
HOMEWORK SET 1
CSCI 5525 Advanced Machine Learning (Spring 2021)

Due 11:59 pm, Feb 10 2021
Instruction Typesetting your homework in LATEX is optional but encouraged, and you need to
submit it as a single PDF file in Canvas. For programming, include all your codes and running results
in a single Jupyter notebook file and submit it alongside the main PDF (since Jupyter notebook also
allows text editing, feel free to put your textual answers inside the Jupyter notebook sometimes).
No late submission will be accepted.

For each problem, your should acknowledge your collaborators if any. For problems containing
multiple subproblems, there are often close logic connections between the subproblems. So always
remember to build on previous ones, rather than work from scratch.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g.,A) for matrices. For a matrixA, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space ofm× n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Matrix norms, inner products, traces; 6/12) Recall that for any vector v ∈ Rn, the
`p norm of v is defined as ‖v‖p

.= (
∑

i |vi|p)1/p. The cases when p = 1, 2,∞ are often used. When
p = 2, it is also called the Euclidean norm. Similar norms can be defined for matrices. Particularly,
the direct generalization of the vector Euclidean norm is the Frobenius norm defined as

‖M‖F
.=
√∑

ij

m2
ij

for a matrix M . On the other hand, the inner product of matrices is defined similarly to that
of vectors. For A,B of the same size, 〈A,B〉 .=

∑
ij aijbij . Obviously, 〈A,B〉 = 〈B,A〉 and

‖M‖F =
√
〈M ,M〉. A third notion of interest is the matrix trace, tr (M) =

∑
imii, i.e., sum of the

diagonal entries, which is only defined for square matrices.

(a) Show that 〈A,B〉 = tr (AᵀB) and so ‖M‖F =
√

tr (MᵀM). (1/12)

(b) Show that tr (AᵀB) = tr (BᵀA). (1/12)

(c) Assume A and B have the same size. In general, ABᵀ and BᵀA have different sizes, but
tr (ABᵀ) = tr (BᵀA). Show it! (1/12)

(d) Show that tr (M1M2M3) = tr (M3M1M2) = tr (M2M3M1), assuming that the sizes ofM1,
M2 andM3 are compatible with all the matrix multiplications. This is known as the cyclic
property of matrix traces. (Hint: think of (c)) (1/12)

(e) For anymatricesA,B,C,D of compatible sizes, we always have 〈ACB,D〉 = 〈CB,AᵀD〉 =
〈AC,DBᵀ〉, i.e., we can always move the leading matrix of one side of the inner product
to the other side as leading matrix once transposed (if these matrices are complex-valued,
should be conjugate transposed), and similarly the trailingmatrix to the other side as trailing
matrix once transposed. Why? (Hint: think of the above results and also try to remember
this important property that will be useful for calculation later) (1/12)
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(f) ForM , let’s perform a compact SVD (if not sure, check upWikipedia! https://en.wikipedia.
org/wiki/Singular_value_decomposition#Compact_SVD) to obtainM = UΣV ᵀ, so that
U and V are orthonormal (not necessarily square) matrices, i.e., UᵀU = I and V ᵀV = I .
Use the cyclic property of trace and that ‖M‖F =

√
tr (MᵀM) to show that

‖M‖F =

√√√√ r∑
i=1

σ2
i ,

assuming the rank ofM is r. Here σi’s are the singular values ofM . (1/12)

Problem 2 (Computation of Jacobian, gradient, and Hessian; 4/12) For all the subproblems,
you are free to deploy any techniques or their mixtures that we describe in the class. However, the
perturbation-expansion (Taylor-expansion) technique could be more efficient for some cases.

Background on convexity: A twice-differentiable function f (x) is convex if ∇2f (x) is positive
semidefinite for all x. If ∇f2 (x) is positive definite for all x, then f is said to be strongly convex
and f has a unique minimizer.

(a) Let A be a square matrix. Deriving the gradient and Hessian of the quadratic function
f (x) = xᵀAx+ bᵀx. Please include your calculation details. (Hint: note that Hessian must
be a symmetric matrix.) (1/12)

(b) Let p (x;β) = eβ
ᵀx

1+eβ
ᵀx . The log-likelihood for logistic regression with two classes is (assuming

N samples of the form (xi, yi))

f (β) =
N∑

i=1
[yi log p (xi;β) + (1− yi) log (1− p (xi;β))]

=
N∑

i=1

[
yiβ

ᵀxi − log
(
1 + eβ

ᵀxi

)]
.

Derive the gradient and Hessian of f (β). Please include your calculation details. (1/12) For
logistic regression, we are going to maximize f (β), which is equivalent to minimize −f (β).
Does the minimization problem has a unique minimizer or not? (0.5/12)

(c) LetA ∈ Rm×n withm ≤ n, then given a y ∈ Rm, the least-squares problem minx ‖y −Ax‖22
has infinitely many solutions. Now let’s say we want a solution with a small `2 norm, then it
is reasonable to put a penalty on the `2 norm:

min
x
‖y −Ax‖22 + λ ‖x‖22

with a chosen λ > 0. This is ridge regression. Nowwe know that for an unconstrained first-order
differentiable function g (x), any of its local minimizer x∗ must satisfy the first-order optimality
condition: ∇g (x∗) = 0. Use this to derive x∗ (1/12). Is the x∗ unique? Why? (0.5/12)

Problem 3 (Robust linear regression; 2/12) Given data points {(xi, yi)}Ni=1. Linear regres-
sion tries to find a linear function of x, i.e., wᵀx, so that the collective approximation error∑N

i=1 ` (wᵀxi, yi) isminimized. Geometrically, this fits a linear subspace to the point cloud {(xi, yi)}Ni=1
so that the cumulative error in the y direction can be minimized, as illustrated in Fig. 1.
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Figure 1: Illustration of linear regres-
sion. Figure reproduced from Figure 3.1
of [HTF09].

If the data points {(xi, yi)}Ni=1 do follow a linear relationship
with deviations of comparable magnitude, e.g., for an under-
lying w∗

yi = wᵀ
∗xi + εi ∀ i = 1, . . . , N

with εi iid Gaussian with a small variance, the typical least-
squares objective, e.g.,

min
w

N∑
i=1

(wᵀxi − yi)2 (1)

is reasonable. But if εi’s are very different in magnitude across
the i’s, e.g., coming from heavy-tailed distributions, or due
to irregular measurement corruption, the (·)2 as loss function
may not be appropriate. This is because one extremely large
εi may rule the total loss and ruin the estimation of w∗.

To cure this, an alternative is to use the absolute value,
instead of the squares:

min
w

N∑
i=1
|wᵀxi − yi| . (2)

Compared to Eq. (1), the influence of terms with potential large errors is suppressed and with
small errors amplified, so the estimation procedure tends to be more stable. This is often called
least absolute deviations (LAD) estimation. For more information on this, check out here https:
//en.wikipedia.org/wiki/Least_absolute_deviations.

Now let’s explore the benefit of LAD. For the sake of reproducibility, please fix a random seed before
you start to generate any data.

(a) Let’s first generate an iid normal (i.e., N (0, 1)) vector w∗ ∈ R20 and 100 iid normal vectors
xi ∈ R20. Now produce

yi = wᵀ
∗xi + εi, (3)

where εi’s are iid Laplace (0, 0.5). (0.5/12)

(b) CVXPY is an excellent Python-based modeling framework for solving small-scale convex op-
timization problems. Follow the instruction here https://www.cvxpy.org/install/index.
html and install it in your workspace. (0.5/12)

(c) Read this CVXPY example on solving least squares https://www.cvxpy.org/examples/basic/
least_squares.html and adapt it for solving our least-squares with the data of (a). To solve
LAD, you only need to change the line

cost = cp.sum_squares(A @ x - b)

to

cost = cp.norm1(A @ x - b).

For the ŵ estimated from both least-squares and LAD, compute ‖ŵ −w∗‖2, i.e., estimate
error for w∗. Which method leads to smaller estimation error? (1/12)
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