
HOMEWORK SET 3
CSCI5525 Machine Learning: Analysis and Methods (Fall 2024)

Due 11:59 pm, Nov 30 2024
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for all problems intoONE Jupyter notebook file (i.e., .ipynb
file) with cell execution outputs. Your submission to Gradescope should include the single PDF
and the one notebook file—please DO NOT zip them! Please assign page(s) to each question to
help reduce the TA’s navigation time. If your notebook submission does not display properly on
Gradescope due to a large file error, please try to remove images and/or figures from your cell
outputs and re-upload it. No late submission will be accepted. For each problem, you should
acknowledge your collaborators—including AI tools, if any.
About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal sign .= means
defining.

Problem 1 (Learning with finite hypothesis class; 4.5/15) Consider an input space X ∈ Rd,
output space Y = {+1, −1}, i.e., a binary classification problem, and a hypothesis class H that
consists of a finite number of functions mapping from X to {+1, −1}.

In class, we showed the following result for the realizable cases: for any ε ∈ (0, 1), any δ ∈ (0, 1),
any labeling function f∗ : X → {+1, −1}, and any distribution DX on X , if the realizability
assumption holds, i.e., there exists an h∗ ∈ H so that R(h∗) = 0 where R(·) denotes the risk, every
predictor hS returned by the ERM (i.e., empirical risk minimization) rule satisfies

P [R(hS) ≥ ε] ≤ δ (here, P [·] means the probability of a certain event happens) (1)

over the iid drawing of a training set S of size N , provided that N ≥ ε−1 log(|H| δ−1), or equivalently,
every predictor hS returned by the ERM rule satisfies

P
[
R(hS) ≤ 1

N
log |H|

δ

]
≥ 1 − δ. (2)
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(a) To prove the result as stated, we have used the union bound, a celebrated result widely used
in probability analysis: for any two events A, B, P(A ∪ B) ≤ P(A) + P(B).
(i) Prove the union bound using the fact that P(A ∪ B) = P(A) + P(B) − P(A ∩ B); When is

the upper bound in the union bound tight, i.e., P(A ∪ B) = P(A) + P(B)? (0.5/15)
(ii) Prove that for any integer P ≥ 1 and events A1, . . . , AP , P(

⋃
p∈[P ] Ap) ≤

∑
p∈[P ] P(Ap).

(0.5/15)
(b) Now consider the problem of rolling two six-sided dice. Let A1 be the event that the first die

shows a 6, and A2 be the event that the second die shows a 6.
(i) Estimate P(A1 ∪ A2) using the union bound; (0.5/15)
(ii) Calculate the exact probability P(A1 ∪ A2). How large is the gap between the upper

bound obtained in (i) and the exact probability you get here? (0.5/15)

(c) Let Hbol be the set of all Boolean functions {0, 1}k 7→ {0, 1}, i.e., X = {0, 1}k (i.e., all binary
strings of length k) and Y = {0, 1}, and f∗ an arbitrary fixed Boolean function which is the
true labeling function. For given ε, δ ∈ (0, 1), what’s the size of the training set we need to
make sure that P [R(hS) ≥ ε] ≤ δ, where hS ∈ Hbol is any predictor returned by the ERM rule?
(0.5/15)

(d) Due to the Hoeffding’s inequality, for any fixed predictor h : X → {+1, −1} and any δ ∈ (0, 1),

P

∣∣∣R(h) − R̂S(h)
∣∣∣ ≤

√
log(2/δ)

2N

 ≥ 1 − δ (3)

over the iid drawing of a training set S of size N . Now, imagine tossing a biased coin that
lands heads with probability p, and let our predictor h be the one that always guesses tails.
(i) What’s the risk R(h)? (0.5/15)
(ii) Set δ = 0.02. How large does N need to be to ensure that the empirical risk R̂(h) differs

from the risk R(h) by no more than 0.03? (0.5/15)
(e) After lifting the realizability assumption, we derived the following result in class: assume that

the loss ℓ is bounded in [0, 1]. For any ε ∈ (0, 1), any δ ∈ (0, 1), and any distribution DX ×Y on
X × Y , every predictor hS returned by the ERM rule satisfies

P
[∣∣∣R(h) − R̂(h)

∣∣∣ ≤ ε ∀h ∈ H
]

≥ 1 − 2 |H| exp(−2Nε2), (4)

or equivalently,

P

∣∣∣R(h) − R̂(h)
∣∣∣ ≤

√
log(2 |H| /δ)

2N
∀h ∈ H

 ≥ 1 − δ. (5)

Using these results, as well as any relevant results stated above, to solve the following contrived
problem.
Assume that in the US Senate, laws are proposed in a random fashion independently and
identically according to some distribution D determined by an unknown group of senators.
Any law proposal (i.e., bill) is to be debated and voted on in the Senate, with a Yes/No
outcome. Suppose that there is a pool of H = 2, 500 independent law experts who can predict
whether a law proposal can be passed or not in the Senate.
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(i) Select an expert from H who has consistently predicted correctly for the last N = 200
law proposals. What’s the probability that this expert incorrectly predicts the outcome
of the next law proposal? A reasonable upper bound is fine. What’s the value of the
bound with 95% confidence, i.e., when δ = 0.05? (0.5/15)

(ii) Assume now that we select an expert from H who, for the past N = 200 law proposals,
has predicted incorrectly 20 times. What is the value of the new bound? (0.5/15)

Problem 2 (Learning with infinite hypothesis class with Rademacher complexity; 7/15) For
cases with a finite hypothesis class and a bounded loss, the results stated in 1(e) are sufficiently
general and powerful. However, for learning settings with an infinite hypothesis class, we need to
measure the effective complexity of the hypothesis class through, e.g., Rademacher complexity, VC
dimensions, growth functions, and so on.

For any set A ⊂ Rd, the Rademacher complexity of A is defined as

RC(A) .= 1
d
Er∼iidRad sup

a∈A
⟨r, a⟩ , (6)

where Rad denotes the Rademacher distribution (https://en.wikipedia.org/wiki/Rademacher_
distribution).

Given a hypothesis class H, a training set S = {zi}i∈[N ], a predictor h ∈ H, and a loss ℓ, we write
ℓ ◦ H .= {ℓ ◦ h : h ∈ H}, (ℓ ◦ h)[S] .= [ℓ(h, z1), . . . , ℓ(h, zN )], and (ℓ ◦ H)[S] .= {(ℓ ◦ h)[S] : h ∈ H}.
The empirical Rademacher complexity of ℓ ◦ H is defined as

R̂CS (ℓ ◦ H) .= RC((ℓ ◦ H)[S]) = 1
N

Er∼iidRad sup
h∈H

⟨r, (ℓ ◦ h)[S]⟩ , (7)

i.e., the Rademacher complexity of the set (ℓ ◦ H)[S]. Moreover, the Rademacher complexity of ℓ ◦ H
is the expectation of the empirical Rademacher complexity, where the expectation is taken over the
randomness of the training set S:

RCN (ℓ ◦ H) .= ES∼DN
Z

R̂C ((ℓ ◦ H)[S]) . (8)

(a) First, we study several properties of the Rademacher complexity.
(i) nonnegativity The famous Jensen’s inequality says that: for any random vector v taking

values in a convex set C ∈ Rd and any convex function f : Rd → R defined over C,
f(Ev) ≤ Ef(v). (9)

Use Jensen’s inequality to prove that the empirical Rademachar complexity R̂CS (ℓ ◦ H)
is always non-negative, regardless of the ℓ and H. (Hint: review operation rules of
convex functions) (1/15)

(ii) monotonicity Assume that H1 ⊂ H2. Prove R̂CS (ℓ ◦ H1) ≤ R̂CS (ℓ ◦ H2). (0.5/15)
(iii) summation Prove that R̂CS (ℓ ◦ H1 + ℓ ◦ H2) = R̂CS (ℓ ◦ H1) + R̂CS (ℓ ◦ H2) for any

two hypothesis classes H1, H2. (0.5/15)
(iv) affine transform For real numbers a, b, consider a(ℓ ◦ H) + b. Prove that

R̂CS (a(ℓ ◦ H) + b) = |a| R̂CS (ℓ ◦ H) . (10)
(Hint: r and −r have the same distribution for r ∼iid Rad, so for any function f(r),
Er∼iidRadf(r) = Er∼iidRadf(−r).) (1/15)
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(v) Talagrand’s contraction lemma1 Let the loss ℓ : R → R be an L-Lipschitz function, i.e.,
|ℓ(a) − ℓ(b)| ≤ L |a − b| for all a, b ∈ R. It holds that

R̂CS (ℓ ◦ H) ≤ L · R̂CS (H) . (11)

In other words, if the predictors are scalar-valued and the loss ℓ is a Lipschitz function, we
do not need toworrymuch about ℓ, but we can focus on estimating R̂CS (H), whichmakes
the measure of complexity relatively independent of the loss chosen—more intuitive.
Now, consider two hypothesis classes,

H1
.= {x 7→ σ(u⊺x) : ∥u∥2 ≤ γ} where σ(z) = 1/(1 + e−z) (12)

H2
.= {x 7→ s(u⊺x) : ∥u∥2 ≤ γ, s ∈ {+1, −1}} . (13)

Make use of the Talagrand’s contraction lemma to derive an upper bound of R̂CS (H1) in
terms of R̂CS (H2). (1/15)

(b) As mentioned in class, compared to the Rademacher complexity, Gaussian width/complexity
of a set A ⊂ Rd replaces the iid Rademacher vector with an iid Gaussian vector, i.e.,

G (A) .= 1
d
Eg∼iidN(0,1) sup

a∈A
⟨g, a⟩ . (14)

These two complexity measures are closely related and can be shown that for any set A ⊂ Rd,√
2
π

RC (A) ≤ G (A) ≤ 2
√

log d RC (A) . (15)

But the Gaussian complexity may be easier to estimate in most cases, due to the rich collection
of results on Gaussian random processes in the literature; see, e.g., [Ver18].
To define the Gaussian complexity of a hypothesis class, we simply emulate what we do for
the Rademacher complexity of a hypothesis class, i.e., to have quantities such as ĜS(ℓ ◦ H)
and GN (ℓ ◦ H). Also, all the properties that we prove in (a) for Rademacher complexities also
hold for Gaussian complexities.
Given N data points {xi}i∈[N ], or in matrix form X ∈ RN×d, provide an upper bound for
the empirical Gaussian complexity of the set of linear functions with bounded ℓ2 norm (i.e.,
Hℓ2

.= {x 7→ ⟨w, x⟩ : ∥w∥2 ≤ 1}), which boils down to upper bounding
1
d
Eg∼iidN(0,1) sup

∥w∥2≤1
⟨Xw, g⟩ . (16)

(Hint: You can emulate the process of upper bounding the empirical Rademacher com-
plexity ofHℓ2 in the proof of Lemma 26.10 (Section 26.2) of the book [SSBD14]2; Jensen’s in-
equality implies that for any function f and randomvariablev,Ev ∥f (v)∥2 ≤ Ev ∥f (v)∥2

2)1/2.
(1.5/15)

(c) Similarly, provide a reasonable upper bound of the empirical Gaussian complexity of Hℓ∞
.=

{x 7→ ⟨w, x⟩ : ∥w∥∞ ≤ 1}, i.e., the bounded ℓ∞ case. (Hint: The proof of Lemma 26.11
(Section 26.2) in [SSBD14] is helpful. ) (1.5/15)

1Due to the famous mathematician and Abel Prize laureate Michel Talagrand (https://en.wikipedia.org/wiki/
Michel_Talagrand).

2Available online: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
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Problem 3 (Learning with infinite hypothesis class with the growth function and the VC
dimension; 3.5/15) For binary classification problems, the growth function and the VC dimension
are useful alternative complexity measures that can be easier to estimate than the Rademacher
complexity.

Consider S = {xi}i∈[N ], h(S) .= [h(x1), . . . , h(xN )], and H(S) .= {h(S) : h ∈ H}. The growth
function (also called the shattering coefficient) of H, as a function of N (for any integer N ≥ 1), is
defined as

ΠH(N) = max
S:|S|=N

|H(S)| . (17)

In other words, if we call each distinct binary labeling h(S) of S a dichotomy, the growth function
counts the number of distinct dichotomies realizable by H. Clearly, ΠH(N) ≤ 2N , as there is a total
of 2N dichotomies on an S with |S| = N .

We say that a set of points S is schattered by a hypothesis class H, if each dichotomy on S can be
realized by a certain h ∈ H, that is, if H realizes all possible dichotomies of S. The VC dimension of
H, denoted as VCdim(H), is the size of the largest set that can be shattered by H, or equivalently,

VCdim(H) = max
{

N : ΠH(N) = 2N
}

. (18)

Obviously, ΠH(N) < 2N for any N > VCdim(H). Hence, to prove VCdim(H) = d, one needs to show
that

• there exists a set of size d that can be shattered by H, and
• no set of cardinality d + 1 can be shattered by H.

(a) Consider the set of decision stumps in R, i.e., H1
DS

.= {x 7→ b sign (x − θ) : θ ∈ R, b ∈ {±1}}.
What’s ΠH1

DS
(N), and what’s VCdim(H1

DS)? (1/15)

(b) Let H be a finite hypothesis class. Prove that VCdim(H) ≤ ⌊log2 |H|⌋. (0.5/15)
(c) Consider hypothesis classes A and B, both having finite VC-dimensions, say VCdim(A) = dA

and VCdim(B) = dB. Let C = A ∪ B.
(i) Prove that ΠC(N) ≤ ΠA(N) + ΠB(N). (0.5/15)
(ii) Sauer’s lemma states this: for a hypothesis class H with VCdim(H) = d. For any integer

N ≥ 1, ΠH(N) ≤
∑d

i=0
(N

i

). Use Sauer’s lemma to show that for N ≥ dA + dB + 2,
ΠC(N) < 2N , and thereby give an upper bound on VCdim(C). (0.5/15)

(d) Provide an upper bound of R̂CS(H) where HHC =
{

x 7→ sign (⟨w, x⟩ + b) : w ∈ Rd, b ∈ R
}
,

i.e., the set of hyperplane classifiers. (Hint: You may want to use these facts: (1) for
any H consisting of binary classifiers, R̂CS(H) ≤

√
2 log2 ΠH(N)/N ; (2) For any H with

VCdim(H) = d, ΠH(N) ≤ (eN/d)d for all N ≥ d; (3) VCdim(HHC) = d + 1. ) (1/15)
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