
Supplementary Notes for CSCI5527 Deep Learning

Review of High-Dimensional Calculus

Ju Sun∗

January 25, 2026

High-dimensional calculus is typically not covered in basic calculus courses, but it is the language
of modern machine learning—we almost always express quantities of interest as vectors, matrices,
or even tensors. In this set of notes, we quickly go over the basics of high-dimensional calculus
that are most useful for machine learning and highlight certain computational techniques that are
not often taught elsewhere. Two recommended sources for learning high-dimensional calculus
are [Mun97, Col12]. [Zor15, Zor16] is another set of useful references. There is also an interesting
online tool for computing symbolic matrix derivatives https://www.matrixcalculus.org/.

1 Our notations
• scalars: x (small letters) vectors: x (bold small) matrices: X (bold capital) tensors: X

(script capital) sets: S (capital)
• vectors are always column vectors, unless stated otherwise
• xi: i-th element of x xij : (i, j)-th element of X xi: i-th row of X as a row vector xj :

j-th column of X as a column vector

• R: real numbers R+: positive reals Rn: space of n-dimensional vectors Rm×n: space of
m × n matrices Rm×n×k: space of m × n × k tensors, etc

• [n] .= {1, . . . , n} (often used by theoretical computer scientists; .= means “defined as”)
• [vi]i means a vector v whose i-th entry takes the value vi, e.g., [1

i2]i = [1; 1
4 ; 1

9 ; . . . ; 1
100] if the

vector length is 10; [mij]i,j means a matrix M whose (i, j)-th entry takes the value mij .

2 Differentiability

2.1 First-order differentiability

Definition 2.1 (First-order derivative or Jacobian). Consider a function f(x) : Rn → Rm. f is (Fréchet)
differentiable at a point x0 if there exists a matrix B ∈ Rm×n such that

lim
δ→0

f(x0 + δ) − f(x0) − Bδ

∥δ∥2
= 0, (2.1)

or equivalently,

f(x0 + δ) = f(x0) + Bδ + o(∥δ∥2)︸ ︷︷ ︸
a residual term lower-order than δ

as δ → 0. (2.2)

Here B is called the (Fréchet) derivative, or the Jacobian of f at x0, denoted as Jf (x0) ∈ Rm×n.
∗Department of Computer Science and Engineering, University of Minnesota at Twin Cities. Email: jusun@umn.edu.

Page 1

https://www.matrixcalculus.org/
mailto:jusun@umn.edu

Supplementary Notes for CSCI5527 Deep Learning

The equivalence inside the theorem is due to the following fact: for any vector-valued function
h(δ) : Rn → Rm,

h(δ) ∈ o(∥δ∥2) as δ → 0 ⇐⇒ lim
δ→0

h(δ)
∥δ∥2

= 0 ⇐⇒ lim
δ→0

∥h(δ)∥2
∥δ∥2

= 0. (2.3)

If f(x) : Rn → Rm is differentiable at a point x0, all first-order partial derivatives ∂fi
∂xj

(x0) for all i, j

exist. We also have

Jf (x0) =
[

∂fi

∂xj
(x0)

]
i,j

, (2.4)

i.e., Jf (x0) is the collection of all first-order partial derivatives ∂fi
∂xj

(x0) for all i, j.

Definition 2.2 (Gradient). Consider a function f(x) : Rn → R, i.e., scalar-valued. The gradient
∇f(x) ∈ Rn×1, which is a column vector, is the transpose of the Jacobian Jf (x) ∈ R1×n.

According to this convention, for f(X) : Rm×n → R, the gradient should be R(m×n)×1, which
is a length-(m × n) vector. This is inconvenient for many purposes. So in practice, this vector is
reshaped into an m × n matrix, i.e., the same shape as that of X . We will follow this convention,
i.e., ∇f(X) =

[
∂f

∂xi,j
(X)

]
i,j

∈ Rm×n.

Theorem 2.3 (Calculus rules of Jacobian). Assume f(x), g(x) : Rn → Rm are differentiable at a point
x0 ∈ Rn.
• linearity: for any λ1, λ2 ∈ R, λ1f + λ2g is differentiable at x0 and Jλ1f+λ2g(x0) = λ1Jf (x0) +

λ2Jg(x0);
• product: assume m = 1, fg is differentiable at x0 and Jfg(x0) = f(x0)Jg(x0) + g(x0)Jf (x0);
• quotient: assume m = 1 and g(x0) ̸= 0, f

g is differentiable at x0 and J f
g
(x0) = g(x0)Jf (x0)−f(x0)Jg(x0)

g2(x0) ;

• Chain rule: Let f(x) : Rm → Rn and h(y) : Rn → Rk. If f is differentiable at x0, and h is differentiable
at y0 where y0 = f(x0). Then, h ◦ f(x) : Rm → Rk is differentiable at x0, and

Jh◦f (x0) = Jh(f(x0))Jf (x0). (2.5)

When k = 1,

∇[h ◦ f](x0) = J⊤
f (x0)∇h(f(x0)). (2.6)

2.2 Deriving the Jacobian

There are two main methods. One is invoking Eq. (2.4) and the calculus rules in Theorem 2.3. The
other is by the perturbation-expansion method based on Definition 2.1, as explained below. Let’s
take an example f(x) = Ax − b for A ∈ Rn×m and b ∈ Rn and try to derive the Jacobian.
• Elementwise calculation and calculus rules. Obviously Jb(x) = 0 so we can focus on the Ax

term. Now
∂(Ax)i

∂xj
= ∂

(
aix

)
∂xj

= ∂
∑

k aikxk

∂xj
= aij . (2.7)

So JAx(x) = [aij]i,j = A, and by linearity Jf (x) = A.

Page 2

Supplementary Notes for CSCI5527 Deep Learning

• Perturbation-expansion method. We make an infinitesimal perturbation δ to x, so
f(x + δ) = A(x + δ) − b = (Ax − b) + Aδ = f(x) + Aδ. (2.8)

Comparing this to Eq. (2.2) in Definition 2.1, we easily obtain that Jf (x) = A.
Note that in the perturbation-expansion method, after the infinitesimal perturbation δ, we rearrange
the terms to match the form of Eq. (2.2), i.e.,

f(x) + linear term in δ + lower-order term in ∥δ∥2 (2.9)
so that we can read off the Jacobian from the linear term.
Example 2.4. Consider the least-squares objective f(x) = ∥Ax − b∥2

2. We will derive the Jacobian, which
is the transpose of the gradient.
• Chain rule. We can view f as composition of g(x) = Ax − b and h(y) = ∥y∥2

2 so that f = h ◦ g(x).
From our last example, Jg(x) = A. For h, it is easy to check that Jh(y) = 2y⊺. Applying the chain rule,
we obtain that

Jf (x) = Jh(Ax − b)Jg(x) = 2(Ax − b)⊺A. (2.10)
• Perturbation-expansion method. By making an infinitesimal perturbation δ to x, we obtain

f(x + δ) = ∥A(x + δ) − b∥2
2 (2.11)

= ∥(Ax − b) + Aδ∥2
2 (2.12)

= ∥Ax − b∥2
2 + ∥Aδ∥2

2 + 2 ⟨Ax − b, Aδ⟩ . (2.13)
Let us clarify a few points before proceeding. We use ⟨·, ·⟩ to mean the inner product for vectors, i.e.,
for u, v ∈ Rn, ⟨u, v⟩ .=

∑
i uivi. For any p ≥ 1, the ℓp norm of the vector u ∈ Rn is defined as

∥u∥p
.= (

∑
i |ui|p)1/p. For p = 2, the norm is also called the Euclidean norm and it can be easily verified

that ∥u∥2 =
√

⟨u, u⟩. So for u, v ∈ Rn,

∥u + v∥2
2 = ⟨u + v, u + v⟩ = ⟨u, u⟩ + ⟨v, v⟩ + 2 ⟨u, v⟩ = ∥u∥2

2 + ∥v∥2
2 + 2 ⟨u, v⟩ . (2.14)

We have used this identity to arrive at Eq. (2.13). In Eq. (2.13), ∥Ax − b∥2
2 = f(x), and ∥Aδ∥2

2 ∈
O

(
∥δ∥2

2

)
=⇒ ∥Aδ∥2

2 ∈ o(∥δ∥2) which we do not care. The linear term is 2 ⟨Ax − b, Aδ⟩. We now
invoke another identity ⟨u, v⟩ = u⊺v to obtain that

2 ⟨Ax − b, Aδ⟩ = 2(Ax − b)⊺Aδ. (2.15)
Comparing this with Eq. (2.2), we conclude that

Jf (x) = 2(Ax − b)⊺A. (2.16)
Deriving Jacobians using the chain rule is fine for simple compositions. But it quickly leads

to fatigue when there are many compositions. Moreover, when intermediate variables involve
matrices, intermediate Jacobians as tensors will often be involved. An example is when deriving
gradients for functions involving deep neural networks, e.g.,

f(W) =
∑

i
∥yi − Wkσ(Wk−1 . . . σ(W2σ(W1xi)))∥2

2. (2.17)

So, the perturbation-expansion method becomes handy when we deal with matrix/vector variables.
They allow us to derive Jacobian, gradient, and Hessian directly in matrix form, without taking partial
derivatives.

Page 3

Supplementary Notes for CSCI5527 Deep Learning

Example 2.5 (Chain rule follows from the perturbation-expansion method). The chain rule in
Theorem 2.3 can be easily derived from the perturbation-expansion method. Consider an infinitesimal
perturbation δ to x in h ◦ f :

h ◦ f(x0 + δ) = h(f(x0 + δ)) = h(f(x0) + Jf (x0)δ + o(∥δ∥2)), (2.18)

where we expand f(x0 + δ) by the definition of first-order differentiability, because f is differentiable at
x0. Now h(f(x0) + Jf (x0)δ + o(∥δ∥2)) is h at the point f(x0) perturbed by the infinitesimal quantity
Jf (x0)δ + o(∥δ∥2). Since h is differentiable at the point f(x0), we can invoke Eq. (2.2) again and obtain
that

h(f(x0) + Jf (x0)δ + o(∥δ∥2))
= h(f(x0)) + Jh(f(x0))(Jf (x0)δ + o(∥δ∥2)) + o

(
∥Jf (x0)δ + o(∥δ∥2)∥2

)︸ ︷︷ ︸
o(∥δ∥2)

(2.19)

= h(f(x0)) + Jh(f(x0))Jf (x0)δ + Jh(f(x0))o(∥δ∥2)︸ ︷︷ ︸
o(∥δ∥2)

+o(∥δ∥2) (2.20)

= h(f(x0)) + Jh(f(x0))Jf (x0)δ + o(∥δ∥2). (2.21)

So h ◦ f is differentiable at x0, and Jh◦f (x0) = Jh(f(x0))Jf (x0).

In the above derivation, we have used several basic properties of the small-o notation:

Lemma 2.6. As δ → 0, (1) o(∥f(δ)∥) ⊂ o(∥h(δ)∥) if ∥f(δ)∥ ≤ ∥h(δ)∥ everywhere; (2) o(∥δ∥) +
o(∥δ∥) = o(∥δ∥); Moreover, for any matrix A, (3) o(∥Aδ∥) ∈ o(∥δ∥); (4) Ao(∥δ∥) ∈ o(∥δ∥).

Proof. (1) Suppose that g(δ) ∈ o(∥f(δ)∥), i.e., limδ→0 ∥g(δ)∥/∥f(δ)∥ = 0, then

lim
δ→0

∥g(δ)∥/∥h(δ)∥ ≤ lim
δ→0

∥g(δ)∥/∥f(δ)∥ = 0.

(2) Suppose that g1(δ) ∈ o(∥δ∥) and g2(δ) ∈ o(∥δ∥), then

lim
δ→0

∥g1(δ) + g2(δ)∥/∥δ∥ ≤ lim
δ→0

∥g1(δ)∥/∥δ∥ + lim
δ→0

∥g2(δ)∥/∥δ∥ = 0.

(3) Since ∥Aδ∥ ≤ ∥A∥op∥δ∥ (here ∥A∥op denotes the operator normofA, i.e., the largest singular
value of A), we have o(∥Aδ∥) ∈ o(∥A∥op∥δ∥) by (1). Since ∥A∥op is a constant independent of δ,
we can omit it as we only worry about the order of the term with respect to δ.

(4) For any g(δ) ∈ o(∥δ∥), i.e., limδ→0 ∥g(δ)∥/∥δ∥ = 0, we have

lim
δ→0

∥Ag(δ)∥/∥δ∥ ≤ lim
δ→0

∥A∥op∥g(δ)∥/∥δ∥ = ∥A∥op lim
δ→0

∥g(δ)∥/∥δ∥ = 0,

implying the claimed results. ■

2.3 Second-order differentiability

It is possible to define second- or even higher-order differentiability for general f(x) : Rn → Rm.
For our purposes, it suffices to consider scalar-valued functions f(x) : Rn → R, on which we focus
exclusively here. Assume f is first-order differentiable in a small ball around x0.
• Write ∂2f

∂xj∂xi
(x0) .=

[
∂

∂xj

(
∂f
∂xi

)]
(x0) provided the right side is well defined.

Page 4

Supplementary Notes for CSCI5527 Deep Learning

• Symmetry: If both ∂2f
∂xj∂xi

(x0) and ∂2f
∂xi∂xj

(x0) exist and both are continuous at x, then they are
equal.

• Hessian (matrix):

∇2f(x0) .=
[

∂2f

∂xj∂xi
(x0)

]
j,i

.

∇2f is symmetric due to the symmetry property above.
• Sufficient condition: if all ∂2f

∂xj∂xi
(x0) exist and are continuous near x0, f is 2nd-order differen-

tiable at x0 (the converse is not true; we omit the precise definition of 2nd-order differentiability
due to its technicality).

3 Taylor’s theorems
Taylor’s theorems take several forms. We focus on forms useful for gradient and Hessian derivation.
Theorem 3.1 (Taylor’s theorem: scalar-variable version). Consider f(x) : R → R.
• If f is 1st-order differentiable at x0, then

f(x0 + δ) = f(x0) + δf ′(x0)︸ ︷︷ ︸
first-order Taylor expansion

+ o(|δ|) as δ → 0. (3.1)

• If f is 2nd-order differentiable at x0, then

f(x0 + δ) = f(x0) + δf ′(x0) + 1
2δ2f ′′(x0)︸ ︷︷ ︸

second-order Taylor expansion

+ o(|δ|2) as δ → 0. (3.2)

The result can be easily generalized to scalar-valued vector- and matrix-variable functions.
Theorem 3.2 (Taylor’s theorem: vector-variable version). Consider f(x) : Rn → R.
• If f is 1st-order differentiable at x0, then

f(x0 + δ) = f(x0) + ⟨∇f(x0), δ⟩︸ ︷︷ ︸
first-order Taylor expansion

+ o(∥δ∥2) as δ → 0. (3.3)

• If f is 2nd-order differentiable at x0, then

f(x + δ) = f(x0) + ⟨∇f(x0), δ⟩ + 1
2

〈
δ, ∇2f(x0)δ

〉
︸ ︷︷ ︸

second-order Taylor expansion

+ o(∥δ∥2
2) as δ → 0. (3.4)

To present the matrix version, we need to clarify the definitions of inner product and Euclidean
norm for matrices, both natural generalizations of those for vectors. For U , V ∈ Rm×n,

⟨U , V ⟩ =
∑

i,j
uijvij and ∥U∥F =

√∑
i,j

u2
ij =

√
⟨U , U⟩. (3.5)

In other words, let vec (U) be the vectorized version of U by sequentially stacking its columns into
a long vector. We have

⟨U , V ⟩ = ⟨vec (U), vec (V)⟩ and ∥U∥F = ∥vec (U)∥2. (3.6)

Page 5

Supplementary Notes for CSCI5527 Deep Learning

Theorem 3.3 (Taylor’s theorem: matrix-variable version). Consider f(X) : Rm×n → R.
– If f is 1st-order differentiable at X0, then

f(X0 + ∆) = f(X0) + ⟨∇f(X0), ∆⟩︸ ︷︷ ︸
first-order Taylor expansion

+ o(∥∆∥F) as ∆ → 0. (3.7)

– If f is 2nd-order differentiable at X0, then

f(X0 + ∆) = f(X0) + ⟨∇f(X0), ∆⟩ + 1
2

〈
∆, ∇2f(X0)[∆]

〉
︸ ︷︷ ︸

second-order Taylor expansion

+ o(∥∆∥2
F) as ∆ → 0. (3.8)

Here, ∇2f(X0) is a 4-dimensional tensor (i.e., 4-dimensional array) that collects all the second-
order derivatives. It is possible to define tensor-matrix product, but it can quickly become over-
whelming technical. For our purposes, we only need to know that: (1) ∇2f(X0)[∆] is an m × n
matrix here; (2) this form is consistent with the vector-variable version, if we vectorize the variable:
let F (vec(X0)) .= f(X0), we have

F (vec(X0 + ∆)) = F (vec(X0)) + ⟨∇F (vec(X0)), vec(∆)⟩

+ 1
2

〈
vec(∆), ∇2F (vec(X0))vec(∆)

〉
+ o(∥vec(∆)∥2

2). (3.9)

So, if we have to implement the second-order expansion for matrix-variable functions, a safe way is
to vectorize the variable and then call the vector-variable version.

Now we want to put Taylor’s theorems to good use. But before that, we need another important
property of the Taylor expansion. In short, Taylor expansion is unique.
Theorem 3.4 (Asymptotic uniqueness of Taylor expansion—scalar version). Let f(x) : R → R
be k-times (k ≥ 1 integer) differentiable at a point x0. If P (δ) is a k-th order polynomial satisfying
f(x0 + δ) − P (δ) = o(δk) as δ → 0, then P (δ) = f(x0) +

∑k
i=1

1
k!f

(k)(x0)δk, i.e., k-th order Taylor
expansion.

Why is this useful? Typically, we calculate derivatives and plug them into the Taylor formula to
obtain the Taylor expansion. This theorem enables the reverse path. Suppose we have at hand a
k-th order polynomial P (δ) satisfying f(x0 + δ) = P (δ) + o(|δ|)—no matter how we obtain it, e.g.,
by the perturbation-expansion technique described above, we can compare it to the standard Taylor
expansion form and read off the derivatives.
Example 3.5. Consider f(x) = x3 and let us calculate ∇f(x) and ∇2f(x). For any infinitesimal perturba-
tion δ,

f(x + δ) = (x + δ)3 = x3 + 3x2δ + 3xδ2 + δ3. (3.10)

First-order term in δ is 3x2δ and so ∇f(x) = 3x2. Second-order term in δ is 3xδ2 and so ∇2f(x) = 6x.

The uniqueness property also holds for the vector and matrix versions.
Theorem 3.6 (Asymptotic uniqueness of Taylor expansion—vector version). Consider f(x) : Rn →
R.
• Assume f(x) : Rn → R is 1st-order differentiable at x0. If P (δ) .= f(x0) + ⟨v, δ⟩ satisfies that

f(x0 + δ) − P (δ) ∈ o(∥δ∥2) as δ → 0, then P (δ) = f(x0) + ⟨∇f(x0), δ⟩, i.e., the 1st-order Taylor
expansion, and v = ∇f(x0);

Page 6

Supplementary Notes for CSCI5527 Deep Learning

• Assume f(x) : Rn → R is 2nd-order differentiable at x0. If P (δ) .= f(x0) + ⟨v, δ⟩ + 1
2 ⟨δ, Hδ⟩ with H

symmetric satisfies that f(x0 + δ) − P (δ) ∈ o(∥δ∥2
2) as δ → 0, then P (δ) = f(x0) + ⟨∇f(x0), δ⟩ +

1
2

〈
δ, ∇2f(x0)δ

〉
, i.e., the 2nd-order Taylor expansion, and v = ∇f(x0), H = ∇2f(x0).

The matrix version, as well as proofs of the asymptotic uniqueness properties and other forms
of Taylor’s theorems, can be found in Chapter 5 of [Col12]. Now we provide a couple of examples
to show how the perturbation-expansion technique can help us derive gradient and Hessian from
Taylor expansions.
Example 3.7. Let’s consider f(x) = ∥Ax − b∥2

2 again and try to derive ∇f(x) and ∇2f(x). From
Example 2.4, we know that

f(x + δ) = ∥Ax − b∥2
2 + 2 ⟨Ax − b, Aδ⟩︸ ︷︷ ︸

1st-order in δ

+ ∥Aδ∥2
2︸ ︷︷ ︸

2nd-order in δ

. (3.11)

To read off the gradient, we need to rearrange the 1-st order term into the form ⟨♣, δ⟩ for some ♣. Now we
need a useful rule for manipulating vector/matrix inner products.

Any leading matrix can be transposed and moved to the leading position of the other side of the inner
product; similarly, any trailing matrix can be transposed and moved to the trailing position of the other
side of the inner product. For example, consider matrices A, B, C, D with compatible dimensions so that
⟨AB, CD⟩ is well defined. Then

⟨AB, CD⟩ = ⟨B, A⊺CD⟩ = ⟨C⊺AB, D⟩ = ⟨A, CDB⊺⟩ = ⟨ABD⊺, C⟩ . (3.12)

This property can be derived from the cyclic property of matrix traces.
So we can rearrange the 1st order term as

2 ⟨Ax − b, Aδ⟩ = ⟨2A⊺(Ax − b), δ⟩ , (3.13)

implying that ∇f(x) = 2A⊺(Ax − b). For the 2nd order term,

∥Aδ∥2
2 = ⟨Aδ, Aδ⟩ = ⟨δ, A⊺Aδ⟩ , (3.14)

which is to be compared to 1
2

〈
δ, ∇2f(x)δ

〉
, implying that ∇2f(x) = 2A⊺A.

Example 3.8. We now consider a matrix-variable problem with two blocks of variables

f(W1, W2) =
∑

i
∥yi − W2W1xi∥2

2 = ∥Y − W2W1X∥2
F (3.15)

and try to derive the gradient. This is an objective corresponding to a two-layer linear neural network. Making
infinitesimal perturbation to W1, W2, we obtain

f(W1 + ∆1, W2 + ∆2) = ∥Y − (W2 + ∆2)(W1 + ∆1)X∥2
F (3.16)

= ∥(Y − W2W1X) − W2∆1X − ∆2W1X − ∆2∆1X∥2
F . (3.17)

Now we need the fact: for matrices U , V of the same size, ∥U + V ∥2
F = ∥U∥2

F + ∥V ∥2
F + 2 ⟨U , V ⟩. So,

∥(Y − W2W1X) − W2∆1X − ∆2W1X − ∆2∆1X∥2
F =

∥(Y − W2W1X) − W2∆1X − ∆2W1X∥2
F

+ ∥∆2∆1X∥2
F︸ ︷︷ ︸

o(∥∆∥F)

−2 ⟨(Y − W2W1X) − W2∆1X − ∆2W1X, ∆2∆1X⟩︸ ︷︷ ︸
o(∥∆∥F)

. (3.18)

Page 7

Supplementary Notes for CSCI5527 Deep Learning

So we only need to focus on

∥(Y − W2W1X) − W2∆1X − ∆2W1X∥2
F = ∥Y − W2W1X∥2

F︸ ︷︷ ︸
f(W1,W2)

+ ∥W2∆1X + ∆2W1X∥2
F︸ ︷︷ ︸

o(∥∆∥F)
− 2 ⟨Y − W2W1X, W2∆1X + ∆2W1X⟩ . (3.19)

We now only need to compare the linear term −2 ⟨Y − W2W1X, W2∆1X + ∆2W1X⟩ with〈[
∂W1f
∂W2f

]
(W1, W2),

[
∆1
∆2

]〉
= ⟨∇W1f(W1, W2), ∆1⟩ + ⟨∇W2f(W1, W2), ∆2⟩ . (3.20)

We have that

−2 ⟨Y − W2W1X, W2∆1X⟩ = −2 ⟨W ⊺
2 (Y − W2W1X)X⊺, ∆1⟩ , (3.21)

−2 ⟨Y − W2W1X, ∆2W1X⟩ = −2 ⟨(Y − W2W1X)X⊺W ⊺
1 , ∆2⟩ , (3.22)

implying that

∇W1f(W1, W2) = −2W ⊺
2 (Y − W2W1X)X⊺, (3.23)

∇W2f(W1, W2) = −2(Y − W2W1X)X⊺W ⊺
1 . (3.24)

Note that in this example, due to Eq. (3.20), one can also perturbW1(W1, W2) only (i.e., ∆2 = 0)
to obtain ∇W1f and similarly perturb W2 only to obtain ∇W2f(W1, W2). This tends to make the
process less messy. Similarly, for functions with multiple groups of variables, one can take turns to
perturb one group each time to derive group-wise gradients (But, in general, this does NOT work
for higher-order derivatives!).

Figure 1: Blue: negative cur-
vature; Red: positive curvature

Final words on this: we have discussed two or
three techniques for deriving derivatives. For practical
problems, often a mixture of these techniques works
the best. So, stay flexible!

4 Directional derivatives and curva-
tures
Consider f(x) : Rn → R.
• directional derivative: Dvf(x0) .= d

dtf(x0 + tv)
∣∣∣
t=0

,
i.e., rate of change of f at x0 along the direction v

• When f is 1-st order differentiable at x0,
Dvf(x0) = ⟨∇f(x0), v⟩ .

• Now Dvf(x) : Rn → R is another function. What is
Du(Dvf)(x0)? If f is 2nd-order differentiable at x0,

Du(Dvf)(x0) =
〈
u, ∇2f(x0)v

〉
.

When u = v,

Du(Duf)(x0) =
〈
u, ∇2f(x0)u

〉
= d2

dt2 f(x0 + tu)
∣∣∣∣∣
t=0

,

Page 8

Supplementary Notes for CSCI5527 Deep Learning

which is the directional curvature along u and grows quadratically with respect to ∥u∥2. To
make it independent of the norm ∥u∥2, one can consider ⟨u,∇2f(x0)u⟩

∥u∥2
2

.
The spectral property (i.e., the distribution of eigenvalues and eigenvectors) of ∇2f(x0) determines
the directional curvatures. In particular, eigenvector directions corresponding to negative (positive)
eigenvalues of ∇2f(x0) have negative (positive) curvatures.

Further reading
Chapters 3 & 5 of [DFO20] are particularly relevant, and you are encouraged to review the materials
there.

Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected, and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.

References
[Col12] Rodney Coleman, Calculus on normed vector spaces, Springer New York, 2012.

[DFO20] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Mathematics for machine
learning, Cambridge University Press, 2020.

[Mun97] James R. Munkres, Analysis on manifolds, Taylor & Francis Inc, 1997.

[Zor15] Vladimir A. Zorich,Mathematical analysis I, Springer Berlin Heidelberg, 2015.

[Zor16] ,Mathematical analysis II, Springer Berlin Heidelberg, 2016.

Page 9

	Our notations
	Differentiability
	First-order differentiability
	Deriving the Jacobian
	Second-order differentiability

	Taylor's theorems
	Directional derivatives and curvatures

