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Overview The support vector machine (SVM) was invented by Vladimir N. Vapnik around mid
90’s, rendering neural networks out of flavor in machine learning for 15 years until 2010’s—when
neural networks stroke back and took the main arena of machine learning until now. SVMs and
kernel methods in general are powerful and effective in practice and well grounded in theory; they
remain competitive or even superior on structured data, compared to alternatives.

We first rederive the hard-margin SVM from the geometric view of margin maximization. Then,
using tools from convex analysis, we show the key properties of hard-margin SVMs. After that,
we formulate and analyze soft-margin SVMs, and also discuss scalable optimization methods for
SVM training. Afterward we move to kernel methods, which really help SVMs and other linear
models take off and enable easy and practical nonlinear modeling. We wrap up the chapter by
briefly introducing kernel methods for learning settings beyond binary classification.
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1 Hard-margin SVMs
Our starting point is a linearly separable training set {(xi, yi)}N

i=1, where xi ∈ Rd and yi ∈ {1, −1} for
all i ∈ [N ], for binary classification. Here, linear separability means that there exists a pair (w0, b0)
so that sign(⟨w0, xi⟩ + b0) = yi ⇐⇒ yi(⟨w0, xi⟩ + b0) > 0 for all i ∈ [N ]. In other words, the positive

Figure 1: (left & right) A linearly separable dataset (ignoring p0 which is a test point) can
be separated by infinitely many hyperplanes. (right) Hard-margin SVM finds the separating
hyperplane that leaves the largest margins on the positive and negative sides. Adapted
from Figure 5.1 of [Moh18].

and negative points can be perfectly separated by a hyperplane1.
But is there a unique separating hyperplane? From Fig. 1, it is easy to see that the answer

is no. Here, ignoring p0 which is a test point, we can find two separating hyperplanes H1 =
{x : ⟨w1, x⟩ + b1 = 0} and H2 = {x : ⟨w2, x⟩ + b2 = 0}; both perfectly separate the training set. In
fact, one can construct infinitely many by slightly rotating and shifting H1 and H2.

Which separating hyperplanes are better than others? There are many possible answers. A
sensible criterion is robust classification: ideally, points that deviate slightly from the positive points
should be classified as positive and similarly for the negative side. In Fig. 1, the test point p0 is
closest to (in ℓ2 distance) a red training point, but H1 labels it as “blue” whereas H2 labels it as
“red”. Obviously, H1 is not robust as it is very close to some red (and also blue) points. In contrast,
H2 is relatively robust, as it maintains reasonable distances to all training points. We will formalize
the intuition below.

1Recall that since linear hyperplanes are also affine hyperplanes, we refer to affine hyperplanes by default when we
say hyperplanes.
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1.1 The max-margin principle

First, we need to define the distance of a point to a hyperplane—which is a set of points. For
simplicity, we focus on the point-hyperplane distance induced by the ℓ2 distance, although, in
principle, the distance can be induced by any distance.
Lemma 1.1 ((ℓ2) Geometric margin). For any point x0 ∈ Rd and any hyperplane H = {x ∈ Rd : w⊺x +
b = 0}, the ℓ2 distance, or ℓ2 geometric margin, between x0 and H is: dℓ2(x0, H) = |w⊺x0 + b|/∥w∥2.

Proof. See Appendix A. ■
Recall that to achieve robust classification, we hope to keep all training points away from the

separating hyperplane H . A natural objective is to make all the geometric margins as large as
possible, or equivalently the worst geometric margin as large as possible, i.e.,

max
w,b

min
i∈[N ]

|w⊺xi + b|
∥w∥2

s. t. yi(w⊺xi + b) > 0 ∀ i ∈ [N ]. (1.1)

This implements the max-margin principle, i.e., to maximize the worst geometric margin.

1.2 Derivation of hard-margin SVMs

There are several numerical issues when solving Eq. (1.1) directly, which is nonconvex and nons-
mooth. Below, we will reformulate Eq. (1.1) into an equivalent convex form, which is much more
tractable numerically.

First, since |w⊺xi + b| = yi(w⊺xi + b) when yi(w⊺xi + b) > 0 for all i, so our first simplified
version is:

max
w,b

min
i∈[N ]

yi(w⊺xi + b)
∥w∥2

s. t. yi(w⊺xi + b) > 0 ∀ i ∈ [N ], (1.2)

which removes the nonsmoothness due to the |·| function.
Next, observe that for any global optimizer (w∗, b∗), we have that λ(w∗, b∗) is also a global

optimizer for all λ > 0, as

yi(w⊺xi + b) > 0 ∀ i ∈ [N ] ⇐⇒ yiλ(w⊺xi + b) > 0 ∀ i ∈ [N ], ∀λ > 0, (1.3)
and (yiλ(w⊺xi + b))/∥λw∥2 = (yi(w⊺xi + b))/∥w∥2 ∀λ > 0. (1.4)

This implies that, without loss of generality, we can seek a global optimizer so that

min
i∈[N ]

yi(w⊺xi + b) = 1, (1.5)

turning Eq. (1.2) into

max
w,b

min
i∈[N ]

yi(w⊺xi + b)
∥w∥2

s. t. min
i∈[N ]

yi(w⊺xi + b) = 1, (1.6)

or

max
w,b

1
∥w∥2

s. t. min
i∈[N ]

yi(w⊺xi + b) = 1, (1.7)

after we substitute the constraint into the objective, or

min
w,b

∥w∥2 s. t. min
i∈[N ]

yi(w⊺xi + b) = 1, (1.8)
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as max 1/∥w∥2 is equivalent to min ∥w∥2.
Now the objective looks neat, but the constraint is a bit awful—the pointwise min operation

typically induces nonsmooth points. Now we claim that Eq. (1.8) is equivalent to

min
w,b

∥w∥2 s. t. yi(w⊺xi + b) ≥ 1 ∀ i ∈ [N ]. (1.9)

Indeed, any minimizer (w∗, b∗) to problem (1.9) must satisfy mini∈[N ] yi(w⊺
∗xi + b∗) = 1. Suppose

not, then mini∈[N ] yi(⟨w∗, xi⟩ + b∗) = 1 + ε for a certain ε > 0. Now 1
1+ε(w∗, b∗) is a feasible point

with a strictly lower objective value 1
1+ε∥w∗∥2 < ∥w∗∥2, rendering (w∗, b∗) a non-minimizer—a

contradiction. This implies that (w∗, b∗) is feasible for problem Eq. (1.8). However, since the
constraint set of Eq. (1.8) is a strict subset of that of Eq. (1.9), the optimal value achieved in Eq. (1.8)
should not be less than that achieved in Eq. (1.9). Now that (w∗, b∗) is a minimizer of Eq. (1.9) (i.e.,
achieving the optimal value) but also feasible for Eq. (1.8), it is also a minimizer to Eq. (1.8).

Figure 2: Illustration of the
hard-margin SVM, and the
associated max-margin and
marginal hyperplanes (fig-
ure adapted from Figure 5.3
of [Moh18]).

After applying a slight aesthetic tweak to the
objective—∥w∥2 into 1

2∥w∥2
2 to make the objective every-

where differentiable, we obtain the famous hard-margin
SVM formulation:

min
w,b

1
2∥w∥2

2 s. t. yi(w⊺xi + b) ≥ 1 ∀ i ∈ [N ]. (1.10)

Back to our geometric picture, the hard-margin SVM tries
to find a hyperplane that separates the two classes and
leaves the largest geometric margins for the training set.
We call such a hyperplane a max-margin hyperplane. Par-
allel to the max-margin hyperplane, we define two hyper-
planes that pass through the nearest point(s) to the max-
margin hyperplane on the positive and negative sides,
respectively. They are called marginal hyperplanes.

Several observations can be made (see Fig. 2): (1) Ro-
bust hyperplanes. If we slightly perturb “interior” points
that are away from the marginal hyperplane on each side
or add similar interior points, themax-margin hyperplane
and also the marginal hyperplanes will not change for the
altered dataset. In other words, these hyperplanes are

only determined by the few points on the “frontiers” that support the marginal hyperplanes. These
points are called support vectors, as we shall see in Section 3; (2) Robust classification: all training
points are at least 1/∥w∗∥2 away in ℓ2 distance from the decision boundary—the max-margin hyper-
plane. So, perturbations no larger than 1/∥w∗∥2 in ℓ2 norm will not cause classification errors; (3)
Equal margins: The max-margin hyperplane will leave equal margins on both sides. In fact, if the
margins were not equal, say the positive side is smaller, one can move the hyperplane parallel to
the normal direction w to make them equal, which at the same time improves the worst geometric
margin.

To formalize these observations, we need tools from convex analysis. Moreover, these tools
can help us answer other questions that are not clear based on geometric observations alone, e.g.,
whether the max-margin hyperplane is unique.
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2 Quick review of convex analysis

2.1 Convex sets

The line segment connecting two points x, y can be represented as follows. Starting from x, any
point z on the segment can be written as z = x + tv where v = y − x and t ∈ [0, 1]. Since
x + tv = ty + (1 − t)x, the line segment can be written as

{ty + (1 − t)x : t ∈ [0, 1]} = {tx + (1 − t)y : t ∈ [0, 1]} . (2.1)

A set S is said to be convex if every line segment connecting every two
points of the set stays in the set, i.e.,

{tx + (1 − t)y : t ∈ [0, 1]} ⊂ S ∀ x, y ∈ S. (2.2)

Figure 3 (left) show numerous examples of convex and nonconvex sets.

Figure 3: Illustration of convex sets (left; image credit: http://www2.econ.iastate.
edu/classes/econ500/hallam/documents/Convex_Opt_000.pdf) and convex func-
tions (right; image credit: wikipedia).

When we face a complex set and try to tell it is convex, it is typically hard to do so from the
definition. The following operation rules can become handy in these scenarios.

Theorem 2.1 (Operations that preserve convexity of sets). For any two convex sets S1, S2 ⊂ Rn,
the following sets are also convex: (1) set product S1 × S2

.= {(x1, x2) : x1 ∈ S1, x2 ∈ S2}, (2) set
sum S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2}, (3) set intersection S1 ∩ S2, and (4) set projection
{(x1, . . . , xk) : x ∈ S1} for any k ∈ [n].

2.2 Convex functions

Let X be a convex set. A function f : X 7→ R is said to be convex if every chord connecting any two
distinct points on the graph of f lies above (i.e., not below) the graph, as illustrated in Fig. 3(right).
Mathematically, this means

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) ∀ x, y ∈ X and ∀ t ∈ [0, 1]. (2.3)

To verify a function is convex, it is important to check (1) the domain X is a convex set, and (2) f
satisfies the condition in Eq. (2.3).

Examples of convex functions:

Page 5

http://www2.econ.iastate.edu/classes/econ500/hallam/documents/Convex_Opt_000.pdf
http://www2.econ.iastate.edu/classes/econ500/hallam/documents/Convex_Opt_000.pdf


Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

• All vector and matrix norms. Any vector norm ∥·∥ satisfies the triangle inequality ∥u + v∥ ≤
∥u∥ + ∥v∥ by the definition of norms, so we have

∥tu + (1 − t)v∥ ≤ ∥tu∥ + ∥(1 − t)v∥ = t∥u∥ + (1 − t)∥v∥ ∀ u, v ∀ t ∈ [0, 1], (2.4)
verifying the definition of convex functions. Similar argument can be carried out for all matrix
norms.

• All linear functions of the form f(x) = Ax + b. This can be easily verified from the definition.
The most salient property of convex functions is that any local minimizer of a convex function

is also a global minimizer.
In the definition of convex functions, when every chord connecting any two distinct points lies

strictly above the the graph except for the two end points, the function is called strictly convex, i.e.,
f(tx + (1 − t)y)< tf(x) + (1 − t)f(y) ∀ x, y ∈ X and ∀ t ∈ (0, 1). (2.5)

Any strictly convex function has a unique global minimizer.
Let X be a convex set and consider a first-order differentiable function f : X 7→ R. We have the

following equivalent properties:
f is convex ⇐⇒ f(y) − f(x) ≥ ⟨∇f(x), y − x⟩ ∀ x, y ∈ X (2.6)

f is strictly convex ⇐⇒ f(y) − f(x) > ⟨∇f(x), y − x⟩ ∀ distinct x, y ∈ X (2.7)
If f is second-order differentiable, we have

f is convex ⇐⇒ ∇2g(x) ⪰ 0 ∀ x ∈ X (2.8)
f is strictly convex ⇐= ∇2g(x) ≻ 0 ∀ x ∈ X, (2.9)

where note that the last one is one-directional.
For constrained optimization problems, we often see constraints of the form f(x) ≤ 0. There

is a very useful result that connects the convexity of f to the convexity of the constraint set: if
f(x) : X 7→ R is a convex function, the sublevel set {x ∈ X : f(x) ≤ 0} is a convex set.

Similar to the case for convex sets, there are operations that preserve the convexity of functions.
Theorem 2.2 (Operations that preserve convexity of functions). We have the following results.
(1) positive combinations of convex functions preserve convexity: For convex functions fi : X 7→ R
(i = 1, . . . , K),

∑
i∈[K] αifi is convex over X for all αi ≥ 0;

(2) pointwise maximum of convex functions preserve convexity: For convex functions fi : X 7→ R
(i = 1, . . . , K), maxi∈[K] fi is convex over X ;
(3) composition with linear functions preserve convexity: if f is convex over the range of Ax + b (i.e.,
{Ax + b : x ∈ X}), f(Ax + b) is convex over X ;
(4) composition of monotonic convex functions: h ◦ g is convex over X if both g : X 7→ R and
h : R 7→ R are twice differentiable and either of the following holds:

• h is convex and non-decreasing and g is convex,
• h is convex and non-increasing and −g is convex.

(5) partial minimization of convex functions preserves convexity: Let f(x, y) be a convex function
over X × Y , where both X and Y are convex sets and hence X × Y is also a convex set. The partial
minimization infy∈Y f(x, y) 2 is convex over X .

2Recall that inf can be roughly treated as min, but for min the minimum value must be achieved by a point inside the
domain, whereas for inf we take a limit point that can be outside. An example is minimizing f(x) = x2 over (−∞, 0).
Here, min f(x) does not make sense, but inf f(x) = 0. So, in general, it is safer to use inf , instead of min, when we mean
to perform minimization.
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2.3 Optimality conditions (KKT conditions) for constrained convex problems

The hard-margin SVM formulation in Eq. (1.10) is a constrained optimization problem. Hence, to
characterize the properties of its solution, we need optimality conditions for constrained problems.
Since the formulation is convex (formally argued in Section 3), wewill focus only on such conditions
for constrained convex problems.

Theorem 2.3 (Optimality conditions, or Karush-Kuhn-Tucker (KKT) conditions, for convex prob-
lems). Consider a convex optimization problem:

min
x

f(x) s. t. gi(x) ≤ 0, ∀ i ∈ I and Ax + b = 0, (2.10)

where f and gi’s are continuously differentiable, convex functions and I is the index set for the inequality
constraints. Define the Lagrangian function as

L(x, π, λ) .= f(x) +
∑

i∈I
πigi(x) + λ⊺(Ax + b), (2.11)

where x is called the primal variable, and π ≥ 0 and λ are called the dual variables. Suppose that the
constraint set is strictly feasible (also called the Slater’s condition), i.e., there exists an x0 so that
gi(x0) < 0 for all i ∈ I and Ax0 + b = 0. Then, x is a global minimizer is equivalent to the following:

∃π, λ ≥ 0 s.t.


stationarity : ∂xL(x, π, λ) = 0
feasibility : gi(x) ≤ 0 ∀ i ∈ I, Ax + b = 0, π ≥ 0
complementary slackness : πigi(x) = 0 ∀i ∈ I ⇐⇒

∑
i∈I πigi(x) = 0.

Note that to apply the KKT condition, it is crucial to check the Slater’s condition first. Also,
the simultaneous properties, including stationarity, feasibiliy, and complementary slackness, are
sufficient and necessary for checking a global minimizer for a constrained convex problem.

3 Key properties of hard-margin SVMs
With all the essential tools of convex analysis, we are now ready to study the properties of the
solution to the hard-margin SVM.

We start by checking that the hard-margin formulation in Eq. (1.10) is indeed a convex problem.
First, for each i ∈ [N ], 1 − yi(w⊺xi + b) is a linear function in (w, b) and therefore convex, so
{(w, b) : 1 − yi(w⊺xi + b) ≤ 0} is a convex set in the (w, b) space. The whole constraint set is the
intersection of N such convex sets, i.e.,

{(w, b) : 1 − yi(w⊺xi + b) ≤ 0 ∀i ∈ [N ]} =
⋂

i∈[N ]
{(w, b) : 1 − yi(w⊺xi + b) ≤ 0} , (3.1)

so is convex by the set intersection rule in Theorem 2.1. Now for the objective, we know that ∥w∥2
is convex as a vector norm. So 1

2∥w∥2
2 is a composition of the monotonically increasing function

h(z) = 1
2z2 over [0, ∞) with the convex function f(w) = ∥w∥2, and is thus convex by the monotonic

composition rule in Theorem 2.2. 3 So we conclude that the hard-margin SVM as formulated in
Eq. (1.10) is a constrained convex problem.

Now, to apply the KKT conditions from Theorem 2.3, we verify the Slater’s condition first. Since
we assume linear separability of the training set, i.e., there exists (w0, b0) so that yi(w⊺

0xi + b) >

3Another way to show that f(w) = 1
2 ∥w∥2

2 is to check the Hessian: ∇2f(w) = I ⪰ 0.
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0, ∀i ∈ [N ], which implies that one can find a scaling factor η0 so that η0(w0, b0) is strictly feasible,
i.e., yi(η0w⊺

0xi + η0b) > 1, ∀i ∈ [N ]. So Slater’s condition is verified.
Now we can apply the KKT conditions. The Lagrangian function is

L(w, b, π) = 1
2∥w∥2

2 +
∑

i∈[N ]
πi[1 − yi(w⊺xi + b)], (3.2)

where we do not have equality constraints here. For a candidate global minimizer (w, b) and the
associated dual variable π, we have the following from the KKT conditions:

(stationarity) ∂w,bL(w, b, π) = 0 =⇒ w =
∑

i∈[N ]
πiyixi,

∑
i∈[N ]

πiyi = 0, (3.3)
(feasibility) 1 − yi(w⊺xi + b) ≤ 0 ∀i ∈ [N ], π ≥ 0, (3.4)

(comp. slackness) πi[1 − yi(w⊺xi + b)] = 0 ∀i ∈ [N ]. (3.5)

From these conditions, we can observe the following:
• support vectors and marginal hyperplanes. From the stationarity condition, the normal vector

w is a linear combination of xi’s. When πi > 0 (recall that πi is always nonnegative), the
corresponding point xi contributes to w, and these points are called support vectors. From
complementary slackness, when πi > 0, yi(w⊺xi + b) = 1, i.e., w⊺xi + b = +1 or −1. These define
the marginal hyperplanes (see Fig. 2), where no point should lie between them.

• support vectors come from both sides. The result ∑
i∈[N ] πiyi = 0 tells us that the support vectors

should not be only positive or negative points, as positive combinations of +1 or −1 alone cannot
be 0.

• equal margins. Since we have both positive and negative support vectors, i.e., yi(w⊺xi + b) = 1
for both yi = 1 and yi = −1, and all other cases with 1 − yi(w⊺xi + b) ≤ 0, the geometric margin
of the support vectors to the separating hyperplane on both sides is 1/∥w∥2.

Figure 4: Illustration of the
soft-margin SVM, and the
associated max-margin and
marginal hyperplanes (figure
adapted from [Moh18]).

Moreover, throughmathematical analysis, we can also
show that the hard-margin SVM has a unique global min-
imizer, and adding and perturbing points away from the
marginal hyperplanes will not change the separating hy-
perplanes (i.e., robust hyperplanes). We will do this in
our homework.

4 Soft-margin SVMs and properties
A major issue with the hard-margin SVM is that it cannot
deal with data that are not linearly separable: in these
cases, there is no feasible point for Eq. (1.10). Toworkwith
non-separable data, we have to make compromises. One
possibility is to allow classification errorswhile promoting
large margins. This leads to the famous soft-margin SVM.

4.1 Soft-margin SVMs

The first step is to allow certain xi’s to move across
marginal hyperplanes, i.e., by relaxing the constraints

from yi(w⊺xi + b) ≥ 1 ∀ i ∈ [N ] to yi(w⊺xi + b) ≥ 1−ξi, ξi ≥ 0 ∀ i ∈ [N ], and hyperplane crossings
occur for xi’ s with ξi > 0. But we also do not want too many crossings, so it makes sense to penalize
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the total crossings, e.g., by penalizing ∑
i∈[N ] ξi in the objective. Putting these together, we arrive at

the standard soft-margin SVM (see Fig. 4):

min
w,b,ξ

1
2∥w∥2

2 + C
∑

i∈[N ]
ξi s. t. yi(w⊺xi + b) ≥ 1 − ξi, ξi ≥ 0 ∀ i ∈ [N ] , (4.1)

where C > 0 is a tradeoff parameter that controls the relative weight we put on the margin-crossing
penalty term ∑

i∈[N ] ξi. Note that the relaxation and penalization that we described above is not the
only possibility—there are many versions of soft-margin SVMs.

The tradeoff parameter C > 0 in Eq. (4.1) balances margin maximization and hyperplane
crossings. Recall that the geometric margin is 1/∥w∥2. As C increases, the penalty for hyperplane
crossings becomes more stressed, resulting in a smaller ∑

i∈[N ] ξi, i.e., fewer crossings, and a larger
∥w∥2, i.e., a smaller geometric margin.

Like for the hard-margin case, we can invoke the KKT conditions to derive quantitative results
for the soft-margin case.

Since all the constraint functions are linear, the constraint set is convex. Moreover, the objective
is a positive combination of the convex function 1

2∥w∥2
2 and the (linear) convex function ∑

i∈[N ] ξi,
so it is convex. So, the soft-margin SVM formulated as in Eq. (4.1) is a constrained convex problem.
To verify Slater’s condition, it is easy to see that w = 0, b = 0, ξ = 10 × 1 (1 is an all-one vector) is a
strictly feasible point.

4.2 Properties of soft-margin SVMs

Now we are ready to invoke the KKT conditions from Theorem 2.3. The Lagrangian function is

L(w, b, ξ, λ, π) = 1
2∥w∥2

2 + C
∑

i∈[N ]
ξi +

∑
i∈[N ]

λi(1 − ξi − yi(w⊺xi + b)) −
∑

i∈[N ]
πiξi. (4.2)

The KKT conditions are

stationarity : w =
∑

i∈[N ]
λiyixi,

∑
i∈[N ]

λiyi = 0, C1 = λ + π (4.3)
feasibility : yi(w⊺xi + b) ≥ 1 − ξi, ξi ≥ 0, λi ≥ 0, πi ≥ 0 ∀ i (4.4)

complementary slackness : λi(1 − ξi − yi(w⊺xi + b)) = 0, πiξi = 0 ∀ i (4.5)

We canmake several observations almost identical to the hard-margin case: w is a linear combination
of xi’s, support vectors come from both sides, and the margin is equal on both sides (marginal
hyperplanes are still of the form w⊺xi + b = ±1). Now, more on the support vectors, i.e., when
λi > 0 and so yi(w⊺xi + b) = 1 − ξi. There are two cases:
• ξi = 0: so yi(w⊺xi + b) = 1 and so the corresponding xi’s lie on one of the two marginal

hyperplanes {x : w⊺xi + b = ±1}, as in the hard-margin case.
• ξi > 0: so yi(w⊺xi + b) = 1−ξi and the corresponding xi’s are outliers—either correctly classified

but with small margins (i.e., when ξi ∈ (0, 1)) or misclassified (i.e., when ξi ∈ [1, ∞)). In these
cases, πi = 0 as πiξi = 0, and by stationarity λi = C.

5 Optimizing SVMs
Now, wewill focus on the computational issues around the standard soft-margin SVM as formulated
in Eq. (4.1). We do not follow the classical ideas that solve soft-margin SVMs by solving dual
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quadratic problems (e.g., as in the famous LIBSVM library [CL11] that is called by the SVC function in
scikit-learn); instead, we solve the unconstrained reformulation directly, that, when coupledwith
stochastic optimization methods, tends to be more scalable—as implemented in the SGDClassifier
function in scikit-learn.

5.1 Unconstrained reformulation of soft-margin SVMs

First, the constraints in Eq. (4.1) can be equivalently written as ξi ≥ max(0, 1 − yi(w⊺xi + b)) ∀i,
turning Eq. (4.1) into the equivalent form

min
w,b,ξ

1
2∥w∥2

2 + C
∑

i∈[N ]
ξi s. t. ξi ≥ max(0, 1 − yi(w⊺xi + b)) ∀ i ∈ [N ]. (5.1)

Next, we argue that, for any global minimizer (w, b, ξ), we must have ξi = max(0, 1 − yi(w⊺xi +
b)) ∀ i ∈ [N ]. Otherwise, there exists a certain j ∈ [N ] so that ξj > max(0, 1 − yj(w⊺xj + b)), but in
this case we can replace ξj with a smaller ξ′

j so that ξ′
j = max(0, 1 − yj(w⊺xj + b)) and the objective

becomes strictly smaller, contradicting the assumption that (w, b, ξ) is a global minimizer. This
implies that Eq. (5.1), and in turn Eq. (4.1), is equivalent to the unconstrained form of soft-margin
SVM:

min
w,b

1
2∥w∥2

2 + C
∑

i∈[N ]
max(0, 1 − yj(w⊺xj + b)). (5.2)

Figure 5: Illustration of
the zero-one loss and its
various approximations used
in machine learning (fig-
ure adapted from Fig 7.4
of [Moh18]).

Beforewediscuss how to solve the unconstrained form,
it is worth pondering on the formulation itself. Recall that
whenwe discussed formulating supervised learning prob-
lems at the beginning of the chapter on linear predictions,
we touched on the generic form of structural risk mini-
mization: for a training set {(xi, yi)}i∈[N ],

min
θ

1
N

∑
i∈[N ]

ℓ(yi, fθ(xi)) + R(θ), (5.3)

where θ is the parameter of the learning model fθ. The
formulation in Eq. (5.2) takes exactly this form: 1

2∥w∥2
2

is the regularization on the model parameter w, and the
terms max(0, 1 − yj(w⊺xj + b)) for all i’s are the individ-
ual losses. To see this, for binary classification, we are
interested in individual losses 1 {yifθ(xi) < 0}, assuming
that yi ∈ {+1, −1} and our actual classifier takes the form
sign(fθ(xi)). So, we can view max(0, 1 − yj(w⊺xj + b)) as
the Hinge loss (see Fig. 5) with respect to yi(w⊺xi + b), as

an approximation to the zero-one loss on it (i.e., 1 {yi(w⊺xi + b) < 0}). We will encounter other
losses later in this course.

5.2 Mini-batch stochastic gradient descent (SGD)

Now, to solve Eq. (5.2), which is unconstrained, we tend to think of the gradient descent method
that we learned earlier. There are two catches: (1) the z 7→ max(0, z) function is not differentiable
at 0; (2) N might be large in modern datasets. Here, issue (1) is not that serious, as we may never
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encounter these non-differentiable points during the optimization process. So we will treat it as if it
were differentiable4. Issue (2) is more intrinsic, and we need new ideas.

Although it is possible to implement (sub)gradient descent to solve Eq. (5.2), we take this
opportunity to introduce the powerful (mini-batch) stochastic gradient descent (SGD) method, a
workhorse for modern machine learning and deep learning, especially on large-scale datasets.

The central idea is the law of large numbers, which says that the sample average 1
n

∑
i∈[n] zi of

i.i.d. random variables z1, . . . , zn converges to its mean as n → ∞. Now consider an optimization
problem of the form

min
θ

1
n

∑
i∈[n]

f(θ; zi), (5.4)

where θ is the optimization variable, and zi’s are given data points that are drawn iid from a certain
underlying distribution D. Obviously, 1

n

∑
i∈[n] f(θ; zi) → Ez∼Df(θ; z) as n → ∞. To approximate

the gradient of Ez∼Df(θ; z), we can randomly draw a batch (i.e., set) of points J , where |J | is
hopefully way smaller than n, so that

∇θEz∼Df(θ; z) ≈ ∇θ
1

|J |
∑

i∈J
f(θ; zi) = 1

|J |
∑

i∈J
∇θf(θ; zi), (5.5)

where the right side is called a stochastic gradient. Then, whenever we need to use the deterministic
gradient in a gradient-descent-style algorithm, we replace it by a stochastic gradient. This leads
to the mini-batch SGD method, as summarized in Algorithm 1. In practice, randomly sampling

Algorithm 1 Mini-batch stochastic gradient descent (SGD) for solving
minθ

1
n

∑
i∈[n] f(θ; zi)

Input: initialization θ(0), stopping criterion (SC), iteration count k = 0
1: while SC not satisfied do
2: sample a random subset Jk ⊂ [n]
3: calculate a stochastic gradient ĝk

.= 1
|Jk|

∑
j∈Jk

∇θf(θ(k); zj)
4: decide a step size t(k)

5: make a step: θ(k+1) = θ(k) − t(k)ĝk

6: update iteration count: k = k + 1
7: end while

a mini-batch each time might still be expensive. So, people typically shuffle the training set and
take consecutive batches instead, as summarized in Algorithm 2—here, each pass over the whole
training set is called an epoch. Now we come to the step sizes and stopping criterion. In contrast
to the case of deterministic gradient descent, where we recommend the back-tracking line search
as a reliable adaptive step-size rule, we cannot do the same for mini-batch SGD as evaluating the
function value at each iteration would incur O(n) cost again—that we try to avoid. A general rule
of thumb is to use diminishing step sizes, e.g.,

t(k) = α

1 + βk
, t(k) = αe−βk, t(k) piecewise diminishing constant, (5.6)

where α, β are tunable parameters. The state-of-the-art step size schedules for SGD-based neural
network training can be found at

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate.
4For rigorous handling of such issues, we need tools from nonsmooth analysis, which can get very technical [CV20,

CP21].
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Algorithm 2 Practical mini-batch stochastic gradient descent (SGD) for solving
minθ

1
n

∑
i∈[n] f(θ; zi)

Input: initialization θ(0), stopping criterion (SC), iteration count k = 0, batch size B, epoch count
ℓ = 0

1: while SC not satisfied do
2: shuffle the index set [n] and divide it into consecutive batches of size B
3: for i ∈ {1, . . . , #batches} do
4: calculate the stochastic gradient ĝk based on the ith batch
5: decide a step size t(k)

6: make a step: θ(k+1) = θ(k) − t(k)ĝk

7: update iteration count: k = k + 1
8: end for
9: update epoch count: ℓ = ℓ + 1
10: end while

5.3 Mini-batch SGD for solving soft-margin SVMs

Now, when applying the mini-batch SGD algorithm to solve Eq. (5.2), to calculate a stochastic
gradient, one can take the deterministic gradient from the 1

2∥w∥2
2 term, plus a stochastic gradient

from the C
∑

i∈[N ] max(0, 1 − yj(w⊺xj + b)) term via sampling, i.e.,

ĝ =
[
w
0

]
− NC

|J |
∑

j∈J
1 {yj(w⊺xj + b) ≤ 1}

[
yjxj

yj

]
, (5.7)

where we assume that J is the mini-batch currently sampled.

6 Kernel methods
Although the soft-margin SVM described above allows non-linearly-separable data, it is still restric-
tive for complex data that might need nonlinear decision boundaries.

blue: positive class orange: negative class
black curve: x2 = x2

1 + x1—ideal decision boundary
positive and negative samples not linearly separable

Consider nonlinear mapping of the features:

[x1, x2] 7→ [x1, x2, x2
1],

the two classes become linearly separable in
the mapped feature space, as the curve
[1, −1, 1]⊺[x1, x2, x2

1] = 0 perfectly separates
them

Figure 6: Example: nonlinear feature mappings can make non-linearly-separable data
become linear separable in the mapped feature space.

On the other hand, nonlinear feature mappings, often into higher dimensional spaces, can make
non-linearly-separable data become linear separable in the mapped feature spaces, as illustrated in
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the quadratic example in Fig. 6: intuitively, by mapping features into collection of their monomials
and seeking linear separators in the mapped space, is equivalent to seeking nonlinear decision
boundaries defined by polynomial equations in the original space.

We can generalize the idea as follows.

map all points x1, . . . , xN ∈ Rd into Φ(x1), . . . , Φ(xN ) ∈ RD via a nonlinear mapping
Φ : Rd 7→ RD, and then seek a linear separator in the mapped feature space RD

For (approximate) linear separation to be possible, often D can be much greater than d, i.e., D ≫ d.
So, storing and computingwith the resulting Φ(x1), . . . , Φ(xN ) ∈ RD can be prohibitively expensive.
This calls for another idea: kernel functions. For any given kernel function K : Rd × Rd 7→ R, it
holds that

K(x, x′) =
〈
Φ(x), Φ(x′)

〉
∀ x, x′ ∈ Rd (6.1)

for a certain Φ. In other words, a kernel function K defines the inner product of every pair of points
in a certain mapped feature space, where the mapping Φ is induced by K itself. With this, we do
not need to define the nonlinear mapping Φ or compute and store the mapped points, but we can
compute the inner product of any mapped point pair.

6.1 Why inner products are sufficient for computation?

But why we only need to worry about inner products in the mapped feature space? Let us first
illustrate this using the soft-margin SVM.

Recall from Section 4.2 that any optimal w for the soft-margin SVM can be written as w =∑
i∈[N ] αixi for a certain α ∈ RN . Substituting this into the unconstrained form of the soft-margin

SVM in Eq. (5.2), we obtain that

min
α∈RN ,b

1
2

〈∑
i∈[N ]

αixi,
∑

i∈[N ]
αixi

〉
+ C

∑
i∈[N ]

max(0, 1 − yi(
∑

j∈[N ]
αjx⊺

j xi + b)) (6.2)

⇐⇒ min
α∈RN ,b

1
2

∑
i∈[N ],j∈[N ]

αiαjx⊺
i xj + C

∑
i∈[N ]

max(0, 1 − yi(
∑

j∈[N ]
αjx⊺

j xi + b)) (6.3)

⇐⇒ min
α∈RN ,b

1
2α⊺Gα + C

∑
i∈[N ]

max(0, 1 − yi(g⊺
i α + b)), (6.4)

whereG ∈ RN×N is defined as gij = x⊺
i xj , and gi is the i-th column ofG by our indexing convention.

Note that in the final form of Eq. (6.4), the only way we need to access the data points is through
their inner products, i.e., the matrix G.

This seems too special; we need KKT analysis to obtain the above for the soft-margin SVM.What
if we have nontrivial feature mappings? The following celebrated theorem answers this question.

Theorem6.1 (Representer theorem). Consider points {xi}i∈[N ] inRd and theirmapped features {Φ(xi)}i∈[N ]
in RD via a mapping Φ. Any optimization problem of the form

min
w

L(w⊺Φ(x1), · · · , w⊺Φ(xN )) + R(∥w∥2), (6.5)

where L is arbitrary and R : R+ 7→ R is monotonically nondecreasing, has an optimal solution5 that takes
the form w∗ =

∑
i∈[N ] αiΦ(xi) for a certain α ∈ RN .

5There could be other optimal solutions that do not take this form.
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Note that here the RD here can be generalized to Hilbert spaces, which we avoid to reduce the
technicality. Moreover, since we know that an optimal solution takes the form w∗ =

∑
i∈[N ] αiΦ(xi),

we can substitute this back to Eq. (6.5), and obtain that

min
α∈RN

L
(∑

i∈[N ]
αiΦ(xi)⊺Φ(x1), · · · ,

∑
i∈[N ]

αiΦ(xi)⊺Φ(xN )
)

+

R

(√∑
i∈[N ],j∈[N ]

αiαjΦ(xi)⊺Φ(xj)
)

, (6.6)

where it is again clear that the dependency on the data is only through inner products of the form
Φ(xi)⊺Φ(xj).

So, if we can compute the inner product ⟨Φ(x), Φ(x′)⟩ for every pair x, x′ through a certain
function K, i.e., ⟨Φ(x), Φ(x′)⟩ = K(x, x′). We can solve learning problems of the form Eq. (6.5).
This is the essence of kernel methods, or kernel tricks.

For example, suppose that we select a kernel K and create the Gram matrix G ∈ RN×N for
training points {xi}i∈[N ], we can derive the kernel version of soft-margin SVM as

min
α∈RN ,b

1
2α⊺Gα + C

∑
i∈[N ]

max(0, 1 − yi(g⊺
i α + b)), (6.7)

which is no different than Eq. (6.4). To make predictions with the model (α∗, b∗) after training, for
any test point x, ∑

i∈[N ]
α∗

i ⟨Φ(xi), Φ(x)⟩ + b∗ =
∑

i∈[N ]
α∗

i K(xi, x) + b∗. (6.8)

6.2 Examples of kernel functions

There are a few popularly used kernel functions in practice.
• linear kernel K(x, x′) = ⟨x, x′⟩, the simplest—no feature mapping (or identity feature map-

ping)
• polynomial kernel K(x, x′) = (c + ⟨x, x′⟩)k for a certain c > 0, where k is the degree of the

polynomial
• Gaussian (or radial basis function, RBF) kernel K(x, x′) = e− ∥x−x′∥2

2
2σ2 , where σ > 0 is the

bandwidth parameter
Among them, the Gaussian/RBF kernel is typically considered as the most powerful. The reason
is that the effective mapping Φ is actually into an infinite-dimensional space. To see this, we take
a simplified version and consider the kernel K(x, x′) = e−(x−x′)2/2 that operates only on scalar
features. We have

e−(x−x′)2/2 = e−x2/2e−x′2/2exx′ = e−x2/2e−x′2/2 ∑∞
k=0

(xx′)k

k! =
∑∞

k=0
e−x2/2xk

√
k!

e−x′2/2x′k
√

k!
, (6.9)

which implies that the mapping is Φ(x) = e−x2/2[1, x, x2/
√

2!, x3/
√

3!, . . . ].
One way to think about kernel functions is that they define pairwise similarities. This is clear for

the linear kernel, as from linear algebrawe know that the inner product of two vectorsmeasures their
similarities (perhaps after normalization by their respective lengths). Similarly, for the polynomial
and Gaussian kernels, the kernel values become larger when x and x′ get closer.

Page 14



Supplementary Notes for CSCI5525 Machine Learning: Analysis and Methods

6.3 Symmetric positive definite kernels

K has to satisfy certain conditions to be a valid kernel function, i.e., able to induce a Φ and a valid
inner product as described above. One sufficient condition is symmetric positive definiteness (SPD): K
is said to be symmetric positive definite if: 1) it is symmetric, i.e., K(x, x′) = K(x′, x) for all x, x′ ∈ Rd,
and 2)it is positive definite, i.e., for all m ∈ N and for all x1, . . . , xm, the Gram matrix [K(xi, xj)]ij
is positive semidefinite6.

There are several useful operation rules to help tell SPD kernels from elementary compositions
of SPD kernels.
• Summation: K1 + K2 is SPD if K1 and K2 are SPD.
• Product: K1K2 is SPD if K1 and K2 are SPD. For example, we know K(x, x′) = ⟨x, x′⟩ is SPD,

so is K(x, x′) = ⟨x, x′⟩ + c for any c ≥ 0, as ⟨x, x′⟩ + c = ⟨[x;
√

c], [x′;
√

c]⟩. So the polynomial
kernel K(x, x′) = (c + ⟨x, x′⟩)k for k ∈ N is an SPD kernel by the product rule.

• Pointwise limit: the limit K = limn→∞ Kn is SPD if all Kn’s are SPD.
• Power series composition: ∑∞

n=0 anKn is SPD if K is SPD, an ≥ 0 for all n, and K takes values
within the convergence radius of the power series ∑∞

n=0 anxn (this can easily be shown from the
previous three rules).

• Tensor product/summation: if K1 is an SPD kernel on Rd and K2 is an SPD kernel on Rd′ .
Then, both K1K2 and K1 + K2 are SPD kernels on Rd × Rd′ . As an application, recall that
K(x, x′) = e−(x−x′)2/2 is an SPD kernel on scalar features. Now consider the Gaussian kernel
with σ = 1 on Rd:

exp
(
−

∥∥x − x′∥∥2
2/2

)
=

∏d

i=1
exp

(
−(xi − x′

i)2/2
)
, (6.10)

which is a tensor product of the coordinate-wise SPD kernels, and thus an SPD kernel.

7 Beyond binary classification
Kernel methods can be integrated into numerous learning settings beyond binary classification,
which we briefly sample here.

7.1 Multiclass classification

Consider classification problems with K target classes, where K ≥ 3. A classic idea to solve such
problems is to reduce it to a sequence of binary problems, train binary classifiers for these problems
separately, and then derive a final decision rule based on these classifiers. The upside of such ideas is
simplicity, but the downside is the lack of synergies between these binary classifiers, as we explain
below. In contrast, modern multiclass classifiers, especially in deep learning, are typically trained
jointly.

One-vs-rest & one-vs-one approaches In the one-vs-rest7 approach, one trains K binary classifiers
separately, attempting to separate any particular class vs. the rest classes. In other words, one tries
to separate

6Yes, this is not a typo but an inconsistency of conventions between different fields: kernels and their positive
definiteness are notions commonly used in functional analysis and operator theory, whereas positive (semi)definiteness
of matrices in linear algebra and matrix analysis. Warning: different authors use different conventions of positive
definiteness in the kernel method literature; make sure you understand their conventions before trying to digest their
results.

7Or one-vs-all by some authors, which might sound a bit misleading.
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Figure 7: Illustration of the one-vs-rest and the one-vs-one approach on a synthetic 3-class
classification problem. The decision boundaries by the associated binary linear classifiers
are drawn as solid lines.

class 1 vs. non class 1 class 2 vs. non class 2 . . . class K vs. non class K,

as illustrated in Fig. 7 (left). The final decision rule is

arg maxℓ∈[K] fℓ(x), (7.1)

where, for each ℓ ∈ [K], the fℓ’s is the trained binary classifier which is assumed to output the
“confidence” that the current point x belongs to class ℓ.

In contrast, in the one-vs-one approach, one trains (K
2

) binary classifiers, trying to separate every
pair of classes, as illustrated in Fig. 7 (right). The final decision rule is typically through majority
voting, i.e., for any input x, the class receives the most votes by the (K

2
) classifiers is selected (ties

broken randomly, or maybe by aggregation of confidence scores).

Figure 8: The one-vs-rest
approach can be intrinsi-
cally suboptimal for multi-
class problems.

Although one-vs-rest is simple, there are several
issues about it: (1) incompatible or incomparable
confidence scores, as the classifiers are trained sep-
arately. This makes the decision rule as stated in
Eq. (7.1) problematic. Although in binary classifica-
tion we tend to think of the prediction output as ap-
proximating p(y|x)—class confidence, the reality may be
far off. This touches on the calibration issue, a topic
of intensive research; see, e.g., https://scikit-learn.
org/1.5/modules/calibration.html, or the In classifi-
cation subsection of https://en.wikipedia.org/wiki/
Calibration_(statistics); (2) imbalanced learning
refers to classification problems with different class fre-
quencies8. The one-vs-rest strategy introduces artificially
imbalanced learning problems, especially whenK is large.
Although heuristic methods such as reweighting and re-
sampling are popularly used to handle imbalanced learn-

8One can generalize the notion for regression and other learning settings as well.
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ing9, they can be very suboptimal [PTZ+22]; (3) suboptimality for certain scenarios. For example,
in Fig. 8, we have a 3-class problem where the 3 classes are perfectly separate as 3 spherical clusters.
Using the one-vs-rest approach with linear classifiers, we make at least 50% mistakes (achieved by
the red separator) when trying to separate class 2 vs classes 1 & 3, even though the other 2 classifiers
can be perfect; see Fig. 8 (top). On the other hand, consider the 3 green unit vectors w1, w2, w3 in
Fig. 8 (bottom) that pass through the centers of the 3 classes, respectively. Then, the decision rule
with 3 linear classifiers

arg maxi∈[3] w⊺
i x (7.2)

makes perfect prediction for the 3-class problem.
The one-vs-one approach is also not free of issues. The main one is its computational complexity

for large K, as one needs to train O(K2) binary classifiers. Also, if we need to break ties by the
aggregation of confidence scores, e.g., predictor outputs, we fall again to the calibration issue
alluded to above.

A joint multiclass SVM formulation Here, we describe an idea that performs multiclass learning
in a joint formulation, extending the idea of binary SVMs. We start with an ideal decision rule:

arg maxk∈[K] w⊺
kΦ(x) (7.3)

where the kernel mapping Φ : Rd → RD as always, W ∈ RD×K , and for brevity we omit the offset
term. Now, given the training set S = {(xi, yi)}i∈[N ], we have

yi = arg maxk∈[K] w⊺
kΦ(xi) ∀i ∈ [N ] ⇐⇒ w⊺

yi
Φ(xi) > maxk∈[K]\{yi} w⊺

kΦ(xi) ∀i ∈ [N ] (7.4)

So, assuming separability, we can formulate a feasibility problem

find W ∈ RD×K s.t. w⊺
yi

Φ(xi) − maxk∈[K]\{yi} w⊺
kΦ(xi) > 0 ∀i ∈ [N ]. (7.5)

Due to the scale ambiguity of the constraints in W , we can fix the scale, emulating the process we
derived the hard-margin SVM, as:

min
W ∈RD×K

∑
k∈[K]

∥wk∥2
2 s.t. w⊺

yi
Φ(xi) − maxk∈[K]\{yi} w⊺

kΦ(xi) ≥ 1 ∀i ∈ [N ], (7.6)

i.e., multiclass hard-margin SVM. For the corresponding soft-margin version, we again introduce
slack variables and obtain

min
W ∈RD×K ,ξ∈RN

∑
k∈[K]

∥wk∥2
2 + C

∑
i∈[N ]

ξi

s.t. w⊺
yi

Φ(xi) − maxk∈[K]\{yi} w⊺
kΦ(xi) ≥ 1 − ξi, ξi ≥ 0 ∀i ∈ [N ]. (7.7)

Similar to the binary case, we can also turn this one into an equivalent unconstrained form:

min
W ∈RD×K ,ξ∈RN

∑
k∈[K]

∥wk∥2
2 + C

∑
i∈[N ]

max
(
0, 1 − w⊺

yi
Φ(xi) + maxk∈[K]\{yi} w⊺

kΦ(xi)
)
, (7.8)

yielding an unconstrained form of multiclass soft-margin SVM. One can extend the representer theorem
to this case, and thereby implement the kernel trick, which we omit here.
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Figure 9: Illustration of support vector regression and the loss it uses

7.2 Support vector regression

For regression, we only consider scalar-valued outputs and assume the training setS = {(xi, yi)}i∈[N ].
In classification, we may expect yi = f(xi) for all i ∈ [N ], if f is powerful enough. But for regression,
this can hardly happen, and we typically only hope that yi ≈ f(xi) for all i ∈ [N ], or quantitatively
|yi − f(xi)| ≤ ε for all i ∈ [N ], for a small ε. If we choose a linear prediction model with a kernel
mapping Φ, we arrive at

min
w,b

1
2∥w∥2

2 s.t. |w⊺Φ(xi) + b − yi| ≤ ε ∀i ∈ [N ]. (7.9)

Now, the constraint is not surprising, but why do we still have the minw,b
1
2∥w∥2

2 term in the
objective? In other words, why is this a proper extension of the max-margin principle to the
regression setting? To resolve this, we need an alternative interpretation of themax-margin principle
in the classification setting. Consider our predictor in the mapped feature space, i.e., f(Φ(x)) =
w⊺Φ(x) + b, and the quantity

supΦ(x),Φ(x′)
|f(Φ(x)) − f(Φ(x′))|

∥Φ(x) − Φ(x′)∥2
= supΦ(x),Φ(x′)

|w⊺(Φ(x) − Φ(x′))|
∥Φ(x) − Φ(x′)∥2

≤ ∥w∥2∥Φ(x) − Φ(x′)∥2
∥Φ(x) − Φ(x′)∥2

= ∥w∥2. (7.10)

Here, the upper bound is achievable, e.g., by taking any pair of (x, x′) so that f(Φ(x)) = 1,
f(Φ(x′)) = −1, and Φ(x) − Φ(x′) is parallel to w (in other words, Φ(x) and Φ(x′) are support
vectors that are on the positive and negative marginal hyperplanes, respectively, and also their
difference is aligned with w). Obviously ∥Φ(x) − Φ(x′)∥2 = 2/∥w∥2—twice the geometric margin,
and here maximizing the margin is equivalent to minimizing ∥w∥2 = supΦ(x),Φ(x′)

|f(Φ(x))−f(Φ(x′))|
∥Φ(x)−Φ(x′)∥2

,
which measures the “flatness” of the function f(Φ(x)), or how quickly the output changes with
respect to changes to the input—reminding us of gradient: in fact,

∥∇f(Φ(x))∥2 = ∥w∥2. (7.11)
This interpretation carries over naturally to the regression setting. One can relax the error tolerance
ε by introducing slack variables, yielding the soft-margin version:

min
w,b,ξ

1
2∥w∥2

2 + C
∑

i∈[N ]
ξi s.t. |w⊺xi + b − yi| ≤ ε + ξi, ξi ≥ 0 ∀ ∈ [N ], (7.12)

9see, e.g., https://imbalanced-learn.org/stable/
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which is equivalent to the unconstrained formulation

min
w,b

1
2∥w∥2

2 + C
∑

i∈[N ]
max (0, |w⊺xi + b − yi| − ε). (7.13)

The soft-margin SVR is illustrated in Fig. 9: geometrically, we try to fit a 2ε-wide tube to the dataset,
whose orientation and position are determined by (w, b), while allowing a few outliers to stay
outside the tube. Here, these points on and outside the boundaries of the tube correspond to the
support vectors.

7.3 One-class SVM

Figure 10: Illustration of one-class SVM with spherical (left) and hyperplane (right)
decision boundary, respectively. Figure adapted from Fig 1 of [GCH15].

One-class problems sound very strange, but they are prevalent in practice. For example:
• novelty detection We hope to detect future points that are substantially different from all

points that we have seen so far, i.e., detection of rare events
• verification For example, to verify an individual is the person they claim to be by comparing

their facial image against a dataset of their past facial images, i.e., face verification/identification
• binary classification with an underrepresented class Intuitively, we need sufficient represen-

tation for both classes to perform reasonable binary classification. When one class is deemed
poorly represented, modeling the dominant class only might be a better choice.
There are numerous ideas for one-class problems; here, we focus on kernel-based ones. A

popular idea: after a kernel mapping, the observed one-class samples are concentrated in a small
region. Fig. 10 illustrates a couple of possibilities: in the mapped feature space, the majority of
samples are enclosed inside a small sphere (left), or a half-space that is away from the origin.

For the former, a natural formulation is

minc,R R2 s.t. |Φ(xi) − c| ≤ R2 ∀ i ∈ [N ], (7.14)

with a soft-margin version

minc,R,ξ R2 + C
∑

i∈[N ]
ξi s.t. |Φ(xi) − c| ≤ R2 + ξi, ξi ≥ 0 ∀ i ∈ [N ]. (7.15)
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For the latter, a natural formulation is

minw
1
2∥w∥2

2 s.t. w⊺Φ(xi) ≥ 1 ∀ i ∈ [N ], (7.16)

with a soft-margin version

minw
1
2∥w∥2

2 + C
∑

i∈[N ]
ξi s.t. w⊺Φ(xi) ≥ 1 − ξi, ξi ≥ 0 ∀ i ∈ [N ], (7.17)

or equivalently

minw
1
2∥w∥2

2 + C
∑

i∈[N ]
max (0, 1 − w⊺Φ(xi)). (7.18)

8 Kernel approximation (optional)

Further reading
Chapters 15–16 of [SSS14] and Chapters 5–6 of [Moh18] are our main references. The two mono-
graphs [SS02, JST04] are definitive references on SVMs and kernel methods; see also the review
paper [HSS08]. [HUL01, SPB04] are excellent textbooks on convex analysis and optimization that
are ideal for self-study.

Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected, and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.

A Proof of Lemma 1.1
We will first derive a general result on the ℓ2 distance between any point x0 and any subspace S.

Let us start with linear subspaces. Let S = {V α : α ∈ Rk} be k-dimensional linear subspace in
Rd, i.e., V ∈ Rd×k is a basis for S. Then, for any point x0 ∈ Rd, the ℓ2 distance between x0 and S is
defined as

dℓ2(x0, S) .= min
x∈S

∥x0 − x∥2 = min
α∈Rk

∥x0 − V α∥2. (A.1)

Obviously, in terms of finding a global minimizer, we can consider an equivalent problem
min
α∈Rk

f(α) .= ∥x0 − V α∥2
2. (A.2)

This is a least-squares problem, and V has full column rank. So there is a unique global minimizer
α0. First-order optimality condition yields

V ⊺(V α0 − x0) = 0 =⇒ α0 = (V ⊺V )−1V ⊺x0, (A.3)
i.e., xV

.= V α0 = V (V ⊺V )−1V ⊺x0 ∈ S is the nearest point to x0 on S as measured by the ℓ2
distance, and the vector x0 − xV is orthogonal to S, or equivalently, x0 − xV is a normal direction
for S; see Fig. 11. So

dℓ2(x0, S) = ∥x0 − xV ∥2 =
∥∥∥(

I − V (V ⊺V )−1V ⊺
)
x0

∥∥∥
2
. (A.4)
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Figure 11: Geometry of orthoprojectors
in Euclidean space. V and W together
induce an orthogonal decomposition of
any given point x0.

Here, xV is the orthogonal projection of x0 onto
S, and PV

.= V (V ⊺V )−1V ⊺ is called the
orthogonal projector, as xV = PV x0. Simi-
larly, if W ∈ Rd×(d−k) spans the orthogo-
nal subspace S⊥, projection of x0 onto S⊥ is
xW = PW x0 = W (W ⊺W )−1W ⊺x0. It is
clear we can also write

dℓ2(x0, S) =
∥∥∥W (W ⊺W )−1W ⊺x0

∥∥∥
2
. (A.5)

What happens for affine subspaces? Now,
suppose that S is an affine subspace and s0 is
an arbitrary point on S. For a given point x0,
it holds that

dℓ2(x0, S) = min
x∈S

∥x0 − x∥2 = min
x∈S

∥(x0 − s0) − (x − s0)∥2 = min
x′∈S′

∥∥(x0 − s0) − x′∥∥
2, (A.6)

where S′ is the linear subspace associated with S. Invoking the above result for linear subspaces,
we obtain

dℓ2(x0, S) =
∥∥∥W (W ⊺W )−1W ⊺(x0 − s0)

∥∥∥
2
, (A.7)

where W is a basis for the orthogonal subspace of S′.
Now we specialize the result to hyperplanes. Let L = {x : ⟨w, x⟩ + b = 0}, where b = − ⟨w, s0⟩

for an arbitrary point s0 ∈ S. For any x0, invoking the result of Eq. (A.7), we obtain

dℓ2(x0, S) =
∥∥∥w∥w∥−2

2 w⊺(x0 − s0)
∥∥∥

2
= |w⊺x0 − w⊺s0|

∥w∥2
= |w⊺x0 + b|

∥w∥2
, (A.8)

completing the proof.
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