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Overview In practice, we evaluate the performance of any machine learning model on a test set,
that is disjoint from but related to the training set. We hope that good performance on the training
set can continue on to the test set. This is called generalization. Why is generalization possible? How
to ensure a good generalization? In particular, how do factors, such as the size of the training set
and the size of the hypothesis class, affect generalization? Here, we study these topics rigorously,
drawing tools mostly from probability and statistics.
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1 Warmup: finite H, realizable case

1.1 A first learning setup

We will start with binary classification with input space X ⊂ Rd, output space Y = {+1, −1}, and a
finite hypothesis class H, i.e., |H| < ∞, that consists of functions of the form h : Rd → {+1, −1}.
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For generalization to be possible at all, we need to make assumptions about data generation—if
there is absolutely no relationship between the training and the test sets, it is hard to imagine
generalization. As a first trial, we make the following assumptions about data generation.
• Assumption A-I: There is a fixed but unknown distribution DX on X ;
• Assumption A-II: There is a fixed but unknown labeling function f∗ : X → {+1, −1}, so that

y = f∗(x) for any x ∼ DX ;
• Assumption A-III: The training set S

.= {(xi, yi)}i∈[N ] is generated as follows: x1, . . . , xN are
randomly drawn, in an iid manner, from DX , i.e., x1, . . . , xN ∼iid DX , and yi = f∗(xi) ∀ i ∈ [N ].
To quantify generalization, we need appropriate metrics to measure prediction performance,

and also it is natural to assume that the test set follows the same (or similar) generation process as
that of the training set. These considerations lead to the following quantities:

R̂S(f) .= 1
N

∑
i∈[N ]

1 {f(xi) ̸= f∗(xi)} (empirical risk, or training error rate), (1.1)
R(f) .= Ex∼DX1 {f(x) ̸= f∗(x)} (risk, or error rate). (1.2)

Here, the predictor error is measured by 0/1 loss of the form 1 {f(xi) = f∗(xi)}, and the risk is
taken with respect to the data distribution DX—during test, we typically use a finite number of test
points to approximate the risk; the same data distribution DX and the same labeling function f∗
connect the training and the test sets.

For training, we focus on the popular empirical risk minimization (ERM) framework:
hS ∈ arg minh∈H R̂S(h), (empirical risk minimization, or ERM) (1.3)

where we use ∈ but not =, as the minimization problem might not have a unique global solution,
and in this case we allow an arbitrary global solution.

1.2 The generalization question

After the above setup effort, we are tempted to ask the natural question: is R(hS) small? In particular,
is it close to the best we can do, perhaps in the sense that

R(hS) ≤ infh∈H R(h) + ε for a sufficiently small ε > 0? (1.4)
Another consideration is that hS is random, as it depends on the random set S. Although we

draw the elements of S = {x1, . . . , xN } iid from DX , there is always a small but nonzero probability
that the training points are not sufficiently representative. For example, suppose that X is the
unit sphere in Rd, and DX is the uniform distribution on the unit sphere. Then,

Px∼DX [x from the upper hemisphere] = Px∼DX [x from the upper hemisphere] = 1/2 (1.5)
=⇒ Px1,...,xN ∼iidDX [x1, . . . , xN all come from the lower hemisphere] = 1/2N . (1.6)

When the training set is not representative, we expect hS returned by the ERM rule to have a high
risk.

So, a sensible technical question to ask here is: howmany training points dowe need to guarantee
R(hS) ≤ infh∈H R(h) + ε for a sufficiently small ε with high probability. In other words, we hope to
see that

PS [R(hS) ≤ infh∈H R(h) + ε] ≥ 1 − δ, (1.7)
for a sufficiently small ε ∈ (0, 1) and a sufficiently small δ ∈ (0, 1), provided that N is sufficiently
large.
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1.3 A first generalization result for finite H with realizability assumption

To state our first result in this direction, we make one more assumption:
• Assumption A-IV—realizability: There is a certain h∗ ∈ H, so R(h∗) = 0. This implies that

R̂S(h∗) = 0 for any training set S of any size N ≥ 1 (with probability one).
Note that this assumption does not imply h∗ = f∗; it only requires h∗(x) = f∗(x) for “almost all”
x ∈ X 1—but they do not need to agree with each other for x ∈ X c. Also, under this assumption,

infh∈H R(h) = 0. (1.8)

We are now to state our first generalization result.

Theorem 1.1. For any ε ∈ (0, 1), any δ ∈ (0, 1), any labeling function f∗ : X → {+1, −1}, and any distri-
bution DX on X , if the realizability assumption holds, i.e., there exists an h∗ ∈ H so that R(h∗) = 0, every pre-
dictor hS returned by the ERM rule over a training set S = {(xi, f∗(xi)}i∈[N ], where x1, . . . , xN ∼iid DX ,
satisfies all of the following three equivalent statements:

i) Px1,...,xN [R(hS) ≤ ε] ≥ 1 − δ, provided that N ≥ ε−1 log(|H|/δ);
ii) Px1,...,xN

[
R(hS) ≤ 1

N log |H|
δ

]
≥ 1 − δ;

iii) Px1,...,xN [R(hS) ≤ ε] ≥ 1 − |H|e−Nε.

Proof. We first prove (iii), and then show the equivalence of the three statements.
We start by considering Px1,...,xN [R(hS) ≥ ε]. Since hS is returned by the ERM rule, we have

R̂(hS) = 0 by the realizability assumption. Moreover, define the “bad” subset of H as HB
.=

{h ∈ H : R(h) ≥ ε}. Then, hS ∈ HB . So,

R(hS) ≥ ε =⇒ R̂S(hS) = 0 and hS ∈ HB, (1.9)

implying that

Px1,...,xN [R(hS) ≥ ε] ≤ Px1,...,xN

[
R̂S(hS) = 0 and hS ∈ HB

]
(1.10)

≤ Px1,...,xN

[
∃h ∈ HB with R̂S(h) = 0

]
(1.11)

= Px1,...,xN

[
R̂S(h1) = 0 or . . . or R̂S(h|HB |) = 0

]
, (1.12)

where h1, . . . , h|HB | are the predictors in HB . Now we invoke the famous union bound, which says
that for any two events A1 and A2, P[A1 ∪ A2] ≤ P[A1] + P[A2], and obtain that

Px1,...,xN

[
R̂S(h1) = 0 or . . . or R̂S(h|HB |) = 0

]
≤
∑

b∈[|HB |]
Px1,...,xN

[
R̂S(hb) = 0

]
. (1.13)

Now, for any b ∈ [|HB|], R(hb) = Ex∼DX1 {hb(x) ̸= f∗(x)} = Px∼DX [hb(x) ̸= f∗(x)] ≥ ε, so
Px∼DX [hb(x) = f∗(x)] ≤ 1 − ε. For N iid points x1, . . . , xN ,

Px1,...,xN

[
R̂S(hb) = 0

]
= Px1,...,xN [hb(xi) = f∗(xi) ∀ i ∈ [N ]] ≤ (1 − ε)N . (1.14)

Thus,∑
b∈[|HB |]

Px1,...,xN

[
R̂S(hb) = 0

]
≤ |HB|(1 − ε)N ≤ |HB|e−εN . (as 1 − z ≤ e−z ∀ z ∈ R) (1.15)

1In probability theory, exception can hold on a zero-measure set.
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Piecing together the above results, we conclude that Px1,...,xN [R(hS) ≥ ε] ≤ |HB|e−εN ≤ |H|e−εN ,
which is equivalent to iii).

Now, set |H|e−εN = δ, we get N = ε−1 log(|H|/δ), which implies i), or ε = N−1 log(|H|/δ),
which implies ii), completing the proof. ■

Remark 1.2. We can relax the realizability assumption as follows: for any training set S of any size N ≥ 1,
there exists an h ∈ H so that R̂S(h) = 0. The results in Theorem 1.1 still hold under this weaker assumption.

Given any fixed hypothesis class H and hence its size |H|, Theorem 1.1 describes the quantitative
relationship between N , ε, and δ—the three equivalent statements i), ii), iii) each fixes two of the
three quantities, and states the other as a function of the fixed two. This is the hallmark of statistical
learning theory.

Here, ε is called the accuracy parameter, as it measures prediction performance. δ is called the
confidence parameter, which measures the uncertainty of performance over the randomness of the
training set.

Henceforth, when we state similar generalization results, we do not state all forms, expecting
the reader to make appropriate translation when needed.

2 General learning setting with finite H

Our previous learning setup is restrictive in many senses. The most critical one is assuming the
existence of a labeling function. For example, suppose that we try to predict the gender of a person
(y) from their height (x). There is no single function that maps x deterministically to y, as people
of the same height can be of any gender, albeit with different probabilities. In this case, it is more
appropriate to think of P[y|x], i.e., considering stochastic prediction.

2.1 A stochastic setup for binary classification

This motivates us to generalize the previous learning setup as follows. Again, consider an input
space X ⊂ Rd, an output space Y = {+1, −1}, and a hypothesis class H, which may or may not be
finite, that consists of functions of the form h : Rd → {+1, −1}.
• Assumption B-I: There is a fixed but unknown distribution DX ×Y on X × Y . This joint distribu-

tion DX ×Y can be decomposed as DX—for generation of x ∼ DX , and DY|X—for conditional
generation of y ∼ DY|X ;

• Assumption B-II: The training set S
.= {(xi, yi)}i∈[N ] is generated as (x1, y1), . . . , (xN , yN ) ∼iid

DX ×Y .
Then, we can define the empirical risk and the risk as follows, natural generalizations of those
considered in Section 1.1:

R̂S(f) .= 1
N

∑
i∈[N ]

1 {f(xi) ̸= yi} (empirical risk, or training error rate), (2.1)
R(f) .= E(x,y)∼DX ×Y1 {f(x) ̸= y} (risk, or error rate), (2.2)

and ERM rule as
hS ∈ arg minh∈H R̂S(h) (empirical risk minimization, or ERM). (2.3)

A reasonable goal for generalization is:
R(hS) ≤ infh∈H R(h) + ε for a sufficiently small ε > 0. (2.4)

Page 4



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Note that unlike the realizable case discussed in Section 1.3where infh∈H R(h) = 0, here infh∈H R(h) >
0 in general. To see this, we can consider Bayes optimal classifiers, defined as

h∗ ∈ arg minh “reasonable” R(h). (2.5)

Here, “reasonable” is a minimal condition that one wants to put on the function h, e.g., measur-
able2,to ensure that R(h) is well defined. Any classifier that achieves the minimal risk is called a
Bayes optimal classifier. It can be shown that decision rule

arg maxy∈{+1,−1} P[y|x] (2.6)

is a Bayes optimal classifier, although in practice we typically cannot implement it as we do not
know P[y|x]. The associated risk is

Ex∼DX min(P[1|x],P[−1|x]) ∈ [0, 1/2], (2.7)

which can be interpreted as the intrinsic noise in the data.
The implication: if the intrinsic noise is positive, we cannot expect to obtain 100% prediction

accuracy, no matter what H we choose and how large N is. We cannot expect perfect classifiers in
general. Similar claim can be made for regression problems (see, e.g., Exercise 2.14 of [Moh18]).

2.2 Further generalization for general learning problems

Our learning setup in Section 2.1 is still restrictive: it is only for binary classification. We have nu-
merous other machine learning frameworks, e.g., multiclass classification, regression, unsupervised
learning, self-supervised learning—a core learning framework for training foundation models and
large language models in the current frontier of deep learning. Can we unify them in our setup?

It is relatively easy to generalize the setup in Section 2.1 to general supervised learning, including
multiclass classification and regression, by considering the general input-output space X × Y , and
any distribution on it DX ×Y . But to generalize further, we make the following abstraction:

X × Y abstracted into Z (data space), (2.8)
DX ×Y abstracted into DZ (distribution on the data space), (2.9)

1 {f(x) ̸= y} abstracted into ℓ(f, z). (2.10)

Now, our assumptions on data generation are
• Assumption C-I: There is a fixed but unknown distribution DZ on the data space Z ;
• Assumption C-II: The training set S

.= {zi}i∈[N ] is generated as z1, . . . , zN ∼iid DZ .
Moreover, the empirical risk and the risk are defined naturally as

R̂S(f) .= 1
N

∑
i∈[N ]

ℓ(f, zi) (empirical risk, or training error rate), (2.11)
R(f) .= Ez∼DZ ℓ(f, z) (risk, or error rate). (2.12)

ERM rule looks exactly like before:

hS ∈ arg minh∈H R̂S(h) (empirical risk minimization, or ERM). (2.13)

Now, let us look at several examples to appreciate how general our setup is.
2https://en.wikipedia.org/wiki/Measurable_function
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• Multiclass classification: Z = Rd × {1, . . . , K} (assuming a K-class problem; i.e., z = (x, y)),
and ℓ(f, z) = 1 {f(x) ̸= y}—one can choose other losses as well, such as hinge loss (as in SVM),
exponential loss (as in Adaboost);

• Regression: Z = Rd × R (i.e., z = (x, y)) and ℓ(f, z) = (f(x) − y)2;
• Metric learning: the goal is to learn a transformation f on any input x, so that for pair (x, x′),

∥f(x) − f(x′)∥2 matches a predefined nominal distance dx,x′ . Here, Z = Rd × Rd × R, as each
data point takes the form (x, x′, dx,x′) and ℓ(f, z) =

∣∣∥f(x) − f(x′)∥2 − dx,x′
∣∣.

As before, a reasonable learning goal here is to ensure that

R(ĥS) ≤ infh∈H R(h) + ε (2.14)

for a sufficiently small ε > 0, with a sufficiently high probability.

2.3 Generalization via uniform convergence

To obtain generalization results for the general learning setup in Section 2.2, we distill a sufficient
condition called uniform convergence.

Definition 2.1 (ε-uniform convergence). A training set S is said to ensure ε-uniform convergence with
respect to Z, DZ , ℓ, and H if

∀ h ∈ H,
∣∣∣R̂S(h) − R(h)

∣∣∣ ≤ ε. (2.15)

Theorem 2.2 (Uniform convergence ensures generalization). Assume that a training set S ensures
ε/2-uniform convergence with respect to Z, DZ , ℓ, and H. Then, any hS returned by the ERM rule, i.e.,
hS ∈ arg minh∈H R̂S(h), satisfies

R(hS) ≤ infh∈H R(h) + ε. (2.16)

Proof. We have the following chain of inequalities

R(hS) ≤ R̂S(hS) + ε/2 (ε/2 uniform convergence) (2.17)
≤ R̂S(h∗) + ε/2 (h∗ ∈ arg minh∈H R(h); hS ∈ arg minh∈H R̂S(h)) (2.18)
≤ R(h∗) + ε/2 + ε/2 = R(h∗) + ε (ε/2 uniform convergence), (2.19)

completing the proof. ■
Since the translation from uniform convergence to generalization results is mechanical as de-

scribed in Theorem 2.2, people often stop once establishing uniform convergence, expecting the
reader to complete the trivial translation step.

Next, we establish a general uniform convergence result for learning problems with bounded
loss and finite H. Toward this, we need a famous concentration bound called Hoeffding’s inequality.

Recall that the law of large numbers (LLN) says that under mild conditions, sample average
converges to the expectation as the size of sample grows. Specifically, suppose that θ1, . . . , θm are
sampled iid from a distribution with mean µ,

1
m

∑
j∈[m]

θj → µ as m → ∞. (2.20)
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This result is asymptotic, as it only describes the behavior of 1
m

∑
j∈[m] θj in the large m limit.

Concentration inequalities, in contrast, describe nonasymptotic behaviors for finite m and take the
generic form

P
[
| 1
m

∑
j∈[m]

θj − µ| ≥ ε

]
≤ δ(ε, m), (2.21)

for a small ε and small δ(ε, m) which is a function of ε and m. So, concentration inequalities are
typically more informative than the LLN, or they are quantitative versions of the LLN.

Hoeffding’s inequality provides a concentration inequality for bounded random variables.

Theorem 2.3 (Hoeffding’s inequality). Let θ1, . . . , θm be iid versions of a scalar random variable θ with
Eθ = µ and θ ∈ [a, b]. Then for any ε > 0,

P
[
| 1
m

∑
j∈[m]

θj − µ| > ε

]
≤ 2 exp

(
− 2mε2

(a − b)2

)
. (2.22)

With Hoeffding’s inequality, we can easily obtain the following uniform convergence result for
learning with bounded loss and finite H.

Theorem 2.4. Consider a data space Z and a finite hypothesis class H. Assume that the loss ℓ is bounded
in [0, 1]. For any ε ∈ (0, 1), any δ ∈ (0, 1), and any distribution DZ on Z , we have the following uniform
convergence result:

Pz1,...,zN

[
|R(h) − R̂S(h)| ≤ ε ∀h ∈ H

]
≥ 1 − 2|H|e−2Nε2

, (2.23)

over the random drawing of {zi}i∈[N ] iid from DZ .

Proof. Since the loss ℓ is bounded in [0, 1] and z1, . . . , zN are iid, for each fixed h ∈ H, the summation
terms inside the empirical risk R̂S(h) = 1/N

∑
i∈[N ] ℓ(h, zi), i.e., ℓ(h, zi)’s, are iid scalar random

variables bounded in [0, 1]. Applying Hoeffding’s inequality, we have

Pz1,...,zN

[
|R(h) − R̂S(h)| ≥ ε for a fixed h

]
≤ 2e−2Nε2

. (2.24)

Applying the union bound on all h ∈ H, we have

Pz1,...,zN

[
∃h ∈ H with |R(h) − R̂S(h)| ≥ ε

]
≤ 2|H|e−2Nε2

, (2.25)

leading to the claimed result. ■
Note that for binary classification with loss 0/1, this implies that we need to make N ≥

2ε−2 log(2|H|/δ) to ensure that P[R(hS) ≤ infh∈H R(h) + ε] ≥ 1 − δ, vs. N ≥ ε−1 log(|H|/δ) ob-
tained in Theorem 1.1 for the realizable case. The gap between ε−2 and ε−1 is the main price to pay
for making weaker assumptions about the data generation process.

3 General learning setting with infinite H

Hypothesis classes that we work with in practice are often infinite in size. For example, the set of
hyperplane classifiers in Rd: HHC

.=
{

x 7→ sign (w⊺x + b) : w ∈ Rd, n ∈ R
}
used in SVMs. How

do we deal with these infinite classes? Is generalization possible?

Page 7



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

Before a rigorous treatment, we sketch an informal argument for why generalization is possible
with infinite hypothesis classes. For simplicity, let us focus on HHC , and the informal argument
goes as follows: although w and b contain real-valued elements, on finite-precision computers,
we still have only finitely many of them that we can encode. Assuming 64-bit (i.e., double float)
precision, we have in total no more than 264d possible w’ and no more than 264 possible b’s. Together,
we have no more than O(264d) hyperplane classifiers, i.e., |HHC | ∈ O(264d). Then, if the loss ℓ
is also bounded, we can invoke Theorem 2.4 to obtain generalization bounds. Although simple,
such informal arguments often lead to very reasonable results, at least in terms of the order of
dependency on key quantities.

Figure 1: Illustration for Example 3.1
and key quantities involved.

Another question is whether we could have
a good generalization at all with infinite hypoth-
esis classes. We answer it using an example.
Example 3.1 (Learning threshold functions;
adapted from Example 6.1 of [SSS14]). Con-
sider an unknown labeling function f⋆(a) =
1 {a ≥ a⋆}, and the hypothesis class HT F

.=
{a 7→ 1 {a ≥ a0} : a0 ∈ R}, i.e., the set of one-
dimensional threshold functions. Obviously, HT F

is infinite in size, and h∗ ∈ HT F .
Now consider any unknown distribution DR, {xi}i∈[N ] drawn iid from DR, and the resulting training

set S = {(xi, f⋆(xi))}i∈[N ]. Invoking the ERM rule with the 0/1 loss, we have

R̂S(ha0) = 1
N

∑
i∈[N ]

1 {ha0(xi) ̸= f⋆(xi)} = 1
N

∑
i∈[N ]

1 {xi is between a⋆ and a0} . (3.1)

LetLmax
.= max {xi : f⋆(xi) = 0} (Lmax = −∞ if no point is labeled 0) andRmin

.= min {xi : f⋆(xi) = 1}
(Rmin = +∞ if no point is labeled 1). Clearly, any a0 ∈ (Lmax, Rmin) leads to an h0 with zero empirical
risk, and thus the ERM rule can return any a0 ∈ (Lmax, Rmin).

Now for any ε ∈ (0, 1), locate aL < a⋆ and aR > a⋆ so that Px[x ∈ (aL, a⋆)] = ε (if no such aL exists,
set aL = −∞) and Px[x ∈ (a⋆, aR)] = ε (if no such aR exists, set aR = +∞). Now

R(ha0) = Ex∼DR1 {x is between a⋆ and a0} = Px∼DR [x is between a⋆ and a0]. (3.2)

To proceed, we have three cases:
• If Lmax = −∞ (i.e., Lmin < +∞), there is no point labeled as 0, implying that xi ≥ a⋆ ∀i. So,

Px1,...,xN [R(ha0) ≥ ε] ≤ Px1,...,xN [aR ≤ Rmin] ≤ (1 − ε)N ≤ e−εN . (3.3)

• If Lmin = +∞ (i.e., Lmax > −∞), there is no point labeled as 1, implying that xi ≤ a⋆ ∀i. So,

Px1,...,xN [R(ha0) ≥ ε] ≤ Px1,...,xN [aL ≥ Lmax] ≤ (1 − ε)N ≤ e−εN . (3.4)

• If Lmax > −∞ and Lmin < +∞, we have that

aL ≤ Lmax and aR ≥ Rmin =⇒ R(ha0) ≤ ε ⇐⇒ R(ha0) ≥ ε =⇒ aL ≥ Lmax or aR ≤ Rmin.

Now,
– If aL = −∞, aL ≥ Lmax can never happen. We have

Px1,...,xN [R(ha0) ≥ ε] ≤ Px1,...,xN [aL ≥ Lmax or aR ≤ Rmin]
= Px1,...,xN [aR ≤ Rmin] ≤ (1 − ε)N ≤ e−εN . (3.5)
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– If aR = +∞, aR ≤ Rmin can never happen. We have

Px1,...,xN [R(ha0) ≥ ε] ≤ Px1,...,xN [aL ≥ Lmax or aR ≤ Rmin]
= Px1,...,xN [aL ≥ Lmax] ≤ (1 − ε)N ≤ e−εN . (3.6)

– If aL > −∞ and aR < +∞,

Px1,...,xN [R(ha0) ≥ ε] ≤ Px1,...,xN [aL ≥ Lmax or aR ≤ Rmin] (3.7)
≤ Px1,...,xN [aL ≥ Lmax] + P[aR ≤ Rmin] (union bound) (3.8)
≤ (1 − ε)N + (1 − ε)N ≤ 2e−εN . (3.9)

In summary, Px1,...,xN [R(ha0) ≥ ε] ≤ 2e−εN , or we need N ≥ ε−1 log(2/δ) to ensure at least 1 − δ level
confidence.

So, the next question is what kind of infinite hypothesis classes can be learned?

3.1 Complexity of sets and an idea for measuring complexity of infinite H

Figure 2: Geometric mean-
ing of spherical width of a
set—spherical width is the
average width of the set over
all directions; figure adapted
from Figure 7.3 of [Ver18]

To answer the previous question, we need to measure the
effective complexity of H: although H has infinitely many
elements, it may have only very limited power.
Example 3.2. Consider the hyperthesis class: H .=
{x 7→ sign(xp) : p ∈ N}. It clearly contains infinitely many
functions, but there is too much redundancy: for all x ≥ 0,
the sign is always +1. For x < 0, all x 7→ sign(xp) with
even p’s predict +1, and those with odd p’s predict −1. In this
sense, there are only two effective functions inside, x 7→ sign(x)
and x 7→ sign(x2). Intuitively, the high level of redundancy
substantially reduces the effective complexity of H, despite its
superficial infinite capacity. Moreover, if we draw N random
points, the two effective functions can generate at most two label-
ing patterns on them. This suggests thatwe canmeasure the
effective complexity of H by checking the number/size of
the output patterns when passing the training set through

all functions within H, as we do below.

3.1.1 Measuring the size of a set

How do we measure the size of a set A ⊂ Rn in general? If A is finite, we typically use its cardinality
|A|. But cardinality is powerless when describing infinite sets—when we talk about their size, we
are intuitively thinking of volume-like quantities. This motivates us to consider the directional width.
For any fixed direction u (with ∥u∥2 = 1), the width of the set A in direction u is the smallest
distance between two hyperplanes that are orthogonal to u and contain A in between (see Fig. 2),
analytically expressed as

supa,a′∈A

〈
u, a − a′〉 . (3.10)

Now, we can measure the overall width of the set by averaging over all directions:

Eu∼Unif(Sn−1) supa,a′∈A

〈
u, a − a′〉 = 1

area(Sn−1)

∫
u∈Sn−1

supa,a′∈A

〈
u, a − a′〉 du, (3.11)
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where Sn−1 ⊂ Rn is the unit sphere in Rn and Unif(Sn−1) means the uniform distribution on the
sphere3. This motivates the following definition of spherical width (also called mean width):

(spherical width) ws(A) .= Eu∼Unif(Sn−1) supa∈A ⟨u, a⟩ . (3.12)

Note that the quantity defined in Eq. (3.11) is ws(A − A) (here, A − A
.= {a − a′ : a, a′ ∈ A}), and

ws(A − A) = 2ws(A), as

Eu∼Unif(Sn−1) supa,a′∈A

〈
u, a − a′〉 = Eu∼Unif(Sn−1) supa,a′∈A ⟨u, a⟩ +

〈
u, −a′〉

= Eu∼Unif(Sn−1) supa∈A ⟨u, a⟩ + supa′∈A

〈
u, −a′〉

= Eu∼Unif(Sn−1) supa∈A ⟨u, a⟩ + Eu∼Unif(Sn−1) supa′∈A

〈
−u, a′〉

= ws(A) + ws(A) = 2ws(A), (3.13)

where we note that

Eu∼Unif(Sn−1) supa′∈A

〈
−u, a′〉 = Eu∼Unif(Sn−1) supa′∈A

〈
u, a′〉 = ws(A), (3.14)

asEvf(v) = Evf(−v) for any symmetric random vector v (i.e., v and −v have the same distribution)
and any integrable function f .

The spherical width is not always easy to compute or estimate—we typically only need a
reasonable upper bound of it. A convenient alternative is the Gaussian width:

(Gaussian width/complexity) wg(A) .= Eg∼N (0,I) supa∈A ⟨g, a⟩ , (3.15)

where we basically replace the u ∼ Unif(Sn−1) in spherical width by a Gaussian random vector
g. Similarly, we can replace the Gaussian vector g by a Rademacher vector r ∼iid Rad, where a
Rademacher random variable takes +1 and −1 with 1/2 probability each, yielding the Rademacher
width:

(Rademacher width/complexity) wr(A) .= Er∼iidRad supa∈A ⟨r, a⟩ . (3.16)

We are going to use Rademacher complexity later formeasuring the complexity of infinite hypothesis
classes, so we create a special notation to denote its normalized version:

((Normalized) Rademacher complexity) RC(A) .= 1
n
Er∼iidRad sup

a∈A
⟨r, a⟩ , (3.17)

where we normalize by 1/n, where n is the ambient dimension of the set A.

3.1.2 Measuring the complexity of an infinite hypothesis class

Weare not going tomeasure the size of the setH directly, which is in a functional space. As suggested
in Example 3.2, we will measure the size of the image set of S passed through the hypothesis class
H. To proceed, with S = {zi}i∈[N ] as the training set, we define

(ℓ ◦ h)[S] .= [ℓ(h, z1), . . . , ℓ(h, zN )] ∈ RN , ∀h ∈ H (3.18)
(ℓ ◦ H)[S] .= {(ℓ ◦ h)[S] : h ∈ H} . (3.19)

3The unit sphere in Rn is written as Sn−1 because its effective (manifold) dimension (i.e., degrees of freedom) is only
n − 1.
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Figure 3: The key idea of measuring the complexity of an infinite hypothesis class H—we
measure the size of image set (ℓ ◦ H)[S] ⊂ RN , produced by passing a training set S
through all h ∈ H.

The key idea is to measure the size of (ℓ◦H)[S], using any reasonable complexity measure discussed
in Section 3.1.1 or alike; see Fig. 3.

Below, we implement this idea in two different settings: the first pertains to the general learning
setting, and we measure the size of (ℓ ◦ H)[S] via Rademacher complexity (Section 3.2); the second
is about binary classification, and we take ℓ as the 0/1 loss, and measure the size of the discrete set
(ℓ ◦ H)[S] simply by its cardinality, resulting in the growth function (Section 3.3). The notion of VC
dimension in Section 3.4 is closely related to growth function.

3.2 Rademacher complexity

For the general learning setting, the empirical Rademacher complexity of ℓ ◦ H is defined as

R̂CS(ℓ ◦ H) .= RC((ℓ ◦ H)[S]) = 1
N

Er∼iidRad sup
h∈H

⟨r, (ℓ ◦ h)[S]⟩ , (3.20)

i.e., the Rademacher complexity of the set (ℓ ◦ H)[S]. The word “empirical” here stresses that
the complexity measure depends on the training set S, and is hence random. To get rid of the
randomness, we can take the expectation with respect to S, resulting in the Rademacher complexity
of ℓ ◦ H:

RCN (ℓ ◦ H) .= ES∼DN
Z

R̂CS(ℓ ◦ H). (3.21)

We can also define the (empirical) Gaussian complexity in an analogous way, as we explore in
the homework.

We have the following uniform convergence results for infinite H with bounded ℓ, where the
(empirical) Rademacher complexity dominates the convergence gap.
Theorem 3.3 (Uniform convergence via Rademacher complexity). Consider a data space Z and a
hypothesis class H. Assume the loss ℓ is bounded by c > 0 for all z ∈ Z and all h ∈ H, i.e., |ℓ(h, z)| ≤ c.
Then, for any δ ∈ (0, 1) and any DZ , with probability at least 1 − δ over the draw of an iid training set S of
size N , the following uniform convergence results hold

R(h) ≤ R̂S(h) + 2R̂CS(ℓ ◦ H) + C1c
√

log(1/δ)/N ∀h ∈ H (3.22)

R(h) ≤ R̂S(h) + 2RC(ℓ ◦ H) + C1c
√

log(1/δ)/N ∀h ∈ H, (3.23)

where C1, C2 > 0 are two universal constants.
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With this master theorem at hand, we typically only need to focus on estimating R̂CS(ℓ ◦ H) or
RC(ℓ ◦ H), and plug them into the bounds.

For this purpose, the following properties of the Rademacher complexity of sets can be useful,
as, remember, we define the Rademacher complexity of a hypothesis class by the Rademacher
complexity of its image set.
Theorem 3.4 (Properties of Rademacher complexity of sets). Assume all sets below are subsets of Rn.

1. nonnegativity For any set A, RC(A) ≥ 0
2. monotonicity If A ⊂ A′, RC(A) ≤ RC(A′)
3. summation For any two sets A, B, RC(A + B) = RC(A) + RC(B)
4. affine transform For any set A and any real numbers a, b

RC(aA + b) = |a|RC(A) (3.24)

5. convexity For any A and its convex hull

conv(A) .=

 ∑
j∈[N ]

αjxi : N ∈ N, xj ∈ A ∀j, α ≥ 0, 1⊺α = 1

 , (3.25)

RC(A) = RC(conv(A)).
6. Talagrand’s contraction lemma4 For j ∈ [n], consider L-Lipschitz functions ϕj : R → R,

i.e., |ϕj(x) − ϕj(x′)| ≤ L|x − x′| for all x, x′ ∈ R. Write ϕ
.= [ϕ1, . . . , ϕn]. For any A, write

ϕ ◦ a
.= [ϕ1(a1), . . . , ϕn(an)] and ϕ ◦ A

.= {ϕ ◦ a : a ∈ A}. It holds that

RC(ϕ ◦ A) ≤ L · RC(A). (3.26)

The contraction lemma can often help simplify the estimation of Rademacher complexity. For
example, for supervised learning problems, we can obtain the following.
Corollary 3.5 (Contraction lemma for supervised learning). Consider X ⊂ Rd, Y ⊂ R, and a
hypothesis class H consisting of predictors mapping from X to Y . Assume that ∀y ∈ Y , the mapping
a 7→ ℓ(a, y) is L-Lipschitz. Then, for any DX ×Y and any S = {(xi, yi)}i∈[N ], write Sx = {xi}i∈[N ], we
have

R̂CS(ℓ ◦ H) ≤ L · R̂CSx(H). (3.27)

Proof. Consider A = H[Sx] = {h[Sx] : h ∈ H} where h[Sx] .= [h(x1), . . . , h(xN )] ⊂ RN , and
ϕ ◦ A = (ℓ ◦ H)[S] .= {(ℓ ◦ h)[S] : h ∈ H} where (ℓ ◦ h)[S] .= [ℓ(h(x1), y1), . . . , ℓ(h(xN ), yN )] ⊂ RN .
So, here i ∈ [N ], ϕi : h(xi) 7→ ℓ(h(xi), yi), which is L-Lipschitz by our assumption. Invoking the
contraction lemma, we have

RC((ℓ ◦ H)[S]) ≤ L · RC(H[Sx]), (3.28)

implying the claimed result. ■
Moreover, for finite sets, we have the following estimates.

Lemma 3.6 (Massart lemma). Let A = {a1, . . . , am} be a finite set of vectors in Rn. Definite a
.=

1
m

∑
j∈[m] xj , i.e., center of the set. Then,

RC(A) ≤ maxa∈A ∥a − a∥
√

2 log m/n. (3.29)
4Due to the famous mathematician and Abel Prize laureate Michel Talagrand (https://en.wikipedia.org/wiki/

Michel_Talagrand).
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Next, we work out a couple of examples for supervised learning. For simplicity, we assume that
the loss ℓ is 1-Lipschitz for any y, so we focus on estimating R̂CSx(H) due to the contraction lemma.

Lemma 3.7. Consider H1
.=
{

x 7→ w⊺x : ∥w∥1 ≤ 1, x ∈ Rd
}
and any input set Sx = {xi}i∈[N ]. We

have

R̂CSx(H1) ≤ max
i

∥xi∥∞

√
2 log(2d)

N
. (3.30)

Proof. We have

R̂CSx(H1) = 1
N

Er∼iidRad sup
w:∥w∥1≤1

⟨r, Xw⟩ (X collects all xi’s as its rows) (3.31)

= 1
N

Er∼iidRad sup
w:∥w∥1≤1

⟨X⊺r, w⟩ (3.32)

≤ 1
N

Er∼iidRad ∥X⊺r∥∞, (3.33)

where to obtain the last line we use the Hölder’s inequality, which says that for any two vectors
u, v ∈ Rd, |⟨u, v⟩| ≤ ∥u∥p∥v∥q for any p, q with 1/p + 1/q = 1, i.e., ∥·∥p and ∥·∥q are the dual norm
to each other. Now

Er∼iidRad ∥X⊺r∥∞ = Er∼iidRad sup
j∈[d]

∣∣∣e⊺
j X⊺r

∣∣∣ = Er∼iidRad sup
s=±1,j∈[d]

⟨sXej , r⟩ = NRC(A), (3.34)

where A
.= {sXej : s = ±1, j ∈ [d]}. Clearly, |A| = 2d, and ∥sXej∥2 ≤

√
N maxi ∥xi∥∞. By the

Massart lemma, we have

RC(A) ≤ max
i

∥xi∥∞

√
2 log(2d)

N
. (3.35)

Combining the above chain of results completes the proof. ■

Lemma 3.8. Consider H2
.= {x 7→ w⊺x : ∥w∥2 ≤ 1} and any input set Sx = {xi}i∈[N ]. We have

R̂CSx(H2) ≤ max
i

∥xi∥2
2/

√
N. (3.36)

Proof. We have

R̂CSx(H1) = 1
N

Er∼iidRad sup
w:∥w∥2≤1

⟨r, Xw⟩ (X collects all xi’s as its rows) (3.37)

= 1
N

Er∼iidRad sup
w:∥w∥2≤1

⟨X⊺r, w⟩ (3.38)

≤ 1
N

Er∼iidRad ∥X⊺r∥2, (3.39)

where again we use the Hölder’s inequality to obtain the last line. Now Jensen’s inequality says that
for convex (resp. concave) function ϕ : Rn → R, Ezϕ(z) ≥ ϕ(Ezz) (resp. Ezϕ(z) ≤ ϕ(Ezz)). Now

Er∼iidRad ∥X⊺r∥2 = Er∼iidRad

√
∥X⊺r∥2

2 ≤
√
Er∼iidRad∥X⊺r∥2

2, (3.40)
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where we apply Jensen’s inequality to the concave function z 7→
√

z for z ≥ 0. Now, we estimate
Er∼iidRad∥X⊺r∥2

2:

Er∼iidRad∥X⊺r∥2
2 = Er∼iidRad ⟨X⊺r, X⊺r⟩ = Er∼iidRad ⟨XX⊺, rr⊺⟩ = ⟨XX⊺,Er∼iidRadrr⊺⟩

= ⟨XX⊺, I⟩ = tr (XX⊺) = ∥X∥2
F ≤ N max

i
∥xi∥2

2. (3.41)

Combining the above chain of results completes the proof. ■

3.3 Growth function

For binary classification problems, the growth function and the VC dimension are useful alternative
complexity measures that can be easier to estimate than the Rademacher complexity.

Tomotivate the growth function, we refer back to the general strategywe describe in Section 3.1.2
(see also Fig. 3). Now Z = X × {+1, −1}, S = {(xi, yi)}i∈[N ], and ℓ(h, zi) = 1 {h(xi) ̸= yi} ∀i, i.e.,
we take the 0/1 loss. It is easy to see that no matter what H is, (ℓ ◦ H)[S] must be finite, as there are
at most 2N binary vectors there. So we will measure the complexity of (ℓ ◦ H)[S] by its cardinality.
Now, since yi’s in S are fixed and binary-valued,

|(ℓ ◦ H)[S]| = |H[Sx]|. (3.42)

Therefore, we define the growth function as follows.

Definition 3.9 (Growth function). Consider Sx = {xi}i∈[N ], h(Sx) .= [h(x1), . . . , h(xN )], and
H(Sx) .= {h(S) : h ∈ H}. The growth function (also called the shattering coefficient) of H, as a func-
tion of N (for any integer N ≥ 1), is defined as

ΠH(N) = max
Sx:|Sx|=N

|H(Sx)|. (3.43)

In other words, if we call each distinct binary labeling h(S) of S a dichotomy, the growth function
counts the number of distinct dichotomies realizable by H. Note that inside the definition, max is
taken over all possible Sx, as this definition is only combinatorial in nature—if we take a very bad,
non-representative set of N points (e.g., all of them are almost identical to each other), we may well
expect to see far fewer dichotomies. Also, ΠH(N) ≤ 2N , as there is a total of 2N dichotomies on any
S with |S| = N .

For binary classification, one can connect the Rademacher complexity and the growth function
as follows.

Lemma 3.10. For binary classification with ℓ as the 0/1 loss and any hypothesis class H, we have

R̂CS(ℓ ◦ H) ≤

√
2 log ΠH(N)

N
, (3.44)

which implies that

RCN (ℓ ◦ H) ≤

√
2 log ΠH(N)

N
. (3.45)

One can easily combine the upper bounds here with the uniform convergence results in Theo-
rem 3.3 to obtain uniform convergence results via the growth function.
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3.4 VC dimensions

The growth function is a function of N ; in principle, we need to estimate it for all N . The VC (i.e.,
Vapnik-Chervonenkis) dimension, to be discussed below, offers a single-number summary of the
growth function and tends to be easy to estimate.
Definition 3.11 (Shattering). A set of points S is schattered by a hypothesis class H, if each dichotomy on
S can be realized by a certain h ∈ H, that is, if H realizes all possible dichotomies of S.

Figure 4: Illustration of shattering on interval. Figure adapted from Fig. 3.1 of [Moh18].

For example, consider the interval hypothesis class

Hitvl
.= {x 7→ 2 · 1 {x ∈ (a, b)} − 1 : a < b, a, b ∈ R} . (3.46)

As Fig. 4 shows, any two distinct points on the real line can be shattered by Hitvl, but not three
points. Note that the combinatorial nature of shattering means that we often need to draw (mental)
pictures to figure this out.
Definition 3.12 (VC dimension). The VC dimension of H, denoted as VCdim(H), is the size of the largest
set that can be shattered by H, or equivalently,

VCdim(H) = max
{

N : ΠH(N) = 2N
}

. (3.47)

Obviously, the definition implies that ΠH(N) < 2N for any N > VCdim(H). Hence, to prove
VCdim(H) = d, one needs to show that

• there exists a set of size d that can be shattered by H, and
• no set of cardinality d + 1 can be shattered by H.

We present several quick examples.
Example 3.13 (Examples of VC dimension estimation). Consider the following examples.

• Hitvl. The shattering argument above implies that VCdim(Hitvl) = 2.
• Hyperplane classifiers in Rd Consider Hd

HC
.=
{

x 7→ sign(w⊺x + b) : w ∈ Rd, b ∈ R
}
. We

first look at the d = 2 case, which is easy to visualize. Any 3 points in general positions (i.e., non-
colinear) in R2 can be shattered, as shown in Fig. 5(a). Now, for any 4 points, clearly we cannot
shatter them if any 3 of them are colinear (as the + − + pattern on 3 colinear points cannot be realized).
Assume that no 3 points of the 4 points are colinear. Then, either all 4 points are the vertices of their
convex hull, or the 1 point lies in the interior of their convex hull, with the remaining 3 points being the
vertices; see Fig. 5(b). For either case, we can easily construct a dichotomy that cannot be realized, as
shown in Fig. 5(b). So, VCdim(H2

HC) = 3.
For general d ≥ 3, we can extend the above argument, in a more systematic way.

– Hd
HC can shatter d + 1 points. Consider x0 = 0 and xi = ei for i ∈ [d]. For any binary

labeling y ∈ {+1, −1}d+1 on this, the hyperplane classifier sign (y⊺xi + y0/2) = yi for all
i = 0, 1, . . . , d. So, these d + 1 points are shattered by Hd

HC .
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(a) (b)

Figure 5: (a) Illustration of shattering patterns of hyperplane classifiers in R2 on three
points in general positions; (b) Generic configurations of four points that cannot be shattered
by hyperplane classifiers.

– Hd
HC cannot shatter d + 2 points. To prove this, we need the famous Radon’s theorem from

convex analysis: any set A of d + 2 points in Rd can be partitioned into two subsets A1 and A2 so
that the convex hulls of A1 and A2 intersect. Now, let us consider such a set A with |A| = d + 2
and the associated A1 and A2 so that conv(A1) ∩ conv(A2) ̸= ∅. Assign +1 to all points in
A1 and −1 to all points in A2. Now, if there is an hyperplane that separates A1 and A2, it also
separates their convex hulls, so that the convex hulls are disjoint, violating Radon’s theorem. So,
no d + 2 points can be shattered by Hd

HC .
Together, the above arguments imply that VCdim(HHC) = d + 1.

• Sine functions Consider Hsin
.= {x 7→ sign (sin(ωx)) : ω ∈ R}. For any N ∈ N, consider N

points 21, . . . , 2N and ω = −π
∑

i∈[N ] 2−i
1 {yi = +1} − π2−N . Also, note that sign(sin(zπ)) =

(−1)⌊z⌋. Now

sign (ωxj) = sign
(

sin
(

−π
∑

i∈[N ]
2j−i

1 {yi = +1} − π2−N
))

. (3.48)

– For any yj = +1,

−
∑

i∈[N ]
2j−i

1 {yi = +1} − 2−N

= −
∑

i<j
2j−i

1 {yi = +1}︸ ︷︷ ︸
even number

−1 − (
∑

i>j
2j−i

1 {yi = +1} + 2−N )︸ ︷︷ ︸
∈(0,1)

,

So, ⌊−
∑

i∈[N ] 2j−i
1 {yi = +1} − 2−N ⌋ = −M for an even M ≥ 0, and (−1)M = 1;

– For any yi = −1,

−
∑

i∈[N ]
2j−i

1 {yi = +1} − 2−N

= −
∑

i<j
2j−i

1 {yi = +1}︸ ︷︷ ︸
even number

− (
∑

i>j
2j−i

1 {yi = +1} + 2−N )︸ ︷︷ ︸
∈(0,1)

,

So, ⌊−
∑

i∈[N ] 2j−i
1 {yi = +1} − 2−N ⌋ = −M for an odd M ≥ 0, and (−1)M = −1;

The above argument for any N ∈ N, implying that VCdim(Hsin) = ∞.

The following lemma describes the quantitative relationship between the growth function and
the VC dimension.
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Lemma 3.14 (Sauer’s lemma). For a hypothesis class H with VCdim(H) = d. The following inequalities
hold:

ΠH(N) ≤
∑d

i=0

(
N

i

)
for any integer N ≥ 1, (3.49)

and ΠH(N) ≤ (eN/d)d ∈ O(Nd) for any integer N ≥ d. (3.50)

Proof. The proofs are those for Theorem 3.17 and Corollary 3.18 of [Moh18]. ■

Theorem 3.15 (VC dimension uniform convergence bounds). Consider a data space Z = X ×{+1, −1}
and any hypothesis class H consisting of binary predictions taking values in {+1, −1}. For any δ ∈ (0, 1)
and any DZ , with probability at least 1 − δ over the draw of an iid training set S of size N , the following holds

R(h) ≤ R̂S(h) + C

√
VCdim(H) + log(1/δ)

N
∀h ∈ H, (3.51)

where C > 0 is a universal constant.

Further reading
Main references are Chapters 2–4 of [Moh18] and Chapters 2–8, 11 of [SSS14]. The basics of proba-
bility and concentration inequalities are reviewed in Appendices C and D of [Moh18] and Appendix
B of [SSS14]. Classic references for statistical and computational learning theory are [Kea94, Vap00],
and [BBL04, BBL05] give excellent summary of recent developments. [Ver18] is a masterpiece on
modern high-dimensional probability and concentration inequalities for non-experts.

Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected, and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.
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