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A cartoon drawing of a biological neuron (left) and its mathematical model (right)

biological neuron vs. artificial neuron

input layer

hidden layer 1  hidden layer 2

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
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Recap Il

Zoo of NN models in ML

Linear regression

output

Perception and
Logistic regression

Softmax regression

Multilayer perceptron
(feedforward NNs)

— Support vector machines (SVM)
— PCA (autoencoder)

— Matrix factorization
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Brief history of NNs:

— 1943: first NNs invented (McCulloch and Pitts)
— 1958-1969: perceptron (Rosenblatt)
— 1969: Perceptrons (Minsky and Papert)—end of perceptron
— 1980's-1990's: Neocognitron, CNN, back-prop, SGD—we use today
— 1990's—2010's: SVMs, Adaboosting, decision trees and random forests
— 2010's—now: DNNs and deep learning
— Next transition?
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Why should we trust NNs?
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Supervised learning

Step | General view NN view

1 Gather training set | Gather training set (x1,y;), ...,
(@1, y1), - (@0, y,) | (@0, y,)

2 Choose a family of func- | Choose a NN with k& neurons, so
tions, e.g., H, so that | that there is a group of weights
thereisan f € Htoen- | (wq,..., wy, by, ..., by) ensuring vy, ~
sure y; ~ f (x;), Vi INN (w1, ..., wg, b1, ..., bi)} (x4), Vi

3 Set up a loss function ¢ | Set up a loss function ¢

4 Find an f € H to mini- | Find weights (w1, ..., wy, b1, ..., by) to
mize the average loss minimize the average loss

1 « 1<
EZ/(yl,f(:cL)) EZHyi,{NN(uu ..... wg, by, ..., bi)} ()]
i=1 i=1

Why we trust NNs? They're “powerful’—encoding “large” H
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Three fundamental questions in DL

Output layer

— k-layer NNs: with k layers of
weights (along the deepest

Hidden layer path)
— k-hidden-layer NNs: with k
Input layer hidden layers of nodes (i.e.,

(k + 1)-layer NNs)

— Approximation: is it powerful, i.e., the H large enough for all
possible weights? (now)

— Optimization: how to solve

1 n
in — % [y, {NN (wr,...,wp, by, ;
’wr;I;lII)l;s n ;[['ym{ ('lU1, ,wk,bl, abk)} (.’E )]

(later this course)

— Generalization: does the learned NN work well on “similar’ data?
(CSCI5525, and Deep Learning Theory)
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Is NN powerful? first trial

Think of single-output (i.e., R” — R) problems first

o identity or linear: linear functions

o sign function sign (wTx + b)
A single neuron (perceptron): 0/1 function with

o w hyperplane threshold

synapse

i -1 ) 1

cell body - 0= 14+e—*" T 1re—(wTa+d)
Db oo

‘ wctaton o = max(0, z) (ReLU):

function
{x — max(0,wTx + b)}

— o
axon from a neuron

H:{x—o(wTz+b)}

Question: \What cannot be done? 9/42



Is NN powerful? second trial

Think of single-output (i.e., R” — R) problems first
Add depth!

But make all hidden-nodes activations

identity or linear

O'(wz (WLfl ( .. (Wlw +b1) —+ .. ) bLfl) + bL)

No better than a single neuron! Why?
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Is NN powerful? third trial

Think of single-output (i.e., R” — R) problems first

Add both depth & nonlinearity! SurprlSl.ng nt.ews: universal
approximation theorem (UAT)

Input Layer Hidden Layer OutputLayer

The 2-layer network can
approximate arbitrary
continuous functions arbitrarily
well, provided that the hidden
layer is sufficiently wide.

two-layer network, linear activation , L
Y — so we don’t worry about limitation

at output in the capacity
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Visual proof of UAT
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Why could UAT hold?

Visual “proof”
(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R — R functions first, 0 = ——
— Step 1: Build “step” functions
— Step 2: Build “bump” functions

— Step 3: Sum up bumps to approximate
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http://neuralnetworksanddeeplearning.com/chap4.html

Step 1: build step functions

N Output from top hidden neuron

1 1
T 1te wath) ] 4 ew@-b/w)

Y

— Larger w, sharper transition

— Transition around —b/w, written as s
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Step 2: build bump functions

PRl ‘Weighted output from hidden layer

$;=0.30
A }-~\l’“‘1 =06 1
u . v O -
LN 7 x !
sy, =060
Sy W, =-0.6
{ | A

0.6 = step(0.3) — 0.6 * step (0.6)
Write h as the bump height
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Step 3: sum up bumps to approximate

five bumps
two bumps

0.40,

7 lo.go, =12

10.70,

0.90

ultimate idea ... familiar?

"N Y

1 2

Message: all R — R functions can be “well” approximated using
2-layer NN's 16 /42



What about high-dimensional?

Similar story

— Step 1: Build “step” functions
— Step 2: Build “bump” functions
— Step 3: Build "“tower” functions

— Step 4: Sum up bumps to approximate

http://neuralnetworksanddeeplearning.com/chap4.html
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http://neuralnetworksanddeeplearning.com/chap4.html

Steps 1 & 2: build step and bump functions

Weighted output from hidden layer

, - 027) h=09
99 20 d 0.9
u - S
step in x by setting large weight for z bump in z by diff of two steps in x

Ty o Weightéd output from hidden layer
x|} 10.20) h=20.6

0.6 |

y +—0.74)

bump in y by diff of two steps in y
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Step 3: build tower functions

G o S B h 10 ‘mw
'0.60 x \10.0
0.60, \b=-15.0 ‘
, 10.30 =t ' =3 woz, N ‘
0.70 030/ 1 —
y ] 100 ‘ o=t
. 70.70
sum up x, y bumps to obtain a
stair tower threshold to obtain a sharp tower
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Step 4: sum up towers for approximation

A\ ‘ Many towers

w=0.7

¥ |
y (07 ‘;I l
S -

k Weighted output

\

w=05 v
(08 »=

sum up two towers sum up many towers

Message: all R? — R functions can be “well” approximated using
3-layer NN's
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General cases?

— What about R" — R functions?
The “step — (bump) — tower — tower array” construction
carries over

— What about R" — R™ functions?
Approximate each R™ — R separately and then glue them
together

Message: All R" — R functions can be “well” approximated
using 2-layer NN's
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UAT in rigorous form
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[A] universal approximation theorem )

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Leto :R — R be a function. Let I,
denote the m-dimensional . The space of

is denoted by C(I,). Then, given any € > 0 and
any function f € C(I,,), , real constants v;,b; € R
and real vectors w; € R™ fori=1,..., N, such that we may define:

N
F(z) = Zvia (w?m + bz-) =v'0c (WTxz +b)
i=1

as an approximate realization of the function f; that is,
|F(z) — f(z)| <e

for all € € I,,.
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Rigorous proof?

The proof is very technical ... functional analysis

O Riesz Representation: Every linear functional on C°([0, 1]¥) is
given by

f— f(x)du(x), weM
[0,1]%

where M = {finite signed regular Borel measures on [0, 1]} .

@ Lemma. Suppose for each 1 € M, we have
/ S(w-x+b)du(x) =0 Vw,b = p=0. (0.1)
A [O,l]k

Then Netsi(¢) is dense in C°([0, 1]¥).
© Lemma. ¢ continuous, sigmoidal = satisfies (0.1).
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Thoughts on UAT

— 0 : R — R be a nonconstant, bounded, and continuous:
what about ReLU (leaky ReLU) or sign function (as in
perceptron)? We have many UAT theorem(s)

— I,,, denote the m-dimensional unit hypercube [0, 1]™: this
can replaced by any compact subset of R™

— there exist an integer N: but how large N needs to be?
(later)

— The space of real-valued continuous functions on I,,,: two
examples to ponder on

— binary classification
— learn to solve square root
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Learn to take square-root

Forward

T=—| ()} |=—Y

Inverse

NN

-?

Suppose we lived in a time square-root is not defined ...

~ Training data: {x;, 27}, where
z;, €R

— Forward: if z +—y, —z+—y

also

— To invert, what to output?
What if just throw in the
training data?




Thoughts

— Approximate continuous functions with vector outputs, i.e.,
I, — R™? think of the component functions

- Map to [0,1], {—1,+1}, [0,00)? choose appropriate activation o at
the output

N
Flz)=0 (Z V0 (wZT:c + bz)>

. universality holds in modified form

— Get deeper? three-layer NN? change to matrix-vector notation for
convenience

F (x) = wTU(W2U<W1£E + b] + bz as Zwkgk

use wg's to linearly combine the same function

— For geeks: approximate both f and f’? check out
[Hornik et al., 1990]
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What about RelLU?

RelLU difference of ReLU’s

what happens when the slopes of the RelLU'’s are changed?

How general ¢ can be? ... enough when ¢ not a polynomial
[Leshno et al., 1993, Giihring et al., 2020, DeVore et al., 2021]
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From shallow to deep NNs
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What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 1D?

5,=0.30

L w;=0.6

5, =060~
Wy = -0.6

Assume the target f is 1-Lipschitz, i.e., [f(z) — f(y)| < |z —y|,Vz,y € R
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What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D7 Visual proof in 2D first

o(wTx +b) , o sigmod
approach 2D step function when
making w large Credit: CMU 11-785
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Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly ...

i |«
‘ '/

Image Credit: CMU 11-785 32/42



What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D7

Image Credit: CMU 11-785

Assume the target f is 1-Lipschitz, i.e., |f(z) — f(y)| < |z — y|,,V =,y € R?

For = accuracy, need O (¢ 7) bumps. What about the n-D case? O(= ).
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What’s good about deep NNs?

— Learn Boolean functions (f : {+1,—1}" ~ {+1,—1}): DNNs can
have #nodes linear in n, whereas 2-layer NN needs exponential nodes

— What general functions set deep and shallow NNs apart?

: !
N Xy Xy X X5 X Xp X X Xy Xy Xy Xs Xe Xy Xy XXy Xy Xy Xg Xe Xy Xy
z
z 3
00
0.9 0..0 |
/ : o0
X 0.0 0.0 ‘
o0
00 000,000
B X X BH X KX KX XN N X XX XXX

A family: compositional function [Poggio et al., 2017]
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Compositional functions

flzy, - x8) = hg(hoy (hi1(x1, 22), hi2(x3,24)),
haa(his(xs, x6), hia(x7,28))) 4)

W class of n-variable functions with partial derivatives up to m-th order,
W2 © W is the compositional subclass following binary tree structures

Theorem 1. Let o : R — R be infinitely differentiable, and not a
polynomial. For f € W, the complexity of shallow networks that
provide accuracy at least € is

N = O( ™™) and is the best possible. 5)

Theorem 2. For f € W2 consider a deep network with the
same compositonal architecture and with an activation function o :
R — R which is infinitely differentiable, and not a polynomial. The
complexity of the network to provide approximation with accuracy

at least € is
N =0O((n—1)e /™). (6)

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound
35/ 42



Nonsmooth activation

A terse version of UAT

Proposition 2. Letr o =: R — R be in C°, and not a polynomial.
Then shallow networks are dense in C°.

Shallow vs. deep with ReLU activation

Theorem 4. Let f be a L-Lipshitz continuous function of n vari-
ables. Then, the complexity of a network which is a linear combi-
nation of ReLU providing an approximation with accuracy at least

- NS:O((%)%),

wheres that of a deep compositional architecture is
€N —2
Nd:O((n—l)(Z) )

from [Poggio et al., 2017] 36/ 42



Width-bounded DNNs

Narrower than n + 4 is fine

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any
Lebesgue-integrable function f: R" — R and any € > 0, there exists a fully-connected ReLU
network o7 with width d,, < n + 4, such that the function F; represented by this network satisfies

f [flx) = For(a)|de < e 3)
o

But no narrower than n — 1

Theorem 3. For any confinuous function f: [—1,1]" — R which is not constant along any direction,
there exists a universal €* > 0 such that for any function F 4 represented by a fully-connected ReLU
network with width d,,, < n — 1, the L' distance between [ and F is at least €”:

/ |f(2) — Fa(z)|dz > €*. 3)
[~1,1]"

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]

Deep vs. shallow still active area of research
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Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems (UATSs)

Fundamental slogan of DL

Where there is a function, there is a NN...
and go ahead fitting it!

38/ 42



Suggested reading
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Suggested reading

— Chap 4, Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/chap4.html

— Why and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review. (by Poggio et al)
https://arxiv.org/abs/1611.00740 [Poggio et al., 2017]

— Expressivity of Deep Neural Networks (by Ingo Giihring, Mones
Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759
[Glihring et al., 2020]

— The Modern Mathematics of Deep Learning (by Julius Berner,
Philipp Grohs, Gitta Kutyniok, Philipp Petersen)
https://arxiv.org/abs/2105.04026 [Berner et al., 2021]
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