Fundamental Belief: Universal
Approximation Theorems

Ju Sun
Computer Science & Engineering

University of Minnesota, Twin Cities

January 27, 2026

1/42



Recap

2/42



Zo Wo

————————+@ synapse
axon from a neuron
wozo

impulses carried
toward cell body

branches
dendiites vy of axon

Y
\ s
N o PE— axon
nucleus ——=@ &N A minais
N —
g?% Q‘\\.mpu\sescamed

away from cell bod
cell body 4 i

cell body

S wiai+b

" (Zr - n)

output axon
activation
function

A cartoon drawing of a biological neuron (left) and its mathematical model (right)

biological neuron vs. artificial neuron

input layer

hidden layer 1  hidden layer 2

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
3/42



Recap Il

Zoo of NN models in ML

Linear regression

output

Perception and
Logistic regression

Softmax regression

Multilayer perceptron
(feedforward NNs)

— Support vector machines (SVM)
— PCA (autoencoder)

— Matrix factorization

4/42



Recap Il

First NN Symbolic Al New NNs /Algorithms VISIBILITY

1 AIW\n(er 2" AIWmter Machine Learning

Birth of AL
1974 198741993
50 0 % 1900 2010 2030
Perceptron
First Computer

(entac)

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Expert System Trough of Disillusionment

Turing Test

Deep Learning, Data Science Technology Trigger TIME

Brief history of NNs:

— 1943: first NNs invented (McCulloch and Pitts)
— 1958-1969: perceptron (Rosenblatt)
— 1969: Perceptrons (Minsky and Papert)—end of perceptron
— 1980's-1990's: Neocognitron, CNN, back-prop, SGD—we use today
— 1990's—2010's: SVMs, Adaboosting, decision trees and random forests
— 2010's—now: DNNs and deep learning
— Next transition?
5/42



Why should we trust NNs?

6/ 42



Supervised learning

Step | General view NN view

1 Gather training set | Gather training set (x1,y;), ...,
(@1, y1), - (@0, y,) | (@0, y,)

2 Choose a family of func- | Choose a NN with k& neurons, so
tions, e.g., H, so that | that there is a group of weights
thereisan f € Htoen- | (wq,..., wy, by, ..., by) ensuring vy, ~
sure y; ~ f (x;), Vi INN (w1, ..., wg, b1, ..., bi)} (x4), Vi

3 Set up a loss function ¢ | Set up a loss function ¢

4 Find an f € H to mini- | Find weights (w1, ..., wy, b1, ..., by) to
mize the average loss minimize the average loss

1 « 1<
EZ/(yl,f(:cL)) EZHyi,{NN(uu ..... wg, by, ..., bi)} ()]
i=1 i=1

Why we trust NNs? They're “powerful’—encoding “large” H

7/42



Three fundamental questions in DL

Output layer

— k-layer NNs: with k layers of
weights (along the deepest

Hidden layer path)
— k-hidden-layer NNs: with k
Input layer hidden layers of nodes (i.e.,

(k + 1)-layer NNs)

— Approximation: is it powerful, i.e., the H large enough for all
possible weights? (now)

— Optimization: how to solve

1 n
in — % [y, {NN (wr,...,wp, by, ;
’wr;I;lII)l;s n ;[['ym{ ('lU1, ,wk,bl, abk)} (.’E )]

(later this course)

— Generalization: does the learned NN work well on “similar’ data?
(CSCI5525, and Deep Learning Theory)
8/42



Is NN powerful? first trial

Think of single-output (i.e., R” — R) problems first

o identity or linear: linear functions

o sign function sign (wTx + b)
A single neuron (perceptron): 0/1 function with

o w hyperplane threshold

synapse

i -1 ) 1

cell body - 0= 14+e—*" T 1re—(wTa+d)
Db oo

‘ wctaton o = max(0, z) (ReLU):

function
{x — max(0,wTx + b)}

— o
axon from a neuron

H:{x—o(wTz+b)}

Question: \What cannot be done? 9/42



Is NN powerful? second trial

Think of single-output (i.e., R” — R) problems first
Add depth!

But make all hidden-nodes activations

identity or linear

O'(wz (WLfl ( .. (Wlw +b1) —+ .. ) bLfl) + bL)

No better than a single neuron! Why?

10/ 42



Is NN powerful? third trial

Think of single-output (i.e., R” — R) problems first

Add both depth & nonlinearity! SurprlSl.ng nt.ews: universal
approximation theorem (UAT)

Input Layer Hidden Layer OutputLayer

The 2-layer network can
approximate arbitrary
continuous functions arbitrarily
well, provided that the hidden
layer is sufficiently wide.

two-layer network, linear activation , L
Y — so we don’t worry about limitation

at output in the capacity

11/42



Visual proof of UAT

12/42



Why could UAT hold?

Visual “proof”
(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R — R functions first, 0 = ——
— Step 1: Build “step” functions
— Step 2: Build “bump” functions

— Step 3: Sum up bumps to approximate

13/42


http://neuralnetworksanddeeplearning.com/chap4.html

Step 1: build step functions

N Output from top hidden neuron

1 1
T 1te wath) ] 4 ew@-b/w)

Y

— Larger w, sharper transition

— Transition around —b/w, written as s

14 /42



Step 2: build bump functions

PRl ‘Weighted output from hidden layer

$;=0.30
A }-~\l’“‘1 =06 1
u . v O -
LN 7 x !
sy, =060
Sy W, =-0.6
{ | A

0.6 = step(0.3) — 0.6 * step (0.6)
Write h as the bump height

15 /42



Step 3: sum up bumps to approximate

five bumps
two bumps

0.40,

7 lo.go, =12

10.70,

0.90

ultimate idea ... familiar?

"N Y

1 2

Message: all R — R functions can be “well” approximated using
2-layer NN's 16 /42



What about high-dimensional?

Similar story

— Step 1: Build “step” functions
— Step 2: Build “bump” functions
— Step 3: Build "“tower” functions

— Step 4: Sum up bumps to approximate

http://neuralnetworksanddeeplearning.com/chap4.html

17 /42


http://neuralnetworksanddeeplearning.com/chap4.html

Steps 1 & 2: build step and bump functions

Weighted output from hidden layer

, - 027) h=09
99 20 d 0.9
u - S
step in x by setting large weight for z bump in z by diff of two steps in x

Ty o Weightéd output from hidden layer
x|} 10.20) h=20.6

0.6 |

y +—0.74)

bump in y by diff of two steps in y

18/ 42



Step 3: build tower functions

G o S B h 10 ‘mw
'0.60 x \10.0
0.60, \b=-15.0 ‘
, 10.30 =t ' =3 woz, N ‘
0.70 030/ 1 —
y ] 100 ‘ o=t
. 70.70
sum up x, y bumps to obtain a
stair tower threshold to obtain a sharp tower

19/42



Step 4: sum up towers for approximation

A\ ‘ Many towers

w=0.7

¥ |
y (07 ‘;I l
S -

k Weighted output

\

w=05 v
(08 »=

sum up two towers sum up many towers

Message: all R? — R functions can be “well” approximated using
3-layer NN's

20/ 42



General cases?

— What about R" — R functions?
The “step — (bump) — tower — tower array” construction
carries over

— What about R" — R™ functions?
Approximate each R™ — R separately and then glue them
together

Message: All R" — R functions can be “well” approximated
using 2-layer NN's

2142



UAT in rigorous form

22/42



[A] universal approximation theorem )

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Leto :R — R be a function. Let I,
denote the m-dimensional . The space of

is denoted by C(I,). Then, given any € > 0 and
any function f € C(I,,), , real constants v;,b; € R
and real vectors w; € R™ fori=1,..., N, such that we may define:

N
F(z) = Zvia (w?m + bz-) =v'0c (WTxz +b)
i=1

as an approximate realization of the function f; that is,
|F(z) — f(z)| <e

for all € € I,,.

23 /42



Rigorous proof?

The proof is very technical ... functional analysis

O Riesz Representation: Every linear functional on C°([0, 1]¥) is
given by

f— f(x)du(x), weM
[0,1]%

where M = {finite signed regular Borel measures on [0, 1]} .

@ Lemma. Suppose for each 1 € M, we have
/ S(w-x+b)du(x) =0 Vw,b = p=0. (0.1)
A [O,l]k

Then Netsi(¢) is dense in C°([0, 1]¥).
© Lemma. ¢ continuous, sigmoidal = satisfies (0.1).

24 /42



Thoughts on UAT

— 0 : R — R be a nonconstant, bounded, and continuous:
what about ReLU (leaky ReLU) or sign function (as in
perceptron)? We have many UAT theorem(s)

— I,,, denote the m-dimensional unit hypercube [0, 1]™: this
can replaced by any compact subset of R™

— there exist an integer N: but how large N needs to be?
(later)

— The space of real-valued continuous functions on I,,,: two
examples to ponder on

— binary classification
— learn to solve square root

25 /42



Learn to take square-root

Forward

T=—| ()} |=—Y

Inverse

NN

-?

Suppose we lived in a time square-root is not defined ...

~ Training data: {x;, 27}, where
z;, €R

— Forward: if z +—y, —z+—y

also

— To invert, what to output?
What if just throw in the
training data?




Thoughts

— Approximate continuous functions with vector outputs, i.e.,
I, — R™? think of the component functions

- Map to [0,1], {—1,+1}, [0,00)? choose appropriate activation o at
the output

N
Flz)=0 (Z V0 (wZT:c + bz)>

. universality holds in modified form

— Get deeper? three-layer NN? change to matrix-vector notation for
convenience

F (x) = wTU(W2U<W1£E + b] + bz as Zwkgk

use wg's to linearly combine the same function

— For geeks: approximate both f and f’? check out
[Hornik et al., 1990]

27 /42



What about RelLU?

RelLU difference of ReLU’s

what happens when the slopes of the RelLU'’s are changed?

How general ¢ can be? ... enough when ¢ not a polynomial
[Leshno et al., 1993, Giihring et al., 2020, DeVore et al., 2021]

28/ 42



From shallow to deep NNs

29 /42



What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 1D?

5,=0.30

L w;=0.6

5, =060~
Wy = -0.6

Assume the target f is 1-Lipschitz, i.e., [f(z) — f(y)| < |z —y|,Vz,y € R

30/ 42



What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D7 Visual proof in 2D first

o(wTx +b) , o sigmod
approach 2D step function when
making w large Credit: CMU 11-785

31/42



Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly ...

i |«
‘ '/

Image Credit: CMU 11-785 32/42



What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D7

Image Credit: CMU 11-785

Assume the target f is 1-Lipschitz, i.e., |f(z) — f(y)| < |z — y|,,V =,y € R?

For = accuracy, need O (¢ 7) bumps. What about the n-D case? O(= ).

33/42



What’s good about deep NNs?

— Learn Boolean functions (f : {+1,—1}" ~ {+1,—1}): DNNs can
have #nodes linear in n, whereas 2-layer NN needs exponential nodes

— What general functions set deep and shallow NNs apart?

: !
N Xy Xy X X5 X Xp X X Xy Xy Xy Xs Xe Xy Xy XXy Xy Xy Xg Xe Xy Xy
z
z 3
00
0.9 0..0 |
/ : o0
X 0.0 0.0 ‘
o0
00 000,000
B X X BH X KX KX XN N X XX XXX

A family: compositional function [Poggio et al., 2017]

34 /42



Compositional functions

flzy, - x8) = hg(hoy (hi1(x1, 22), hi2(x3,24)),
haa(his(xs, x6), hia(x7,28))) 4)

W class of n-variable functions with partial derivatives up to m-th order,
W2 © W is the compositional subclass following binary tree structures

Theorem 1. Let o : R — R be infinitely differentiable, and not a
polynomial. For f € W, the complexity of shallow networks that
provide accuracy at least € is

N = O( ™™) and is the best possible. 5)

Theorem 2. For f € W2 consider a deep network with the
same compositonal architecture and with an activation function o :
R — R which is infinitely differentiable, and not a polynomial. The
complexity of the network to provide approximation with accuracy

at least € is
N =0O((n—1)e /™). (6)

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound
35/ 42



Nonsmooth activation

A terse version of UAT

Proposition 2. Letr o =: R — R be in C°, and not a polynomial.
Then shallow networks are dense in C°.

Shallow vs. deep with ReLU activation

Theorem 4. Let f be a L-Lipshitz continuous function of n vari-
ables. Then, the complexity of a network which is a linear combi-
nation of ReLU providing an approximation with accuracy at least

- NS:O((%)%),

wheres that of a deep compositional architecture is
€N —2
Nd:O((n—l)(Z) )

from [Poggio et al., 2017] 36/ 42



Width-bounded DNNs

Narrower than n + 4 is fine

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any
Lebesgue-integrable function f: R" — R and any € > 0, there exists a fully-connected ReLU
network o7 with width d,, < n + 4, such that the function F; represented by this network satisfies

f [flx) = For(a)|de < e 3)
o

But no narrower than n — 1

Theorem 3. For any confinuous function f: [—1,1]" — R which is not constant along any direction,
there exists a universal €* > 0 such that for any function F 4 represented by a fully-connected ReLU
network with width d,,, < n — 1, the L' distance between [ and F is at least €”:

/ |f(2) — Fa(z)|dz > €*. 3)
[~1,1]"

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]

Deep vs. shallow still active area of research

37/42



Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems (UATSs)

Fundamental slogan of DL

Where there is a function, there is a NN...
and go ahead fitting it!

38/ 42



Suggested reading

3942



Suggested reading

— Chap 4, Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/chap4.html

— Why and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review. (by Poggio et al)
https://arxiv.org/abs/1611.00740 [Poggio et al., 2017]

— Expressivity of Deep Neural Networks (by Ingo Giihring, Mones
Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759
[Glihring et al., 2020]

— The Modern Mathematics of Deep Learning (by Julius Berner,
Philipp Grohs, Gitta Kutyniok, Philipp Petersen)
https://arxiv.org/abs/2105.04026 [Berner et al., 2021]

40/ 42


http://neuralnetworksanddeeplearning.com/chap4.html
https://arxiv.org/abs/1611.00740
https://arxiv.org/abs/2007.04759
https://arxiv.org/abs/2105.04026

References i

[Berner et al., 2021] Berner, J., Grohs, P., Kutyniok, G., and Petersen, P. C. (2021).
The modern mathematics of deep learning. ArXiv, abs/2105.04026.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems, 2(4):303-314.

[DeVore et al., 2021] DeVore, R., Hanin, B., and Petrova, G. (2021). Neural network
approximation. Acta Numerica, 30:327—444.

[Giihring et al., 2020] Giihring, I., Raslan, M., and Kutyniok, G. (2020). Expressivity
of deep neural networks. arXiv:2007.04759.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251-257.

[Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal
approximation of an unknown mapping and its derivatives using multilayer
feedforward networks. Neural Networks, 3(5):551-560.

[Kidger and Lyons, 2019] Kidger, P. and Lyons, T. (2019). Universal approximation
with deep narrow networks. arXiv:1905.08539.

41/42



References

[Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).
Multilayer feedforward networks with a nonpolynomial activation function can
approximate any function. Neural Networks, 6(6):861-867.

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The
expressive power of neural networks: A view from the width. In Advances in neural
information processing systems, pages 6231-6239.

[Poggio et al., 2017] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q.
(2017). Why and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review. International Journal of Automation and Computing,
14(5):503-519.

42 /42



	Recap
	Why should we trust NNs?
	Visual proof of UAT
	UAT in rigorous form
	From shallow to deep NNs
	Suggested reading

