
HOMEWORK SET 1
CSCI5525 Machine Learning: Analysis and Methods (Fall 2024)

Due 11:59 pm, Oct 06 2024
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each problem into a separate Jupyter notebook file (i.e.,
.ipynb file). Your submission to Gradescope should include the single PDF and all notebook
files—please DO NOT zip them! No late submission will be accepted. For each problem, you
should acknowledge your collaborators—including AI tools, if any.
About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.
Reminder about notations Wewill use small letters (e.g., u) for scalars, small boldface letters (e.g.,
a) for vectors, and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting)
means its i-th row as a row vector, and aj (subscripting) means the j-the column as a column vector,
and aij means its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional
real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal sign .= means
defining.
Recommended references for linear algebra The book series on linear algebra by Prof. Gilbert
Strang (MIT) is highly recommended: they give you the right intuitions and insights about linear
algebra, especially after you take the first introductory course to linear algebra.

• Introduction to LinearAlgebra https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.
html

• Linear Algebra for Everyone https://math.mit.edu/~gs/everyone/
• Linear Algebra and Learning from Data https://math.mit.edu/~gs/learningfromdata/

You don’t have to buy these books; you can find a full collection of related video lectures that are
equally useful from Prof. Strang’s website https://math.mit.edu/~gs/.

Problem 1 (Matrix norms, inner products, traces; 4/15) Recall that for any vector v ∈ Rn and
any p ≥ 1, the ℓp norm of v is defined as ∥v∥p

.= (
∑

i |vi|p)1/p. The cases where p = 1, 2, ∞ are often
used. When p = 2, it is also called the Euclidean norm. Similar norms can be defined for matrices.
Particularly, the direct generalization of the vector Euclidean norm is the Frobenius norm defined as

∥M∥F
.=

√∑
ij

m2
ij

1

https://chat.openai.com/
https://claude.ai/chats
https://claude.ai/chats
https://github.com/features/copilot
https://learn.deeplearning.ai/
https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html
https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html
https://math.mit.edu/~gs/everyone/
https://math.mit.edu/~gs/learningfromdata/
https://math.mit.edu/~gs/

for a matrix M . On the other hand, the inner product of matrices is defined similarly to that
of vectors. For A, B of the same size, ⟨A, B⟩ .=

∑
ij aijbij . Obviously, ⟨A, B⟩ = ⟨B, A⟩ and

∥M∥F =
√

⟨M , M⟩. A third notion of interest is the matrix trace, tr (M) =
∑

i mii, i.e., sum of the
diagonal entries, which is only defined for square matrices.

Please provide detailed steps with justification for all subproblems below; jumping to the
final results leads to a zero score. Also, if we ask you to use certain facts to prove a thing, you
have to use these facts (perhaps plus others); otherwise you get a zero score.
(a) Show that ⟨A, B⟩ = tr (A⊺B) and that ∥M∥F =

√
tr (M⊺M). (1/15)

(b) Using (a) and perhaps additional facts to show that tr (A⊺B) = tr (B⊺A). (0.5/15)
(c) Assume A and B have the same size. In general, AB⊺ and B⊺A have different sizes, but

tr (AB⊺) = tr (B⊺A). Show it using (a) and perhaps additional facts! (0.5/15)
(d) Using (c) and perhaps additional facts to show that tr (M1M2M3) = tr (M3M1M2) =

tr (M2M3M1), assuming that the sizes of M1, M2 and M3 are compatible with all the matrix
multiplications. This is known as the cyclic property of matrix traces. (0.5/12)

(e) For anymatrices A, B, C, D of compatible sizes, we always have ⟨ACB, D⟩ = ⟨CB, A⊺D⟩ =
⟨AC, DB⊺⟩, i.e., we can always move the leading matrix of one side of the inner product to
the other side as leading matrix once transposed, and similarly the trailing matrix to the
other side as trailingmatrix once transposed. Using (d) and perhaps additional facts to show
it. (0.5/15)

(f) For M , let’s perform a compact SVD (if not sure, check Wikipedia! https://en.wikipedia.
org/wiki/Singular_value_decomposition#Compact_SVD) to obtain M = UΣV ⊺, so that
U and V are orthonormal (not necessarily square) matrices, i.e., U⊺U = I and V ⊺V = I .
Use the cyclic property of trace and that ∥M∥F =

√
tr (M⊺M) to show that

∥M∥F =

√√√√ r∑
i=1

σ2
i ,

assuming the rank of M is r. Here, σi’s are the singular values of M . (1/15)

Problem 2 (Computation of Jacobian, gradient, and Hessian; 4/15) To derive Jacobian, gradient,
and Hessian, you are free to deploy any techniques or their mixtures that we describe in the class.
However, the perturbation-expansion (Taylor-expansion) technique could be (much) more efficient
for some cases.

Background on convexity: A twice-differentiable function f (x) is convex if ∇2f (x) is positive
semidefinite (i.e., ∇2f (x) ⪰ 0) for all x. If ∇f2 (x) is positive definite (i.e., ∇2f (x) ≻ 0) for all x,
then f is said to be strongly convex and f has a unique minimizer.
(a) Let A be a square, but not necessarily symmetric, matrix. Deriving the gradient and Hessian

of the quadratic function f (x) = x⊺Ax + b⊺x. Please include your calculation details. (Hint:
note that Hessian must be a symmetric matrix.) (1/15)

(b) Let p (x; β) = eβ⊺x

1+eβ⊺x . The log-likelihood function in logistic regression is (assuming N
training points {(xi, yi)}i=1,...,N)

f (β) =
N∑

i=1
[yi log p (xi; β) + (1 − yi) log (1 − p (xi; β))] (1)

2

https://en.wikipedia.org/wiki/Singular_value_decomposition#Compact_SVD
https://en.wikipedia.org/wiki/Singular_value_decomposition#Compact_SVD

=
N∑

i=1

[
yiβ

⊺xi − log
(
1 + eβ⊺xi

)]
. (2)

Derive the gradient and Hessian of f (β). Please include your calculation details. (1/15)
For logistic regression, we are going to maximize f (β), which is equivalent to minimize
−f (β). Does the minimization problem has a unique minimizer or not? (0.5/15)

(c) LetA ∈ Rm×n withm < n. Then given anyy ∈ Rm, the least-squares problemminx ∥y − Ax∥2
2

has infinitely many solutions, as A has a nontrivial null space. Now let’s say we want a solu-
tion with a small ℓ2 norm, then it is reasonable to put a regularization/penalty on the ℓ2 norm
of x, leading to

min
x

∥y − Ax∥2
2 + λ ∥x∥2

2 (3)

with a chosen λ > 0. This is the notable ridge regression. Now we know that for an uncon-
strained first-order differentiable function g (x), any of its local minimizer x∗ must satisfy the
first-order optimality condition: ∇g (x∗) = 0. Use this to derive a candidate local minimizer x∗
(0.5/15). Is it a local minimizer? A global minimizer? Is it unique? Why? (1/15)

Problem 3 (Least squares problem; 5.5/15) Consider the least-squares problem

min
x∈Rn

f (x) = ∥y − Ax∥2
2 , A ∈ Rm×n. (4)

In class, we showed that any local (also global, as f is convex) minimizer x0 of f must obey the
first-order necessary condition ∇f (x0) = 2A⊺ (Ax0 − y) = 0, or A⊺Ax0 = A⊺y.
(a) Assume m ≥ n. Show that A has column full rank, i.e., with linearly independent columns, if

and only if A⊺A is invertible. (Hint: consider using compact SVD, or the fact that if a square
matrix M is invertible if and only if the only solution of Mz = 0 is z = 0, i.e., if and only if
M has a trivial null space. (1/15)

(b) Assume m ≥ n and that A has column full rank. Then columns of A span an n-dimensional
subspace of Rm.

Since anypoint on the subspace can bewritten in
the form of Ax for a certain x, geometrically the
optimization problem in Eq. (4) is to compute
the (squared) ℓ2 distance of a given point y ∈
Rm to the subspace span (A), i.e.,

min
z∈span(A)

g (z) = ∥y − z∥2
2 . (5)

Let z0 be a minimizer for Eq. (5). Can we provide a closed form for z0? Is it unique and
why or why not? In Rm, two vectors u, v are orthogonal to each other if ⟨u, v⟩ = 0. Prove
that ⟨z0 − y, w⟩ = 0 for any w ∈ span (A), i.e., the vector z0 − y is orthogonal to the space
span (A)—here, z0 is called the orthogonal projection of y onto the subspace. (1/15)

(c) Fix a random seed, and set m = 100, n = 50. Generate A and y as iid standard normal.
Implement gradient descent, with backtracking line search as the step size rule. Please submit
your code, and plot the objective value vs. iterate. (0.5/15)

3

(d) When m < n, there is no unique global minimizer for f . Assume x0 is a global minimizer.
Please write down the set of all global minimizers and also prove the set indeed contains all
global minimizers. (Hint: when constructing the set, start from the optimality condition and
derive what condition the difference of two global minimizers must satisfy.) (1/15)

(e) Assume m < n and we run gradient descent to optimize f (x) starting with x(0) = 0 and with
a fixed step size t.

(i) Write down the analytic forms of x(1), x(2), and x(3) and prove that x(k) ∈ row (A) for
all k ≥ 0, i.e., all iterates will stay in row (A). (0.5/15)

(ii) When t is sufficiently small, or backtracking line search is implemented, the sequence
x(0), x(1), x(2), . . . will converge to a local, which is also global, minimizer of f (w).
Obviously, the limit x∗ also lies in row (A). Prove that x∗ is global minimizer of f (x)
with the smallest ℓ2 norm among all global minimizers. (Hint: any x ∈ Rn can be
decomposed as two orthogonal components: x = xr + xn, where xr ∈ row (A) and
xn ∈ null (A).) (1/15)

Why is this interesting? Although in our setting f (x) does not have a unique minimizer, a spe-
cific algorithm—gradient descent, with specific initialization—zero (in fact, the above results
hold for any initialization lying in row (A)) and appropriate step sizes, returns a solution
with a special property—least ℓ2 norm, which is simple in some sense. This phenomenon
of algorithmic biases toward certain “simple" solutions on problems with many solutions is
called implicit regularization. This is the basis for one of many theories explaining why deep
neural networks generalize well despite that the network capacities well exceed the intrinsic
data complexities.

(f) Assume m < n again and so global minimizers for f abound. In statistics, this kind of problem
where the number of data points is (far) less than the input (feature) dimension is called
high-dimensional problems (other fields may use the term in different ways). Reasonable regu-
larization is always needed for high-dimensional problems to bias the estimation procedure
toward solutions with certain desired properties. For our least-squares problem Eq. (4), one
possibility is seeking (approximately) sparse solutions by adding an ℓ1 norm regularization:

min
x∈Rn

1
m

∥y − Ax∥2
2 + λ ∥x∥1 . (6)

This is the famous Lasso problem. Suppose that features (i.e., columns of A) are gene expres-
sions of patients and the output is the probability of getting liver cancer. If the solution x∗
we find is indeed sparse, i.e., containing very few large entries and the rest entries negligibly
small, then only the genes/columns corresponding to the large entries of x∗ are important
for predicting the cancer probability. So, Lasso and its variants are often used for feature
selection.
Fix a random seed, and setm = 30, n = 100. GenerateA as iid standard normal, a groundtruth
x0 as iid Bernoulli with rate 0.2 (i.e., assuming 1 with probability 0.2, and otherwise assuming
0), and so y = Ax0 + ε, where ε is iid normal with mean 0 and variance 0.5, i.e., N (0, 0.5).
Implement Lasso with the CVXPY package (find the installation instruction here: https://
www.cvxpy.org/install/index.html), with reference to this example https://www.cvxpy.
org/examples/machine_learning/lasso_regression.html. Try 3 different values—ideally
with different orders of magnitude—for λ, and plot the groundtruth x0, and the x∗’s you

4

https://www.cvxpy.org/install/index.html
https://www.cvxpy.org/install/index.html
https://www.cvxpy.org/examples/machine_learning/lasso_regression.html
https://www.cvxpy.org/examples/machine_learning/lasso_regression.html

obtain in the same stem plot; check out this link https://matplotlib.org/stable/api/_as_
gen/matplotlib.pyplot.stem.html for making stem plots in Python. What do you observe
with increasing λ? (0.5/15)

Problem 4 (Robust linear regression; 1.5/15) Given data points {(xi, yi)}N
i=1. Linear regres-

sion tries to find a linear function of x, i.e., w⊺x, so that the collective approximation error∑N
i=1 ℓ (w⊺xi, yi) isminimized. Geometrically, this fits a linear subspace to the point cloud {(xi, yi)}N

i=1
so that the cumulative error in the y direction can be minimized, as illustrated in Fig. 1.

Figure 1: Illustration of linear regression.
Figure reproduced from Figure 3.1 of
[?].

If the data points {(xi, yi)}N
i=1 do follow a linear relationship

with deviations of comparable magnitude, e.g., for an under-
lying w∗

yi = w⊺
∗xi + εi ∀ i = 1, . . . , N

with εi iid Gaussian with a small variance, the typical least-
squares formulation, e.g.,

min
w

1
N

N∑
i=1

(w⊺xi − yi)2 (7)

is reasonable. But if εi’s are very different in magnitude across
the i’s, e.g., coming from heavy-tailed distributions, or due to
irregular measurement corruption, (·)2 as loss function may
not be appropriate. This is because an extremely large εi can
dominate the total loss and ruin the estimation of w∗.

To cure this, an alternative is to use the absolute value,
instead of the squares:

min
w

1
N

N∑
i=1

|w⊺xi − yi| . (8)

Compared to Eq. (7), the influence of terms with potential large errors is suppressed and with
small errors amplified, so the estimation procedure tends to be more stable. This is often called
least absolute deviations (LAD) estimation. For more information on this, check out here https:
//en.wikipedia.org/wiki/Least_absolute_deviations.

Now let’s explore the benefit of LAD. For the sake of reproducibility, please fix a random seed before
you start to generate any data.

(a) Let’s first generate an iid normal (i.e., N (0, 1)) vector w∗ ∈ R20 and 100 iid normal vectors
xi ∈ R20. Now produce yi = w⊺

∗xi + εi, where εi’s are iid Laplace (0, 1). (0.5/15)
(b) Read this CVXPY example on solving least squares https://www.cvxpy.org/examples/basic/

least_squares.html and adapt it for solving LAD with the data generated in (a). To solve
LAD, you only need to change the line
cost = cp.sum_squares(A @ x - b)

to
cost = cp.norm1(A @ x - b).

For the ŵ estimated from both least-squares and LAD, compute ∥ŵ − w∗∥2, i.e., estimation
error for w∗. Which method leads to a smaller estimation error? (1/15)

5

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.stem.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.stem.html
https://en.wikipedia.org/wiki/Least_absolute_deviations
https://en.wikipedia.org/wiki/Least_absolute_deviations
https://www.cvxpy.org/examples/basic/least_squares.html
https://www.cvxpy.org/examples/basic/least_squares.html

