
HOMEWORK SET 5
CSCI5525 Machine Learning: Analysis and Methods (Fall 2024)

Due 11:59 pm, Dec 23 2024
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for all problems intoONE Jupyter notebook file (i.e., .ipynb
file) with cell execution outputs. Your submission to Gradescope should include the single PDF
and the one notebook file—please DO NOT zip them! Please assign page(s) to each question to
help reduce the TA’s navigation time. If your notebook submission does not display properly on
Gradescope due to a large file error, please try to remove images and/or figures from your cell
outputs and re-upload it. No late submission will be accepted. For each problem, you should
acknowledge your collaborators—including AI tools, if any.
About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Dimension reduction; 7.5/15)

(a) In our geometric view of PCA, we try to find a best-fitting low-dimensional subspace to our
dataset. Mathematically, let X ∈ RN×d be our data matrix, and X the centered version. PCA
tries to solve the following problem

minU∈Rd×r:U⊺U=I

1
N

∑
i∈[N ]

∥xi − UU⊺xi∥2
2 , (1)

where r is our target dimension for the subspace. We know that the optimal solution is the U
that collects the top r right singular vectors of X (or equivalently, the top r eigenvectors of
1
N X

⊺
X).

Instead of performing the centering step separately, we can also try to fit an r-dimensional
affine subspace directly. Since any affine subspace can be represented as {Uz + v : z ∈ Rr}
for some orthonormal U ∈ Rd×r and some v, we can formulate the learning problem as

minU∈Rd×r:U⊺U=I, zi∈Rr ∀i,v∈Rd

1
N

∑
i∈[N ]

∥xi − v − Uzi∥2
2 . (2)
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(i) Prove that for any fixed U , an optimal solution for Eq. (2) is v = 1
N

∑
i∈[N ] xi and

zi = U⊺(xi − v), i.e., solving Eq. (2) is equivalent to centering as data preprocessing and
then solving Eq. (1). (1/15)

(ii) Consider d = 50, N = 200, and r = 10. Fix a random seed, and generate data as
follows: (1) generate a subspace basis A0 ∈ Rd×r with iid N(0, 1/r) entries; (2) gen-
erate a coefficient matrix Z0 ∈ Rr×N with iid N(0, 1) entries; (3) generate the data as
X = (A0Z0 + N)⊺, where N ∈ Rd×N contains iid N(0, 0.05) entries. Implement PCA
(including centering, but no variance normalization) on X to obtain your estimation
of the subspace basis, call it A1 ∈ Rd×r. To compare the two subspaces represented by
A0 and A1, a reasonable metric is

d(span(A1), span(A0)) = ∥A1A†
1 − A0A†

0∥F /∥A0A†
0∥F , (3)

where for any matrix M , M † denotes its pseudoinverse (https://en.wikipedia.org/
wiki/Moore%E2%80%93Penrose_inverse). Here, A1A†

1 and A0A†
0 are the projectors on

the subspaces A1 and A0 span, respectively, and ∥A0A†
0∥F performs proper normaliza-

tion of the subspace distance. Report your d(span(A1), span(A0)); ideally, it should be
close to 0. (1/15)

(iii) Linear autoencoders are also known to perform PCA. Consider the following formulation
of a linear autoencoder:

min
A∈Rd×r

1
N

∑
i∈[N ]

∥xi − AA⊺xi∥2
2 , (4)

where A⊺ denotes the linear encoder and A denotes the linear decoder, and our encoder
and decoder are symmetric with respect to each other (i.e., the transpose of each other).
Implement the gradient descent with line search to solve Eq. (4) with the same data X
and X you generate in (ii), and obtain an estimate of the subspace basis A2. Report
your d(span(A2), span(A0)); is it close to 0? (1/15)

(iv) Now keep your A0 and Z0 in (ii), but change to noise model to Laplace noise (https:
//en.wikipedia.org/wiki/Laplace_distribution), i.e., X ′ = (A0Z0 + L)⊺, where L
contains iid Laplace(0, 0.15) entries. Due to the long-tailed nature of Laplace noise, the
noise magnitudes on certain coordinates can be substantially larger than the rest. In
this case, it is appropriate to switch the loss in Eq. (2) to a robust loss, say the ℓ1 loss,
yielding:

minU∈Rd×r:U⊺U=I, zi∈Rr ∀i,v∈Rd

1
N

∑
i∈[N ]

∥xi − v − Uzi∥1 . (5)

However, unlike for Eq. (2) that we can eliminate zi’s and v (as proved in (i)), here,
we have to solve the three groups of variables altogether. To solve Eq. (5), we can
ignore the U⊺U = I , and consider alternatingly minimizing over the two groups of
variables: U vs. z′

is, v—when we fix one group, the objective function is convex with
respect to the other group. So, we can implement the alternating minimization algorithm
(see, e.g., https://www.mit.edu/~rakhlin/6.883/lectures/lecture07.pdf for more
information), and solve the two convex subproblems with say, the CVXPY package
(https://www.cvxpy.org/; we have used it in our earlier HW sets). Implement the
suggested algorithm, orwhatever numerical algorithm you like to solve Eq. (5) to yield
your subspace estimate A3, and report your d(span(A3), span(A0)). For comparison,
also apply the plain PCA on X ′ to produce another subspace estimate A4; report your
d(span(A4), span(A0)). Do what you observe? (1.5/15)
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(b) The famous Johnson–Lindenstrauss (J-L) lemma states: for any ε ∈ (0, 1) and any N set
S = {xi}i∈[N ] ⊂ Rd, there exists a matrix A ∈ Rd′×d for every d′ ≥ C log N/ε2 (C > 0 is a
universal constant) so that

(1 − ε) ∥u − v∥2
2 ≤ ∥Au − Av∥2

2 ≤ (1 + ε) ∥u − v∥2
2 ∀u, v ∈ S, (6)

(1 − ε) ∥u + v∥2
2 ≤ ∥Au + Av∥2

2 ≤ (1 + ε) ∥u + v∥2
2 ∀u, v ∈ S, (7)

where the second line is not typically stated in the J-L lemma, but can be proved easily using
a very similar argument to that for the first line. In particular, a random draw iid Gaussian
matrix 1√

d′ G satisfies the property with very high probability.

Now, assume that all points inside S have unit norm, i.e., ∥xi∥2 = 1 ∀i ∈ [N ]. Show that for
any d′ ≥ C log N/ε2, we can also construct a matrix B so that

|⟨Bu, Bv⟩ − ⟨u, v⟩| ≤ ε ∀u, v ∈ S. (8)

(Hint: consider the identity 4 ⟨x, x′⟩ = (∥x + x′∥2
2 − ∥x − x′∥2

2) that holds for arbitrary x
and x′ in Rd.) (1/15)

(c) In the ISOMAP method for nonlinear dimension reduction, we need to turn a Euclidean
distance matrix into a similarity matrix. Let X ∈ RN×d be the data matrix (i.e., we have N
points in Rd), and let X∗ = X − 1

N 11⊺X be the centered version of X (1’s are all-one vectors
of appropriate dimensions). Moreover, let D ∈ RN×N denote the squared Euclidean distance
matrix, i.e., dij = ∥xi − xj∥2

2, and write G = X⊺X . Our goal is to write G∗ .= (X∗)⊺X∗ as a
function of D.

(i) Can you represent G∗ as a function of G? (0.5/15)

(ii) Combine (i) and the fact that gij = 1
2

(
∥xi∥2

2 + ∥xi∥2
2 − dij

)
, ∀i, j to show that

g∗
ij = −1

2

(
dij − 1

N
di1 − 1

N
1⊺dj + 1

N2 1⊺D1
)

. (9)

(1/15)

(iii) Show that G∗ = −1
2

(
I − 1

N 11⊺
)

D
(
I − 1

N 11⊺
)
. (0.5/15)

Problem 2 (Clustering; 6/15)

(a) The classical k-means algorithm can be viewed as an alternating minimization algorithm to
solve

minµ1,...,µK , M∈{0,1}N×K ,M1=1
1
N

∑
i∈[N ]

∑
k∈[K]

mikd (xi, µk) . (10)

Here, M ∈ {0, 1}N×K is the cluster-assignmentmatrix, and ∀i, k, mik = 1meansxi is assigned
to cluster k. The constraint M1 = 1 ensures that each point is only assigned to one cluster.
Consider the k-medoids variant of k-means, which requires the cluster centroids µ1, . . . , µK

come from the dataset S = {xi}i∈[N ], not from outside. Change the formulation in Eq. (10)
to reflect this, and also derive an alternatingminimization algorithm to solve the k-medoids
problem. (1/15)
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(b) In spectral clustering, the graph is represented by a weight/similarity matrix W ∈ RN×N (N
points are assumed), whose entries are large when the connection between the corresponding
nodes are strong. A critical quantity is the graph Laplacian:

L = D − W , D
.= diag(W 1) : degree matrix. (11)

(i) A crucial identity we use to derive the final learning objective in spectral clustering is

∀v, v⊺Lv = 1
2

∑
i∈[N ],j∈[N ]

wij(vi − vj)2. (12)

Show it! (1/15)
(ii) Assume that all entries of W are nonnegative, i.e., W ≥ 0. Prove that L is positive

semidefinite, and also that 0 is an eigenvalue of L. (1/15)
(iii) Suppose there are exactly K ≤ N connected subgraphs. It can be shown that L has

exactly K zero eigenvalues and there are K eigenvectors exactly indicate the cluster
memberships of all data points. If we obtain such eigenvectors, we are done. But,
when we have K equal eigenvalues, all vectors from the corresponding K-dimensional
subspace are valid eigenvectors, so our eigensolver may not return the ones we like. Let
H∗ ∈ RN×K be the ideal eigenvectors, and Ĥ the one we actually obtain. It must hold
that H∗ = ĤR for an unknown rotation matrix R ∈ RK×K , with R⊺R = QR⊺ = I .
Show that for any two vectors u, v ∈ RK , ∥(u − v)R∥2 = ∥u − v∥2, and thereby explain
why the subsequent k-means step with ℓ2 distance on the rows of Ĥ makes sense.
(1/15)

(c) In the mean-shift algorithm for clustering, the underlying density is estimated via kernel
density estimation that typically takes the form

p̂(x) = 1
N

∑
i∈[N ]

K(∥x − xi∥2), (13)

where K is a smoothing kernel that satisfies
∫

x K(∥x − xi∥2) dx = 1 for all i ∈ [N ] so that
p̂(x) is a valid density function. Consider the kernel

K(
∥∥x − x′∥∥

2) = cd max
(
0, 1 −

∥∥x − x′∥∥2
2

)
, (14)

where cd is a universal constant to ensure
∫

x cd max
(
0, 1 − ∥x − x′∥2

2

)
dx = 1. Derive the

key update formula for mean-shift with this kernel. (1/15)

(d) In Rd, consider mixture modeling with K multivariate Bernoulli components, i.e.,

p(x; µ1, . . . , µK) =
∑

k∈[K]
wk

∏
j∈[d]

µ
xj

kj (1 − µkj)1−xj , (15)

i.e., for each mixture component, the d coordinates are assumed to be independent for simplic-
ity. Derive an EM style algorithm for fitting this mixture model to a dataset S = {xi}i∈[N ]
using the principle of maximum likelihood estimation. (1/15)
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Problem 3 (Generative modeling; 1.5/15) Consider a transformation x = f(z) and its inverse
z = g(x).

(a) By differentiating both sides of x = f ◦ g(x) with respect to x, show that Jf (g(x))Jg(x) = I ,
where J denotes Jacobian matrix (refer to our notes on calculus review); (0.5/15)

(b) Given the density function of z as pz(z), the change-of-variable formula reads

px(x) = pz(g(x)) |det Jg(x)| . (16)

Show that we can also write it as

px(x) = pz(g(x)) |det Jf (z)|−1 . (17)

(Hint: the determinant of the product of two square matrices is the product of their
determinants.) (0.5/15)

(c) Assume that the entries inside z ∈ Rd are iid, and each follows a half-normal distribution
(https://en.wikipedia.org/wiki/Half-normal_distribution), i.e., ∀j ∈ [d], zj ≥ 0 and
p(zi) = 2√

2π
e−z2

j /2. Let x = z2, where the square is taken elementwise. Derive the probability
density function for x. (0.5/15)
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