
Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Linear Predictions

Ju Sun∗

October 6, 2024

Overview We first interpret supervised learning from the viewpoint of function approximation,
and then survey classical linear prediction models and algorithms, including linear least squares
for regression, and Perceptron, simple SVM, logistic regression for binary classification.

1 Function approximation view of supervised learning
Given: a data set {(xi,yi)}N

i=1 (called training set) so that yi ≈ f∗(xi) ∀i, where f∗ is an unknown
underlying function to be estimated. For all i ∈ [N ], the “≈” sign in yi ≈ f∗(xi) is to allow noise or
other errors over yi = f∗(xi), e.g., yi = f(xi) + εi for Gaussian noise εi. Some terminology:

xi is called the input/predictor (in statistics)/features (in pattern recognition),
yi is called the output/response (in statistics)/label (in pattern recognition).

There are three steps in a typical supervised learning workflow:

• Step 1: Modeling. Choose a family/set of functions H, called a hypothesis class or hypothesis
set, so that there exists an f⋄ ∈ H that is “close" to f∗. Often, H should be reasonably large to
ensure that there is indeed a good approximation f⋄ to f∗, and also reasonably small/simple so
that such an f⋄ can be found efficiently in the computation.

• Step 2: Computation (or Training). Design an algorithm to find such an f⋄. In modern
machine learning, one often first formulates the learning problem as an optimization problem
and then develops numerical optimization algorithms to solve it—this is why optimization is
a crucial component of modern machine learning1.

– Optimization formulation. A family of natural and popular formulation is structural risk
minimization, or SRM (it is called this under certain additional probabilistic assumptions
on the training set; we will talk more about this when introducing statistical learning
theory later.):

min
f∈H

1
N

N∑
i=1

ℓ(yi, f(xi)) + R(f). (1.1)

∗Department of Computer Science and Engineering, University of Minnesota at Twin Cities. Email: jusun@umn.edu.
1The department of Industrial and Systems Engineering (ISyE) of UMN offers the course Optimization for Machine

Learning that covers popular scalable numerical optimization methods for solving large-scale machine learning problems.
Other good resources include [Sra12, Sta].

Page 1

mailto:jusun@umn.edu


Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Here, ℓ denotes the loss function chosen to measure the difference between yi and
f(xi). Obviously, minf 1/N ·

∑N
i=1 ℓ(yi, f(xi)) tries to ensure that yi ≈ f(xi) for all i.

The second term R(x) is typically called regularizer or regularization term, which puts
certain preferences on f to be found: this is often needed when there are multiple
or even infinitely many f⋄ that are good—perhaps because the H we choose is larger
than necessary—so that we have to restrict our search to certain f ’s that are practically
interesting.

– Optimization algorithm. For very simple problems, Eq. (1.1) may admit a closed-form
analytical solution. But in modern machine learning, this is very rare and iterative
numerical optimization methods are almost always needed to solve Eq. (1.1). Depending
on the learning problem and the choice of formulation,
(i) Eq. (1.1) can be an unconstrained or constrained optimization problem. In general,
unconstrained optimization problems are (much) easier to solve than constrained ones.
So for applications with large-scale datasets, one is often willing to make reasonable
compromises during modeling and tries to formulate learning problems into uncon-
strained optimization problems or constrained optimization problems with very simple
constraints so that scalable optimization algorithms can be developed;
(ii) Eq. (1.1) can be a convex or nonconvex problem. We will provide a quick
review of convex analysis and optimization later. The analysis and optimization of
convex problems are much more mature than that of nonconvex ones. So, there is an
overall preference for convex formulations. But the revival of deep learning after 2010 has
substantially changed this—optimization problems in deep learning are always highly
nonconvex.

• Step 3: Generalization (Testing). Measure how close the f⋄ found from Step 2 is to f∗. Since
we often do not know the true f∗, generalization can only be measured indirectly, e.g., by
evaluating the average of

d(f∗(xj), f⋄(xj)) ≈ d(yj , f⋄(xj)) (1.2)

over unseen (i.e., test) dataset {(xj ,yj)}M
j=1. Here d(·, ·) is a difference (error) function that

may or may not be the same as the ℓ above. To study generalization in a rigorous manner,
especially to quantify the relationship between the size of training set (i.e., sample complexity)
and generalization, we need to put additional assumptions on the training set, e.g., the data
points are sampled iid (i.e., independent and identically distributed) from an underlying
distribution. We will talk about this in later lectures on statistical learning theory.

Below, we start with linear regression and linear classification problems, and illustrate Steps 1 &
2. We will derive their generalization properties in the learning theory lectures.

When yi’s in the training set are categorical, i.e., indicating the memberships of the inputs xi’s
in a set of categories (e.g., {cat,dog, else} for image inputs, {COVID,Non-COVID} given patients’
symptoms), the learning problem is often modeled as classification. Otherwise, it will be modeled
as regression.

2 Linear regression
For simplicity, we assume that xi ∈ Rd and yi ∈ R for all i ∈ [N ] (remember that our convention is
that scalars are nonbold small letters. ).

Page 2



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

2.1 Choosing the hypothesis class

In linear regression, we model the relationship between x and y as linear—arguably the simplest
possible:

yi ≈ ⟨w,xi⟩ + b ∀ i ∈ [N ], w ∈ Rd, b ∈ R. (2.1)

In other words, the hypothesis class is the set of all linear functions in x, which we can write as2

HL =
{

x 7→ ⟨w,x⟩ + b : w ∈ Rd, b ∈ R
}
. (2.2)

2.2 Formulation

Once we decide on the hypothesis class, we are ready to formulate the problem as an optimization
problem. When using the SRM framework, we need to choose an appropriate loss ℓ and regularizer
R. For simplicity, let us choose squared loss, i.e., ℓ(yi, f(xi)) = (yi − f(xi))2 for all i, and suppose
that we do not need regularization now. This leads to a least-squares formulation:

min
w∈Rd,b∈R

1
N

N∑
i=1

(yi − ⟨w,xi⟩ − b)2. (2.3)

Now we are to turn this formulation into an equivalent yet compact form using matrix notations—
this facilitates more direct translation of the mathematical expressions into modern numerical
programming languages that are optimized for matrix (or tensor) computations (e.g., Numpy in
Python, PyTorch, Julia). We append each xi with an additional coordinate 1, so that x′

i = [ xi
1 ] ∈

Rd+1; correspondingly, we concatenate w and b into w′ = [ w
b ] ∈ Rd+1. It is easy to verify that〈

w′,x′
i

〉
= ⟨w,xi⟩ + b ∀ i ∈ [N ]. (2.4)

We call this the homogeneous form of linear functions. This allows us to write Eq. (2.3) as

min
w′∈Rd+1

1
N

N∑
i=1

(
yi −

〈
w′,x′

i

〉)2
. (2.5)

The prime notation (·)′ looks messy. Since we often use the homogeneous form, with slight abuse
of notation, we will just omit the (·)′ from w′ and x′

i, knowing that the homogeneous notation will
be explicitly stated or can be inferred from the dimension of w (i.e., w ∈ Rd+1). So we have

min
w∈Rd+1

1
N

N∑
i=1

(yi − ⟨w,xi⟩)2. (2.6)

Last step, if we write

y =

 y1
...
yN

 ∈ RN and X =

 x⊺
1...

x⊺
N

 ∈ RN×(d+1), (2.7)

2Recall thatwe typically represent a set as: {generic form of elements in the set : constraints on elements in the set if any}.
In Eq. (2.2), a generic linear function in x can be represented as x 7→ ⟨w, x⟩ + b, and the constraints are w ∈ Rd and
b ∈ R—which are vacuous.

Page 3



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

and recall the definition of vector ℓ2 norm, we arrive at a compact form of Eq. (2.6):

min
w∈Rd+1

g(w) .= ∥y − Xw∥2
2, (2.8)

where we have omitted the factor 1/N in the objective, as it does not affect the solution. Our next
job is to solve the optimization problem Eq. (2.8) to find a good linear model that fits the data well.

2.3 Solution via optimality condition

Our least-squares problem is unconstrained, and also the objective function g(w) is relatively simple.
So we shall first try the analytical approach, i.e., using optimality conditions to see if they lead to
somewhere.

We now quickly review the optimality conditions for unconstrained optimization problems.
Consider a minimization problem (it is sufficient to consider minimization problems, as maxi-
mization problems of the form maxz∈Rn f(z) are equivalent to minz∈Rn −f(z)—they have the same
optimizer(s))

min
z∈Rn

f(z). (2.9)

A point z0 ∈ Rn is a local minimizer of f(z) if there exists a radius η such that f(z0) ≤ f(z) for
all z satisfying ∥z − z0∥2 ≤ η; in other words, if f(z0) is no larger than any other f(z) in an η-ball
around z0. The value f(z0) is called a local minimum. So, minimizers concern the optimization
variable, and minimums (or minima) concern the objective value.

For minimization problems, optimality conditions are mathematical conditions that any local
minimizer must satisfy, and hence they are helpful for locating local minimizers both analytically
and numerically.
Theorem 2.1 (First-order necessary condition of optimality for unconstrained problems). Assume f
is first-order differentiable at z0. If z0 is a local minimizer, then ∇f(z0) = 0.

The zero-gradient condition is a necessary condition for local minimizers, but not sufficient.
A point where the gradient is zero (also called first-order stationary point, or FOSP) can be a local
minimizer, a local maximizer, or a saddle point. It turns out the condition becomes sufficient for the
family of convex functions—more on this when we talk about support vector machines and kernel
methods. A salient feature of convex functions is that a local minimizer is also a global minimizer3.
One way to tell convexity is through the Hessian.
Lemma 2.2 (Convexity through Hessian). Assume f is second-order differentiable. Then f is convex if
and only if ∇2f(z) ⪰ 0 for all z.

Here, ⪰ 0 means being positive semidefinite (≻ 0 means being positive definite). Recall that
for a symmetric matrix M ,

M ⪰ 0 ⇐⇒ v⊺Mv ≥ 0 ∀v and M ≻ 0 ⇐⇒ v⊺Mv > 0 ∀v ̸= 0. (2.10)

Theorem 2.3 (First-order sufficient condition of optimality for unconstrained convex problems).
Assume f is convex and first-order differentiable at z0. If ∇f(z0) = 0, then z0 is a local and also global
minimizer of f .

3A convex function has a unique local minimum—which is also the global minimum, but could have multiple local
minimizers that are also global minimizers.

Page 4



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

There is a more refined characterization of local minimizers using both gradient and Hessian.
Theorem 2.4 (Second-order necessary condition of optimality for unconstrained problems). Assume
f is second-order differentiable at z0. If z0 is a local minimizer, then ∇f(z0) = 0, and ∇2f(z0) ⪰ 0, i.e.,
Hessian at z0 is positive semidefinite.

A point z0 satisfying ∇f(z0) = 0 and ∇2f(z0) ⪰ 0 is called a second-order stationary point, or
SOSP. Similarly to a FOSP, a SOSP can be a local minimizer, a local maximizer, or a saddle point. A
stronger condition can ensure a local minimizer.
Theorem 2.5 (Second-order sufficient condition of optimality for unconstrained problems). Assume
f is second-order differentiable at z0. If ∇f(z0) = 0, and ∇2f(z0) ≻ 0, i.e., Hessian at z0 is positive
definite, then z0 is a local minimizer.

Note that the gap between the second-order sufficient and necessary conditions lies in Hessian:
∇2f(z0) ≻ 0 vs. ∇2f(z0) ⪰ 0. When ∇f(z0) = 0 and ∇2f(z0) ⪰ 0, the local landscape of the
function can be shaped by higher-order derivatives, no matter how local. For example, (0, 0) is an
SOSP of the function h(x, y) = x3 − y3, but it is a saddle point, as there is a local descent direction
of the function value.

For our problem Eq. (2.8), the least squares objective is a quadratic polynomial and is hence
second-order differentiable. The Hessian is 2X⊺X , which is positive semidefinite. So g(w) is a
convex function.

Invoking Theorem 2.3, we have
∇g(w0) = 2X⊺(Xw0 − y) = 0 =⇒ X⊺Xw0 = X⊺y. (2.11)

• If X ∈ RN×(d+1) has full column rank, i.e., with linearly independent columns, or equivalently
the N data points in X span the (d+ 1)-dimensional input space, then X⊺X has full rank
and hence is invertible. Then

w0 = (X⊺X)−1X⊺y. (2.12)
Obviously, w0 is uniquely defined by the right side of Eq. (2.12) and so is the unique global
minimizer of g(w).

• Otherwise, X⊺X is not invertible and there are multiple (in fact, infinitely many) global
minimizers. A particular global minimizer can be found through the pseudo-inverse. Recall
that for any matrix M ∈ Rm×n of rank r ≤ min (m,n), its compact SVD can be written as
M = UΣV ⊺ where U ∈ Rm×r, Σ ∈ Rr×r is diagonal, and V ∈ Rn×r. The pseudo-inverse
of M is then M † = V Σ−1U⊺ ∈ Rn×m. Obviously, pseudo-inverse is defined for any matrix,
square or not. A solution to Eq. (2.11), and hence a global minimizer to g(w), is then

w0 = (X⊺X)†X⊺y = X†y, (2.13)
where at the last equality we have used the fact (X⊺X)†X⊺ = X†4. For a square invertible
matrix, its pseudo-inverse coincides with its inverse. So, in fact, this provides a generic form of
global minimizer to g(w), whether X⊺X is invertible or not. The set of all global minimizers
is w0 + null(X) = {X†y + z : z ∈ null(X)}.

The closed-form solution we get here seems nice, but probably only for small-scale problems. The
cost of calculating X⊺X isO(d2N), and inverting X⊺X ∈ R(d+1)×(d+1) costsO(d3). This is daunting
when d and N are large. Can we do better?

4To see it, let the compact SVD of X be UΣV ⊺. We have (X⊺X)†X⊺ = (V ΣU⊺UΣV ⊺)†V ΣU⊺ =
(V Σ2V ⊺)†V ΣU⊺ = V Σ−2V ⊺V ΣU⊺ = V Σ−2ΣU⊺ = V Σ−1U⊺ = X†.

Page 5



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

2.4 Solution via iterative optimization

In numerical optimization, iterative methods start with an initial guess (i.e., initialization) and
produce a sequence of points (i.e., iterates) that gradually approach a potential solution. Gradient
descent (GD) is a basic but powerful iterative method. For an unconstrained problem minz∈Rn f(z),
GD runs like this:

Algorithm 1 Gradient descent for minimizing f(z)
Input: initialization z(0), k = 0, stopping precision ε > 0
1: while ∥∇f(z(k))∥2 > ε do
2: choose a step size t(k)

3: update the estimate: z(k+1) = z(k) − t(k)∇f(z(k))
4: update the counter: k = k + 1
5: end while

When we apply GD to our least-squares problem, the gradient update step is:
w(k+1) = w(k) − t(k)∇g(w(k)) = w(k) − 2t(k)X⊺(y − Xw(k)), (2.14)

which costs O(dN). So, the cost for each iteration is O(dN), and the total cost is O(dNT ) if T is the
total number of iterations taken to find an approximate minimizer. When T ≪ min (d,N), GD is
computationally favorable for our least-squares problem compared to computing the solution using
the closed-form formula Eq. (2.12) or Eq. (2.13).

Now, let us think about three basic questions about GD.
• Why move in the negative gradient direction? Intuitively, to find a local minimizer, one

hopes to construct a sequence of iterates with monotonically decreasing function values.
Suppose that our current iterate is z. If we make a small movement td from z—where d is the
direction of movement and t is the step size that we can adjust as desired to control the overall
magnitude of movement (i.e., magnitude of td), Taylor’s theorem says when td is small,

f(z + td) ≈ f(z) + t ⟨∇f(z),d⟩ =⇒ f(z + d) − f(z) ≈ t ⟨∇f(z),d⟩ . (2.15)
We hope to make f(z + d) − f(z) as negative as possible to make rapid progress toward
a local minimizer, so we can try to make t ⟨∇f(z),d⟩ as negative as possible. Now for any
fixed t, we want to minimize ⟨∇f(z),d⟩. Recall that d is only a direction, so it makes sense
to restrict its norm to avoid trivial solutions—easy to see that so long as ∇f(z) ̸= 0, we can
make ⟨∇f(z),d⟩ approach −∞. A natural choice is ∥d∥2 = 1, leading to

min
d: ∥d∥2=1

⟨∇f(z),d⟩ , (2.16)

whose solution is d∗ = − ∇f(z)
∥∇f(z)∥2

as long as ∇f(z) ̸= 0 (Note that choosing other norms will
lead to different directions). This is where the −∇f(z) direction in GD comes from.

• Which step size? For step sizes t(k)’s, one one hand, we hope to make them as large as
possible to allow fast progress. On the other, they should be reasonably small to make the
first-order Taylor approximation in Eq. (2.15) reasonably accurate to guarantee the descent of
the function value. There are two popular strategies for choosing the step sizes:

– Fixed step size Choose a sufficiently small constant as the step size for all iterations. If
the value is not sufficiently small, typically the objective value will blow up after a while.
Pros: simple; Cons: could be conservative for most iterations.

Page 6



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

– Adaptive step size via backtracking line search Search for an appropriate (large) step
size adapted to local landscape of the function.

Algorithm 2 Gradient descent for minimizing f(z) with backtracking line
search

Input: initialization z(0), k = 0, stopping precision ε > 0 close to 0
1: while ∥∇f(z(k))∥2 > ε do
2: choose initial step size t = 1, ρ ∈ (0, 1), and η ∈ (0, 1)
3: while f(z(k) − t∇f(z(k))) − f(z(k)) > −ηt∥∇f(z(k))∥2

2 do
4: decrease the step size: t = ρt
5: end while
6: set the step size: t(k) = t
7: update the estimate: z(k+1) = z(k) − t(k)∇f(z(k))
8: update the counter: k = k + 1
9: end while

Pros: relatively large step size, and hence fast movement and rapid convergence
Cons: slightly more computation each iteration for searching the good step size

The backtracking line-search strategy is highly recommended for practical implementation of
GD.
To see the intuition behind the backtracking line search strategy, suppose that the current iterate
is z and so the gradient is ∇f(z). We want to choose a step size t so that f(z − t∇f(z)) − f(z)
is as negative as possible to quicklyminimize the objective. Sincewe assume that f is first-order
differentiable, Taylor’s theorem tells us

f(z − t∇f(z)) − f(z) = −t∥∇f(z)∥2
2 + o(t∥∇f(z)∥2) (2.17)

as t → 0. Now, the linear term −t∥∇f(z)∥2
2 is negative, and the lower-order term o(t∥∇f(z)∥2)

may be positive or negative. In any case, when t > 0 is sufficiently small, −t∥∇f(z)∥2
2 will

dominate the right side of Eq. (2.17), and we can reach a level so that

−t∥∇f(z)∥2
2 + o(t∥∇f(z)∥2) ≤ −ηt∥∇f(z)∥2

2 (2.18)

for a pre-fixed η ∈ (0, 1). Of course, any smaller t still satisfies this. But since we hope to set t
to be the largest possible, our line search is backward: we start with a large t and gradually
decrease it whenever Eq. (2.18) is violated.

• When to stop? Since ∇f(z) = 0 is the necessary condition for z being a local minimizer, we
set the stopping criterion as checking if ∥∇f(z)∥2 is sufficiently close to 0. Another possibility
is to check the increment of the function value—stopping when there is not much progress,
e.g., |f(z(k+1)) − f(z(k))|, which tends to be less reliable.

2.5 Popular variants of linear regression

When X⊺X is not invertible, there are infinitely many global minimizers to our least-squares
problem. In particular, this happens when N < d + 1, i.e., the number of data points is smaller
than the input dimension. In statistics, this belongs to the family of the so-called high-dimensional
problemswhere typically a regularization term is added.

Page 7



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

• Ridge regression takes the form

min
w

∥y − Xw∥2
2 + λ∥w∥2

2 (2.19)

for a certain λ > 0. Since our linear model is y ≈ ⟨w,x⟩ =
∑

j wjxj , regularizing ∥w∥2
2 ensures

that the entries in w are all reasonably small, so that any change in the input x only causes
a small change in the predicted value. In other words, the learned model is stable. Since its
Hessian 2(X⊺X + λI) ⪰ 0 everywhere, the objective is convex. In fact, 2(X⊺X + λI) ⪰ 2λI5

and so the objective is strongly convex. Thus, ridge regression has a unique global minimizer.

• Lasso takes the form

min
w

∥y − Xw∥2
2 + λ∥w∥1 (2.20)

for a certain λ > 0. Compared to ∥w∥2
2 =

∑
j w

2
j , ∥w∥1 =

∑
j |wj | penalizes large entries in w

much less and small entries much more. The net effect is that regularizing using ∥w∥1 tends
to produce a solution that is sparse—containing very few large entries and the rest negligible
in magnitude. This is useful when one is interested in selecting only a few most important
features (i.e., columns) from X . Both ∥y − Xw∥2

2 and λ∥w∥1 are convex, and so the positive
combination is convex. However, in general, Lasso does not have a unique global minimizer
either. Elastic net

min
w

∥y − Xw∥2
2 + λ1∥w∥1 + λ2∥w∥2

2 (2.21)

which integrates Lasso and ridge regression is a fix to this and has a unique global minimizer,
alongside other benefits over Lasso, such as stability when selecting correlated features.

Comparisons of various popular models for linear regression and classification can be found at
https://scikit-learn.org/stable/modules/linear_model.html.

3 Review of subspaces and hyperplanes
Consider a line L in R2, as illustrated in Fig. 1 (left).

• If L passes through the origin, there are two ways to represent L. One way is to find a vector
v ∈ R2 aligned with L, then L = {λv : λ ∈ R}. This is called basis representation. The other
way is to find a vector w that is orthogonal (i.e., normal) to L, i.e., orthogonal to all vectors in
L, and then L =

{
x ∈ R2 : ⟨w,x⟩ = 0

}, called normal representation.

• If L does not pass through the origin, we can find an arbitrary point x0 ∈ L and write
L = x0 + L′ = {x0 + x : x ∈ L′} for an L′ that is parallel to L and passes through the origin.
For any basis vector v and any normal vector w for L′, we can represent L as

L = {x0 + λv : λ ∈ R}︸ ︷︷ ︸
basis representation

=
{

x ∈ R2 : ⟨w,x⟩ = ⟨w,x0⟩
}

︸ ︷︷ ︸
normal representation

, (3.1)

5For two symmetric matrices M1, M2 ∈ Rn×n, M1 ⪰ M2 means M1 − M2 ⪰ 0.

Page 8

https://scikit-learn.org/stable/modules/linear_model.html


Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Figure 1: (left) Illustration of subspaces and hyperplanes; (right) Geometric picture of
basis and normal representations. The picture is adapted from Sec 4.1 of the famous linear
algebra book [Str16].

where to derive the normal representation, we know that for any x ∈ L, x − x0 ∈ L′ ⇐⇒
⟨w,x − x0⟩ = 0.

Now we generalize these to subspaces. Recall that a set S ⊂ Rn is called a subspace of Rn if and
only if for all u,v ∈ S and all α, β ∈ R, αu + βv ∈ S, i.e., all linear combinations of elements in S
stay in S. Geometrically, subspaces can be thought of as high-dimensional “flats” in Rn, and they
are natural generalizations of lines. Subspaces also admit both basis and normal representations
that generalize the corresponding representation for lines: for any k-dimensional subspace L ⊂ Rn,

• basis representation: for any k linearly independent vectors {v1, . . . ,vk} that span L, i.e.,
{v1, . . . ,vk} is a basis for L,

L =
{

k∑
i=1

αivi : αi ∈ R ∀ i
}

=
{

V α : α ∈ Rk
}

= col(V ), (3.2)

where V
.= [v1 . . . vk] ∈ Rn×k and col(·) indicates the column space.

• normal representation: for any n− k linearly independent vectors {w1, . . . ,wn−k} that are
orthogonal to L, i.e., ⟨wj ,x⟩ = 0 for all j ∈ [n− k] and all x ∈ L,

L = {x ∈ Rn : ⟨x,wj⟩ = 0 ∀j ∈ [n− k]} = {x ∈ Rn : W ⊺x = 0} = null(W ⊺), (3.3)

where W
.= [w1 . . . wn−k] ∈ Rn×(n−k) and null(·) denotes the null space. Moreover, W

spans the unique (n− k)-dimensional orthogonal subspace L⊥ of L. 6

The geometric aspect of the discussion is summarized in Fig. 1 (right).
When the subspaceL ⊂ Rn has dimension n−1, it deserves a special name—hyperplane, which is

a critical element of machine learning; in the next section, we need this object for linear classification.
All subspaces that we speak of contain the origin; if we want to emphasize this fact, we prefix

the adjective linear, i.e., calling them linear subspaces. This is also to distinguish them with flats that
do not necessarily pass through the origin—as generalization of lines that do not necessarily; we
call these flats affine subspaces.

6Two subspaces L and L′ are said to be orthogonal to each other if and only if z and z′ are orthogonal to each other
for all z ∈ L and z′ ∈ L′.

Page 9



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Similarly to the way we represent “affine" lines, we can think of any affine subspace L as a
shifted linear subspace, i.e., L = x0 +L′ for certain x0 ∈ L and a “parallel” linear subspace L′. This
implies the following basis and normal representations for L:

• basis representation: assume that V ∈ Rn×k spans L′ and x0 ∈ L, then
L =

{
x0 + x : x ∈ L′} =

{
x0 + V α : α ∈ Rk

}
= x0 + col(V ). (3.4)

Moreover, dim(L) = dim(L′) = k.
• normal representation: assume W spans (L′)⊥ and x0 ∈ L, then

L = {x0 + x : W ⊺x = 0} = {x ∈ Rn : W ⊺x = W ⊺x0} = x0 + null(W ⊺). (3.5)

A natural question is whether W ⊺x0 is unique given that x0 is an arbitrary point on L. The answer
is yes, as for any two points x0,x

′
0 ∈ L, W ⊺x0 − W ⊺x′

0 = W ⊺(x0 − x′
0) = W ⊺V α for a certain

α ∈ Rn−k. But W ⊺V = 0, implying that W ⊺V α = 0 whatever the α is.

Table 1: Summary of representations for linear and affine subspaces

basis representation normal representation
linear subspace L with ba-
sis V and normal basis W
(dim(L) = k)

{V α : α ∈ Rk} = col(V ) {x : W ⊺x = 0} = null(W ⊺)

affine subspaceLwith basis
V , point x0 ∈ L, and nor-
mal basis W (dim(L) = k)

{
x0 + V α : α ∈ Rk

}
= x0 + col(V ) {x : W ⊺x = W ⊺x0} = x0 + null(W ⊺)

As expected, affine hyperplanes are affine subspaces with dimensions one less than the ambient
dimension. Of special interest in this case is the normal representation

{x ∈ Rn : ⟨w,x⟩ = ⟨w,x0⟩} . (3.6)
Of course, linear hyperplanes take the form {x ∈ Rn : ⟨w,x⟩ = 0}.

Obviously, an affine subspace can be a linear subspace in our definition. So henceforth, subspaces
are defaulted to affine subspaces, unless the word “linear” is appended; similarly for hyperplanes. We are
now ready to study linear classification.

4 Linear classification
We focus on binary classification with a training set {(xi, yi)}N

i=1, where xi ∈ Rd and yi ∈ {1,−1}
for i ∈ [N ]. To fit the training set, the first idea is to use a linear function to map any input x to 1 or
−1 as we do in linear regression. But this is unrealistic, as the output range of any linear function
is a continuum, not a discrete set such as {1,−1}. Below, we describe two distinct approaches to
dealing with the difficulty.

4.1 Approach I: Preceptron and linear SVM

Recall that the sign (·) function takes value in {1,−1}. 7 So, we can consider the hypothesis class
HI =

{
x 7→ sign (⟨w,x⟩ + b) : w ∈ Rd, b ∈ R

}
, (4.1)

7We define the sign function as sign (z) =
{

1 z > 0
−1 z ≤ 0

.

Page 10



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

which is the set of all hyperplane classifiers (each separates the whole space into two half spaces).
A natural problem formulation is then to find a pair (w0, b0) so that

sign (⟨w0,xi⟩ + b0) = yi ⇐⇒ yi(⟨w0,xi⟩ + b0) > 0 ∀ i ∈ [N ]. (4.2)

Note that in this formulation, we do not perform minimization, but instead try to find a feasible
solution to a set of constraints. This kind of problem is known as feasibility problem8 in optimization.
For convenience, we use the homogeneous representation again with abuse of the notation, and the
goal is to:

find w ∈ Rd+1 s. t. yi ⟨w,xi⟩ > 0 ∀ i ∈ [N ]. (4.3)

Moreover, the training set {(xi, yi)}N
i=1 is said to be linearly separable if there exists a w0 ∈ Rd+1 that

solves problem (4.3), i.e., satisfies yi ⟨w0,xi⟩ > 0 for all i ∈ [N ].

4.1.1 A classical solution: Perceptron

Perceptron is a classical algorithm designed to solve problem (4.3). Invented by Frank Rosenblatt
in 1958, it helped to fuel the first wave of excitement about neural networks around 60’s, but later
on it also helped kill the excitement and cause major setbacks for neural networks research due to
the famous 1969 book [MM17] that elucidates the limitations of Perceptron. However, Perceptron
is a critical milestone in the development of binary classification and online learning algorithms.
We describe only the binary classification aspect here.

Algorithm 3 The Perceptron algorithm for binary classification
Input: training set {(xi, yi)}N

i=1, initialization w(0) = 0, k = 0
1: while ∃i s. t. yi⟨w(k),xi⟩ ≤ 0 do
2: update the estimate: w(k+1) = w(k) + yixi

3: update the counter: k = k + 1
4: end while

To get a sense why the update step is sensible, note that for an i ∈ N with yi⟨w(k−1),xi⟩ ≤ 0,
after the update,

yi

〈
w(k+1),xi

〉
= yi

〈
w(k) + yixi,xi

〉
= yi

〈
w(k),xi

〉
+ ∥xi∥2

2 > yi

〈
w(k),xi

〉
, (4.4)

i.e., the value moves toward positive and we are making progress. Here, we assume ∥xi∥2 > 0 for
all i ∈ [N ]. The convergence behavior of the Perceptron algorithm is captured by the following
theorem.

Theorem 4.1. Assume that the training set {(xi, yi)}N
i=1 is linearly separable and define data radius

R
.= maxi∈[N ] ∥xi∥2 and margin parameter9 M = min {∥w∥2 : yi ⟨w,xi⟩ ≥ 1 ∀i ∈ [N ]}. Then, the

Perceptron algorithm will take at most (RM)2 steps to find a feasible w, when it stops.

8To unify them with minimization problems, we can treat them as minimization with a constant objective function.
9This will become clear when we talk about the max-margin aspect of SVMs.

Page 11



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Figure 2: Separat-
ing hyperplane in binary
classification and inter-
pretation of the Percep-
tron convergence theo-
rem.

Proof of this theorem is in Appendix A. The radius R here
is not important, as we can always rescale all our xi’s to make
R = 1. InterpretingM is slightly more tricky. The condition
forM is yi ⟨w,xi⟩ ≥ 1 for all i ∈ [N ], which requires not only
w is feasible for problem (4.3), but also |⟨w,xi⟩| ≥ 1 for all
i ∈ [N ], i.e.,

|⟨w,xi⟩| = ∥w∥2∥xi∥2|cos∠(w,xi)| ≥ 1 ∀ i ∈ [N ]. (4.5)
Assume that xi’s are comparable in magnitude. For all i, the
smaller the |cos∠(w,xi)| or the closer the angle ∠(w,xi) near
90◦, the larger the ∥w∥2 needed to guarantee that Eq. (4.5)
holds. In view of Fig. 2, when the positive and negative classes
get closer and harder to separate, |cos∠(w,xi)| can be arbitrar-
ily small for certain i, leading to anM—which is the measure
of the linear separability of the training set—that can be expo-
nentially large in dimension d.

So there are at least two limitations of Perceptron: 1) it
cannot deal with linearly non-separable training data, and the

algorithmwill not even stop in those scenarios; 2) even if the training data are separable, the running
time can be exponential in the worst case.

4.2 A modern solution: linear SVM

To address the limitations of the Perceptron algorithm, a solution is to reformulate problem (4.3)
into a form that is amenable to numerical optimization methods.

There are two issues with the constraints in problem (4.3): (1) for any solution w0, λw0 is also
a solution for all λ > 0. Although these solutions are equally good mathematically, they are not
equally favored numerically: we want to avoid exceedingly large and small numbers in typical
numerical computation to prevent overflows and underflows; (2) iterative methods often work
with compact constraint sets so that the convergence limit remains in the set and convergence could
be established. Strict inequalities in the constraints could lead to noncompact constraint sets.

First of all, to make the constraint set compact, note that for any w0 satisfying ⟨w0,xi⟩ >
0 ∀ i ∈ [N ], there exists an η > 0 so that ⟨w0,xi⟩ ≥ η ∀ i ∈ N . So there exists a λ > 0 so that
⟨λw0,xi⟩ ≥ 1 ∀ i ∈ [N ]. So problem (4.3) is equivalent to

find w ∈ Rd+1 s. t. yi ⟨w,xi⟩ ≥ 1 ∀ i ∈ [N ]. (4.6)
For any feasible w0 for problem (4.6), obviously λw0 for all λ > 1 is also feasible. We can further
refine the formulation by controlling the magnitude of w, say using

min
w

∥w∥2
2 s. t. yi ⟨w,xi⟩ ≥ 1 ∀ i ∈ [N ]. (4.7)

This is the homogeneous form of hard-margin SVM that we will discuss later. Obviously, the ℓ2
norm we use here is arbitrary; in principle, any function that is monotonically increasing in the
“magnitude” of w can be used, e.g., all vector norms.

When the training set is not linearly separable, there is no feasible solution for problem (4.6).
One can add in controlled slackness to allow slight constraint violation, e.g., via

min
w

∥w∥2
2 + C

N∑
i=1

ξi s. t. yi ⟨w,xi⟩ ≥ 1 − ξi, ξi ≥ 0 ∀ i ∈ [N ]. (4.8)

Page 12



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Here, the changed lower bounds 1 − ξi in the constraints introduce slackness, and the term ∑N
i=1 ξi

in the objective controls the size of the slackness. This is the homogeneous form of soft-margin SVM.
Both problems in Eqs. (4.7) and (4.8) are convex (quadratic) optimization problems and can be

solved efficiently.

4.3 Approach II: Logistic regression

We consider the hypothesis class

HII =
{

x 7→ 2ϕ(w⊺x) − 1 : w ∈ Rd+1
}
, (4.9)

where ϕ(·) denotes the logistic function (i.e., sigmoid; see Fig. 3)

ϕ(z) = 1
1 + e−z

(4.10)

Figure 3: Graphs of the lo-
gistic function ϕ(z) (green),
ψ(z) (blue), and the sign
function (orange)

that maps any input into the [0, 1] interval. Now ψ(z) .=
2ϕ(z) − 1 maps any input z into the [−1, 1] interval, and
also ψ(z) → 1 when z → ∞ and ψ(z) → −1 when z →
−∞. Moreover, since ψ(z) is an approximation to the sign
function (see Fig. 3), we can viewHII as an approximation
to

HI =
{

x 7→ sign(w⊺x) : x ∈ Rd+1
}
, (4.11)

restated in the homogeneous form. After we find an ap-
propriate function fromHII , say parametrized by a certain
w0, we can heuristically compose that function with the
sign(·) function to obtain a predictor sign(2ϕ(w⊺

0x) − 1)
that outputs from the discrete set {1,−1} as desired.

Now we come to formulating the problem based on hypothesis class HII . To fit our training set
as much as possible, we hope that

when y = 1 : 2ϕ(w⊺x) − 1 = 2
1 + e−w⊺x

− 1 → 1 i.e., to be maximized, (4.12)

when y = −1 : 2ϕ(w⊺x) − 1 = 2
1 + e−w⊺x

− 1 → −1 i.e., to be minimized. (4.13)

Equivalently, for whatever y, we hope to minimize 1 + e−yw⊺x. So, we can formulate the learning
problem as

min
w

1
N

N∑
i=1

(
1 + e−yiw

⊺xi

)
. (4.14)

Although this is a convex problem, the exponential term can cause numerical issues, as the exponent
−yiw

⊺xi may be large for certain i’s. Because making 1 + exp (−yiw
⊺xi) small is equivalent to

making log (1 + exp (−yiw
⊺xi)) small, we arrive at our logistic regression formulation:

min
w

1
N

N∑
i=1

log
(
1 + e−yiw

⊺xi

)
. (4.15)

One can easily verify that problem (4.15) is also a convex problem by checking the Hessian.
Logistic regression can also be derived from the maximum likelihood principle, as we will

explore in the homework.

Page 13



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Further reading
Main reference is Chapter 9 of [SSS14]. Chapters 2–4 of [HTF09] are good supplements. [NW06]
is a highly recommended reference for numerical optimization.

Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected, and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.

A Proof of Theorem 4.1
Proof. Since the requirement yi ⟨w,xi⟩ > 0 for all i ∈ [N ] is homogenous in w, we care only
about the direction w

∥w∥2
instead of w itself. Suppose w∗ satisfies ⟨w∗,xi⟩ ≥ 1 for all i ∈ [N ] with

∥w∗∥2 = B. We want to show that w(T ) aligns with w∗, i.e.,〈
w∗,w

(T )
〉

∥w∗∥2
∥∥w(T )

∥∥
2

= 1 (A.1)

when T is large enough.
First, for any k,

∥∥∥w(k)
∥∥∥2

2
=

∥∥∥w(k−1) + yixi

∥∥∥2

2
=

∥∥∥w(k−1)
∥∥∥2

2
+ ∥xi∥2

2︸ ︷︷ ︸
≤R2

+ 2yi

〈
w(k−1),xi

〉
︸ ︷︷ ︸

≤0

≤
∥∥∥w(k−1)

∥∥∥2

2
+R2 =⇒

∥∥∥w(k)
∥∥∥2

2
−

∥∥∥w(k−1)
∥∥∥2

2
≤ R2. (A.2)

Using telescoping summation, we obtain

∥∥∥w(T )
∥∥∥2

2
=

T∑
k=1

(∥∥∥w(k)
∥∥∥2

2
−

∥∥∥w(k−1)
∥∥∥2

2

)
≤ TR2. (A.3)

On the other hand, for any k,〈
w∗,w

k
〉

−
〈
w∗,w

k−1
〉

=
〈
w∗,w

k − wk−1
〉

= yi ⟨w∗,xi⟩ ≥ 1. (A.4)

Applying telescoping summation again, we obtain

〈
w∗,w

(T )
〉

=
T∑

k=1

(〈
w∗,w

(k)
〉

−
〈
w∗,w

(k−1)
〉)

≥ T. (A.5)

Combining Eqs. (A.3) and (A.5), we finally obtain〈
w∗,w

(T )
〉

∥w∗∥2
∥∥w(T )

∥∥
2

≥ T

B
√
TR

=
√
T

BR
. (A.6)

Page 14



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

When T ≥ (RB)2,
√
T

BR
≥ 1 =⇒

〈
w∗,w

(T )
〉

∥w∗∥2
∥∥w(T )

∥∥
2

≥ 1. (A.7)

But
〈
w∗,w

(T )
〉

≤ ∥w∗∥2

∥∥∥w(T )
∥∥∥

2
due to theCauchy-Schwarz inequality, implying that ⟨w∗,w(T )⟩

∥w∗∥2∥w(T )∥2
≤

1. Thus, it takes at most T = (RB)2 iterations to attain Eq. (A.1), completing the proof. ■

References
[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning,

Springer New York, 2009.

[MM17] Seymour A. Papert Marvin Minsky, Perceptrons, reissue of the 1988 expanded edition with a
new foreword by léon bottou, MIT Press Ltd, 2017.

[NW06] Jorge Nocedal and Stephen J. Wright, Numerical optimization, 2 ed., Springer New York,
2006.

[Sra12] Suvrit Sra, Optimization for machine learning, MIT Press, Cambridge, Mass, 2012.

[SSS14] Shai Ben-David Shai Shalev-Shwartz, Understanding machine learning, Cambridge Univer-
sity Press, 2014.

[Sta] Stanford EE364b - Convex Optimization II, http://stanford.edu/class/ee364b/.

[Str16] Gilbert Strang, Introduction to linear algebra, 5 ed., Cambridge Press, Wellesley, MA, 2016.

Page 15

http://stanford.edu/class/ee364b/

	Function approximation view of supervised learning
	Linear regression
	Choosing the hypothesis class
	Formulation
	Solution via optimality condition
	Solution via iterative optimization
	Popular variants of linear regression

	Review of subspaces and hyperplanes
	Linear classification
	Approach I: Preceptron and linear SVM
	A classical solution: Perceptron

	A modern solution: linear SVM
	Approach II: Logistic regression

	Proof of thm:perceptronconvg

