set. A function f : X 7→ R is said to be convex if every chord connecting any
two distinct points on the graph of f lies above (i.e., not below) the graph, i.e.,

f (tx+ (1− t)y) ≤ tf (x) + (1− t) f (y) ∀ x,y ∈ X and ∀ t ∈ [0, 1]. (1)

To verify a function is convex, it is important to check 1) the domain X is a convex set, and 2) f

Figure 1: Illustration of convex sets (left; image credit: http://www2.econ.iastate.edu/classes/
econ500/hallam/documents/Convex_Opt_000.pdf) and convex functions (right; image credit: wikipedia).

satisfies the condition in Eq. (1).

(a) Any local minimizer of a convex function is also a global minimizer. Prove this. (Hint: for
any x,y, the line segment {tx+ (1− t)y : t ∈ [0, 1]} intersects arbitrarily small balls around
x. Review the notes on linear predictions if you forget the difference between minimizer and
minimum.) (1/12)
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(b) In the definition of convex functions, when every chord connecting any two distinct points
lies strictly above the the graph except for the two end points, the function is called strictly
convex, i.e.,

f (tx+ (1− t)y)< tf (x) + (1− t) f (y) ∀ x,y ∈ X and ∀ t ∈ (0, 1). (2)

Prove that a strictly convex function has a unique global minimizer. (0.5/12)
Let X be a convex set. A first-order differentiable function f : X 7→ R is convex if and only if

f (y)− f (x) ≥ 〈∇f (x) ,y − x〉 ∀ x,y ∈ X, (3)

is strictly convex if and only if

f (y)− f (x) > 〈∇f (x) ,y − x〉 ∀ distinct x,y ∈ X. (4)

A second-order differentiable function g : X 7→ R is convex if and only if

∇2g (x) � 0 ∀ x ∈ X, (5)

is strictly convex if (the converse not true)

∇2g (x) � 0 ∀ x ∈ X. (6)

Is f (w) = 1
2 ‖w‖

2
2 strictly convex? Why or why not? Is the Hinge loss φ (z) = max (0, 1− z)

strictly convex? Why or why not? (0.5/12)

(c) Show that if f (x) : X 7→ R is a convex function, the sublevel set {x ∈ X : f (x) ≤ 0} is a
convex set. (0.5/12) Is {x ∈ X : f (x) = 0} a convex set? Why or why not? What about when
f (x) is an affine function, i.e., f (x) = 〈w,x〉+ b for certain w and b? (0.5/12)

(d) Recall operations that preserve convexity for sets: for any two convex sets S1, S2,

• the set product S1 × S2 = {(x1,x2) : x1 ∈ S1,x2 ∈ S2} is convex;
• the set summation S1 + S2 = {x1 + x2 : x1 ∈ S1,x2 ∈ S2} is convex;
• the set projection {(x1, . . . , xk) : (x1, . . . , xk, xk+1, . . . , xn) ∈ S1} is convex for any k ∈ [n].

In addition,

• for a family of sets {Si}Ki=1, the set intersection
⋂K
i=1 Si is convex.

Moreover, all valid vector and matrix norms, particularly vector `p norms for all p ≥ 1, and
the matrix Frobenius norm are all convex functions. This is because valid norms should by
definition satisfy the triangular inequality: i.e., ‖x+ y‖� ≤ ‖x‖� + ‖y‖� for any norm ‖·‖�
under consideration. Operations that preserve convexity of functions include:

• positive combinations: ∑K
i=1 αifi (x) is convex over ⋂Ki=1 Si for all αi ≥ 0 if fi (x) is

convex over Si for all i ∈ [K].
• pointwise maximization: maxi∈[K] fi (x) is convex over ⋂Ki=1 Si if fi (x) is convex over Si

for all i ∈ [K].
• composition with affine functions: f (Ax+ b) is convex overX (which is the domain of

the affine functionAx+b) if f is convex over the range ofAx+b, i.e., {Ax+ b : x ∈ X}.
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• composition: h ◦ g is convex over X if both g : X 7→ R and h : R 7→ R are twice
differentiable and either of the following holds:
– h is convex and non-decreasing and g is convex,
– h is convex and non-increasing and −g is convex.

• partial minimization: Let f (x,y) be a convex function over X × Y , where both X and
Y are convex sets and hence X × Y is also a convex set. The partial minimization
infy∈Y f (x,y) 1 is convex over X .

(i) Prove that the Lasso objective

f (x) = ‖y −Ax‖22 + λ ‖x‖1 (7)

is convex. You’re supposed to use facts and properties covered above only and try to
work from first principles. Directly stating that say, ‖y −Ax‖22 is convex does not work.
(1/12)

(ii) For any convex subset S ⊂ Rn, the distance function to S induced by the `p norm is
defined as

d`p (x;S) .= inf
y∈S
‖x− y‖p . (8)

Show that d`p (x;S) is convex. Similar to (i), you’re supposed to prove this from first
principles. (1/12)

(e) Consider a convex optimization problem:

min
x

f (x) s. t. gi (x) ≤ 0, ∀ i ∈ I and Ax+ b = 0, (9)

where f and gi’s are convex functions and I is the index set for the inequality constraints.
Define the Lagrangian function as

L (x,π,λ) .= f (x) +
∑
i∈I

πigi (x) + 〈λ,Ax+ b〉 , (10)

where x is called the primal variable, and π ≥ 0 and λ are called the dual variables. The KKT
optimality condition states:

Suppose f and gi ∀ i are continuously differentiable, and the constraint set is strictly
feasible (also called the Slater’s condition), i.e., there exists an x0 so that gi (x0) < 0
for all i ∈ I and Ax0 + b = 0. Then, x∗ is a global minimizer if and only if there
exist dual variables λ∗ and π∗ so that the following hold simultaneously:
• stationarity: ∂xL (x∗,π∗,λ∗) = 0
• feasibility: primal feasibility gi (x∗) ≤ 0 ∀ i ∈ I and Ax∗ + b = 0, and dual

feasibility: π∗ ≥ 0
• complementary slackness: (π∗)igi (x∗) = 0 for all i ∈ I, or equivalently∑

i∈I(π∗)igi (x∗) = 0
1Recall that inf can be roughly treated as min, but for min the minimum value must be achieved by a point inside the

domain, whereas for inf we take a limit point that can be outside. An example is minimizing f (x) = x2 over (−∞, 0).
Here, min f (x) does not make sense, but inf f (x) = 0. So, in general, it is safer to use inf , instead of min, when we mean
to perform minimization.
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Make use of the KKT condition to solve the following projection problems.

(i) Projection onto a hyperplane. Prove that `2 projection of a point y onto an affine hyper-
plane {x : Ax = b}, whereAhas full row rank, is

(
I −Aᵀ (AAᵀ)−1A

)
y+Aᵀ (AAᵀ)−1 b,

i.e., the global minimizer to

min
x
‖x− y‖22 s. t. Ax = b (11)

is x∗ =
(
I −Aᵀ (AAᵀ)−1A

)
y +Aᵀ (AAᵀ)−1 b. (1/12)

(ii) Projection onto an `2 ball. Prove that the global minimizer x∗ to

min
x
‖x− y‖22 s. t. ‖x‖22 ≤ 1 (12)

is

x∗ =


y
‖y‖2

‖y‖2 ≥ 1
y ‖y‖2 < 1

. (13)

You can draw a picture on R2 to see if this solution makes sense. (1/12)

Problem 2 (Linear SVMs; 5/12) Assume a training set {(xi, yi)}Ni=1 with yi ∈ {1,−1} for all i.
We consider the hard-margin SVM formulation

min
w,b

1
2 ‖w‖

2
2 s. t. yi (〈w,xi〉+ b) ≥ 1 ∀ i (14)

and the generalized soft-margin SVM formulation

min
w,b,ξ′

is

1
2 ‖w‖

2
2 + C

N∑
i=1

ξpi s. t. yi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 ∀ i, (15)

where p can take any value from [1,∞).

Figure 2: Illustration of hard-margin (left) and soft-margin (right) SVMs. Figures adapted from Chap 5
of [Moh18].
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(a) Suppose the training set is linearly separable. Recall that in our lecture on hard-margin SVM,
we made a handwavy argument that the two marginal hyperplanes must have the same
distance to the separating (also called maximum-margin) hyperplane {x : 〈w,x〉+ b = 0}.
Prove it using the KKT condition for optimality, and also write down the set representations
of the two hyperplanes. (1/12)

(b) Prove that both the hard-margin and soft-margin SVM problems with p > 1 have unique
minimizers. (Hint: think of strict convexity) (1/12)

(c) Apply the KKT condition to the soft-margin SVM with p = 1, and conclude that any support
vector/point is either on themarginal hyperplane, or an outlierwith a strictly positive slackness
variable, i.e., ξ > 0. (1/12)

(d) What happens when we apply the hard-margin SVM to a training set that is not linearly
separable? (1/12)

(e) What happens when we apply the soft-margin SVMwith p = 1 to a training set that is linearly
separable? Particularly, do we expect to obtain the same hyperplane as that obtained if hard-
margin SVM is applied? (Hint: draw a picture when thinking about this, and consider how
varying C from a small to a large value changes the two types of support vectors in (c). )
(1/12)
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