Basics of Numerical Optimization:
Iterative Methods

Ju Sun
Computer Science & Engineering

University of Minnesota, Twin Cities

February 3, 2026

1/49

Find global minimum

ming f(x)
Grid search: incurs O (™) cost

Smart search

1st-order necessary condition: Assume f is 1st-order differentiable at x¢.
If o is a local minimizer, then V f (2¢) = 0.

@ with Vf (x) = 0: 1st-order stationary point (10SP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at
xo. If 20 is a local min, V£ (o) = 0 and V*f (x0) > 0.

x with Vf () = 0 and V2f () = 0: 2nd-order stationary point (20SP)
2/49

x with Vf () = 0: 1st-order stationary point (10SP)

x with Vf () = 0 and V2f (x) = 0: 2nd-order stationary
point (20SP)

— Analytic method: find 10SP’s using gradient first, then study
them using Hessian — for simple functions! e.g.,
f () = |y — Az|[3, or [(z,y) = 2%y* — 2%y +y* — 1)

— lterative methods: find 10SP’s/20SP’s by making
consecutive small movements

This lecture: iterative methods

3/49

Iterative methods

0" o
’llll;
S ‘\\\g\\“\m. "’llllllllz"‘

\\\\\\ 03““\ ,qllmﬂ
\\\\ '

\

=

Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

Line-search methods: direction first, size second

— Trust-region methods: size first, direction second

4/49

Classic line-search methods

5/49

Framework of line-search methods

A generic line search algorithm

Input: initialization x(, stopping criterion (SC), k =1
1: while SC not satisfied do
2: choose a direction dy,
3: decide a step size t,
4. make a step: xp = xp_1 + tpdg
5. update counter: k =k + 1
6: end while

Four questions:

— How to choose direction d?
— How to choose step size t.?
— Where to initialize?

— When to stop?
6/49

How to choose a search direction?

We want to decrease the function value toward global minimum...
shortsighted answer: find a direction to decrease most rapidly

for any fixed ¢ > 0, using 1st order Taylor
expansion

f @y +tv) = f (@) = (V] (k) ,v)

A T/l(;l‘/,)
min (Vf (xx),v) = v T
\|vu2:1< f @), v) IV f (@)l

Set dk+1 =-Vf (a:k.)

gradient/steepest descent: ;.1 = x; — tV f (xy)

7/49

Gradient descent

min, xTAx +bTx

typical zig-zag path condltlonlng affects the path Iength

flay) =2* -

— remember direction curvature?
2
VTV f (@) = i f (w4 to)|

— large curvature <> narrow valley

— directional curvatures encoded in the

Hessian 849

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly
farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion
[@k +tv) — f(zr) 2t (V] (2k),v)
1
+ 5752 (v, Vi f () v)

minimizing the right side X
= wv=—t""[V3f(z)] VS (z)

grad desc: green; Newton: red

Set dyi1 = — [V2f (z1)] ' VS (@)

Newton's method: 1 = @i —t [V2f (24)] " Vf (2x),

t is often set to be 1.
9/49

Why called Newton’s method?

Newton's method: ;1 =z, —t [V2f (a:k)]fl Vf(zy),

Recall Newton's method for root-finding: f(z) =0

f (k)

Lp41 = Tk — f, (Tk:>

Newton's method for solving nonlinear system: f(x) =0
i1 = — [T (@) f ()
Newton's method for solving V f (x) = 0
2 =@ — [V2f (@] VF (@)

10/49

How to choose a search direction?

nearsighted choice: cost O(n) per step

gradient/steepest descent:
Tpy1 =xp —tVf (.’Bk)

farsighted choice: cost O(n?) per step

Newton’s method: x; 1 =
@i —t [V2f ()] VS (@),

Xo

Implication: The plain Newton never
grad desc: green; Newton: red

, used for large-scale problems. More on
Newton's method take fewer steps g

this later ...

11/49

Problems with Newton’s method

Newton's method: 1 = @i —t [V2f (@4)] " Vf (21),

for any fixed ¢ > 0, using 2nd-order Taylor expansion

[(@r +tv) — f(z) = LV (zx),v)

+ %t2 (v, V3 f () v)

minimizing the right side = v = —t ™" [V*f (x4)] v (zk)
— V?2f (xx) may be non-invertible
— the minimum value is —1 <Vf (xk), [V f (mk)}q i (mk)> If
V2f (x1) not positive definite, may be positive
solution: e.g., modify the Hessian V2 f (z1) 4+ 7I with 7 sufficiently large

12/49

How to choose step size?

Tri1 = Tk + trdy

— Naive choice: sufficiently small constant ¢ for all k

— A robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

€T\ SN S SR SR 9(t) = f(mx + tdi)

" \\%) = fmg) + LV (), dy)
13 /49

Back-tracking line search

f (@ +tde) = f (xr) + t(Vf (zk) ,di) + 0 (t]|dr]l,) when t sufficiently
small — t (V f (xx),dy) dictates the value decrease

— But we also want ¢ large as possible to make rapid progress

— idea: find a large possible t* to make sure
f(ze+t7dr) — f(zr) < ct™ (V[(xr),dr) (key condition) for a chosen
parameter ¢ € (0,1), and no less

— details: start from ¢ = 1. If the key condition not satisfied, ¢t = pt for a
chosen parameter p € (0, 1).

A widely implemented strategy in numerical optimization packages

Back-tracking line search

Input: initial ¢t > 0, p € (0,1), c € (0,1)

1: while f (zr + tdi) — f (xr) > ct (V[(), dr) do
2: t=pt

3: end while
Output: ¢, =t.

14 /49

Where to initialize?

2
. gly) =Y assinlbie + i) + dycos(ess + f
Fay) =a? gle.y ;u sin(biz + ciy) + ds cos(eia + fiy)

T

convex vs. nonconvex functions

— Convex: most iterative methods converge to the global min no matter the
initialization

— Nonconvex: initialization matters a lot. Common heuristics: random
initialization, multiple independent runs

— Nonconvex: clever initialization is possible with certain assumptions on
the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

15 /49

https://sunju.org/research/nonconvex/

1st-order necessary condition: Assume f is 1st-order differentiable at xo.

If &y is a local minimizer, then V f (x¢) = 0.
2nd-order necessary condition: Assume f (x) is 2-order differentiable at
xo. If 2o is a local min, V£ (o) = 0 and V*f (x) > 0.

Fix some positive tolerance values ¢4, e, €, €,. Possibilities:

IVf (xx)]|, < ey, i.e., check 1st order cond

[V f (2x), < eg and Amin (V?f (zk)) > —cu , i.e., check 2nd order
cond

|f (k) — f(2—1)] < ey

ler — k1], < ew

16 /49

Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard! (see,
e.g., [Murty and Kabadi, 1987])

2nd order sufficient: Vf (x0) = 0 and V2f (z) = 0
2nd order necessary: Vf (zo) = 0 and V2f (x0) = 0

fla,y) =2* —y* g(z,y) =2 —y*

Cases in between: local shapes around SOSP determined by spectral properties
of higher-order derivative tensors, calculating which is

hard [Hillar and Lim, 2013]!
17 /49

Advanced line-search methods
Momentum methods
Quasi-Newton methods
Coordinate descent

Conjugate gradient methods

18 /49

Advanced line-search methods

Momentum methods

19/49

Why momentum?

e v

gradient descent

Credit: Princeton ELE522

— GD is cheap (O(n) per step) but overall convergence sensitive
to conditioning

— Newton's convergence is not sensitive to conditioning but

expensive (O(n?) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

20/49

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change
of velocity.

Tp+1 = @k — g V[(xr) + Bk (xr — TK—1) due to Polyak
[—

momentum

heavy-ball method
Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 21/49

Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

Tpy1 = Tk + B (®r — Tp—1) — 'V f (Xr + Br (X — Tr—1))

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum

momentum
step

step
actual step

actual step

gradient
step

Credit: Stanford CS231N

HB Tahead = T + B(x — Told), Nesterov Tahead = & + (@ — Toid),
Tnew = Tahead — @V f (). Tnew = Zahead — OV f(Zanead)-

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].

22 /49

Advanced line-search methods

Quasi-Newton methods

23/49

Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n?) storage and O(n®*) computation per step

Tyr = @ — ¢ [V (2)] 7 VS ()

Idea: approximate V°f (zx) or [V”f (z)] ~! to allow efficient storage and
computation — Quasi-Newton Methods

Choose H, to approximate V2 f (x) so that

— avoid calculation of second derivatives

— simplify matrix inversion, i.e., computing the search direction

24 /49

Quasi-Newton methods

given: starting point xg € dom f, Hy > 0

fork=0,1,...

1. compute quasi-Newton direction Ax; = —Hk‘1Vf(xk)

2. determine step size 1; (e.g., by backtracking line search)
3. compute xg41 = X + tpAxy
4

. compute Hy 1

— Different variants differ on how to compute H 1

— Normally H;l or its factorized version stored to simplify calculation
of Axy,

Credit: UCLA ECE236C

25 /49

BFGS method

Broyden—Fletcher-Goldfarb—Shanno (BFGS) method

BFGS update
yy!' HpssTHy
yl's sTHys

where
$= X1 =Xk, Y = VI (ke) = V()

Inverse update

T T T
() (o2t s
H’”'_([yTs)Hk (1 yTS)erTX

Cost of update: O(n?) (vs. O(n®) in Newton's method), storage: O(n?) To
derive the update equations, three conditions are imposed:

— secant condition: H 118 = y (think of 1st Taylor expansion to V f)
— curvature condition: s%yk > 0 to ensure that Hy4; > 0 if Hy >0

— Hy41 and Hy are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] cCredit: UCLA ECE236C
26 /49

Limited-memory BFGS (L-BFGS)

Limited-memory BFGS (L-BFGS): do not store H’k_l explicitly

e instead we store up to m (e.g., m = 30) values of

Sj = Xj41 — Xj, Yi= V.f'(xjﬂ) - Vf(f"j)

e we evaluate Axy = H}:1Vf(,rk) recursively, using

T T T
s;y Vs 58
-1 _ ;7 —1|;_ 17 J
“’j+1(Jr %))HJ (I T)* T

J% Yital Ypti

forj =k -1,...,k —m, assuming, for example, H;_,, = [

e an alternative is to restart after m iterations

Cost of update: (vs. O(n?) in BFGS), storage: (vs. O(n?) in
BFGS) —

See Chap 7 of [Nocedal and Wright, 2006] credit: uCLA ECE236C
27 /49

Advanced line-search methods

Coordinate descent

28 /49

Block coordinate descent

Consider a function f (x1,...,xp) with &1 € R™, ..., &, € R"?

A generic block coordinate descent algorithm

Input: initialization (21,0, ..., %p,0) (the 2nd subscript indexes iteration number)
1: fork=1,2,... do
2: Pick a block index i € {1,...,p}

3: Minimize wrt the chosen block:

L = arg Hlinggn{{"i f (wl,k—l, ceey :13,',,17k,1,€, Lit1,k—1y-- - a}p‘kfl)
4: Leave other blocks unchanged: xj, = xjr—1Vj #1i
5: end for

— Also called alternating direction/minimization methods
— When ny =ny =--- =n, =1, called coordinate descent
— Minimization in Line 3 can be inexact: e.g.,
Tik = Tik-1 —tk% (1 k—1ye s @i 1, @i k1, Tif 1, k-1, Tp k1)
— In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

29 /49

Block coordinate descent: examples

Least-squares min,, f (x) = |y — Az’

= lly — Az|; = lly — A_jz—; —]
~ coordinate descent: minger [y — A @i — @&’

<y_A7'wai:a'i>
lla:ll2

— ‘/L.’L+ =
(A_; is A with the i-th column removed; ©_; is with the i-th
coordinate removed)

Matrix factorization ming g ||Y — AB||§7

— Two groups of variables, consider block coordinate descent
— Updates:

A, =YB",

B, =A'Y.

() denotes the matrix pseudoinverse.
30,49

Why block coordinate descent?

— may work with constrained problems and non-differentiable
problems (e.g., mina g ||Y — ABH%, s.t. A orthogonal,
Lasso: min, ||y — Az|; + A z],)

— may be faster than gradient descent or Newton (next)

— may be simple and cheap!
Some references:

— [Wright, 2015]
— Lecture notes by Prof. Ruoyu Sun

31/49

https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Advanced line-search methods

Conjugate gradient methods

32/49

Conjugate direction methods

Solve linear equation y = Ax <= min, iz’ Ax — b'x with A > 0

apply coordinate descent...

]

¢

diagonal A: solve the problem in n non-diagonal A: does not solve the
steps problem in n steps

33/49

Conjugate direction methods

Solve linear equation y = Az <= min, iz’ Ax — b'x with A > 0

\

¢

non-diagonal A: does not solve
the problem in n steps

Idea: define n “conjugate directions”

{p,--.

, P, } so that p] Ap,; = 0 for all

1 # j—conjugate as generalization of orthogonal

Write P = [py,...,p,]. Can verify that
PTAP is diagonal and positive

Write @ = Ps. Then %mTAw —bTx =
18T (PTAP)s — (P"b)T s — quadratic
with diagonal PTAP

Perform updates in the s space, but write
the equivalent form in @ space

The i-the coordinate direction in the s
space is p, in the x space

In short, change of variable trick!

34 /49

Conjugate gradient methods

Solve linear equation y = Az <= min, iz’ Ax — b'x with A > 0
Idea: define n “conjugate directions” {p,,...,p,} so that p] Ap; =0 for all

1 # j—conjugate as generalization of orthogonal

Generally, many choices for {p,,....p, }.
Conjugate gradient methods: choice based on ideas from steepest descent

Algorithm 5.2 (CG).
Given xg;
Setrg <— Axg — b, pg < —rg, k < 0;
while ry # 0

T

o <~ };‘ i ; (5.24a)
Pr APk

Xit1 <= X + o Pis (5.24b)

Fig1 < T+ arApg: (5.24¢)

rkT+1Vk+1

Bt < —5— (5.24d)
rk 143

Pkt < —Tkg1 + Brs1Pis (5.24¢)

k<—k+1; (5.24f)

end (while) 35 / 49

Conjugate gradient methods

— Can be extended to general

non-quadratic functions

— Often used to solve
subproblems of other
iterative methods, e.g.,
truncated Newton method,
the trust-region subproblem
(later)

See Chap 5
of [Nocedal and Wright, 2006]

CG vs. GD (Green: GD,
Red: CG)
36 /49

Trust-region methods

37/49

Iterative methods

[llustration of iterative
methods on the
contour/levelset plot (i.e., the
function assumes the same
value on each curve)

Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

— Line-search methods: direction first, size second

— Trust-region methods (TRM): size first, direction second

38/49

Ideas behind TRM

Recall Taylor expansion f (z +d) ~ f (x) + (Vf (zx),d) + 5 (d, V> f (x) d)
Start with o. Repeat the following:
— At xy, approximate f by the quadratic function (called
model function dotted black in the left plot)
1
e (d) = f (20) + (V] (22), d) + 5 (d, Brd)
i.e., my (d) = f (xy + d), and By, to approximate
V2 f ()

— Minimize my (d) within a trust region
{d:||d|]| <A}, ie., anorm ball (in red), to obtain dy

— If the approximation is inaccurate, decrease the region

Credit: [Arezki et al., 2018]

size; if the approximation is sufficiently accurate,
increase the region size.

— If the approximation is reasonably accurate, update the
iterate xr4+1 = Tk + di.

39/49

Framework of trust-region methods

. . P - f(eg)—f(ep+dr) _ actual decrease
To measure approximation quality: pr = e (07— T e

A generic trust-region algorithm

Input: @, radius cap A > 0, initial radius Ay, acceptance ratio n € [0,1/4)
1: for k=0,1,... do
. dj, = argming my, (d), s.t. [|d]| < Ag (TR Subproblem)

3 if pj, < 1/4 then

4 Apt1 = Ag/4

5: else

6: if pp > 3/4 and ||dy|| = Ay then
7: Ap41 = min (ZAk,ﬁ)
8 else

9: Apir = A

10: end if

11: endif

12: if pp, > n then

13: Tyl = xp +dg

14: else

15: T4l = T

16: endif

17: end for

40 /49

Why TRM?

Recall the model function my (d) = f (zx) + (V f (xk),d) + 5 (d, B..d)
- Take By = V?f (xx)
— Gradient descent: stop at Vf (zx) =0

— Newton's method: [V2f ()] ! V f () may just stop at Vf (zx) =0
or be ill-defined

— Trust-region method: ming my (d) s.t. ||d]] < Ay

When Vf (zx) = 0,

fla,y) =2* —

my (d) — f (@x) = 5 (d, V*f (z1) d) .

N[~

If V2f (21) has negative eigenvalues, i.e., there
are negative directional curvatures,

1{d,V?f (zx) d) < 0 for certain choices of d
(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!
41 /49

To learn more about TRM

— A comprehensive reference [Conn et al., 2000]

— A closely-related alternative: cubic regularized second-order
(CRSOM)
method [Nesterov and Polyak, 2006, Agarwal et al., 2018]

— Example implementation of both TRM and CRSOM: Manopt
(in Matlab, Python, and Julia) https://www.manopt.org/
(choosing the Euclidean manifold)

— Computational complexity of numerical optimization
methods [Cartis et al., 2022]

42 /49

https://www.manopt.org/

A word on constrained problems

43 /49

Why constrained optimization in deep learning?

General constrained optimization (nonlinear programming, NLP)

min f(x) s.t. gi(zx) <0Viel,

he(x) =0Vec&

inequality constraints

equality constraints

f(@), gi(x)'s, and he(x) can be nonconvex, and non-differentiable

Example I: Robustness of DL

e u fo : deep learning model
—

4

max Uy, fo(z')) Try to change the label
s.t. d(m,a’) <e Small perturbation
' €[0,1]" Stilla valid image

Example Il: Physics-informed neural
networks (PINNs)

Sl 0w Pu Pu
X0 Oag’ Omdm T Dadwg’

L(6:;T) = wlﬁlw 7'/) +wb£b(9 7'u)

/

penalty parameters

L1(6:T7) =

£(0:T) =

7
L
r

;A):u, xeq,

z
=

B(u,x)=0 on 00

Boundary Condition

lo

\B(a,x)|3,

44 /49

Solvers for constrained optimization

N current Tensorflow and Pytorch only target
unconstrained problems
Tensorflow Pytorch
Differentiable | General Specific
Solvers Nonconvex | Nonsmooth | manifold smooth constrained
constraints constraint ML problem
SDPT3, Gurobi, Cplex, TFOCS, | X 4 X X X
CVX(PY), AMPL, YALMIP
PyTorch, Tensorflow (V4 V4 X X X
(Py)manopt, Geomstats, McTorch, | \/ "4 4 X X
Geoopt, GeoTorch
KNITRO, IPOPT, GENO, ensmallen | / V4 v v X
Scikit-learn, MLib, Weka v v X X V4

45 /49

NCVX for constrained DL optimization

NCVX PyGRANSO

&«) 20 X = Contents
https://ncvx.org/
OPYGRANSO Getthe Code
Ny Home
NCVX PyGRANSO Contents
Documentation Acknowledgements
Introduction
Installation
Settng v
s NCVX Package
Examples v
Tips NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX

NCVX Methods problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer

Science & Engineering, University of Minnesota, Twin Cities
Citing PYGRANSO

— more info in https://ncvx.org/tutorials/_files/SDM23_
Deep_Learning_with_Nontrivial_Constraints.pdf and
https://arxiv.org/abs/2210.00973

— complete code examples for machine/deep learning applications
https://ncvx.org/examples/index.html 46 /49

https://ncvx.org/tutorials/_files/SDM23_Deep_Learning_with_Nontrivial_Constraints.pdf
https://ncvx.org/tutorials/_files/SDM23_Deep_Learning_with_Nontrivial_Constraints.pdf
https://arxiv.org/abs/2210.00973
https://ncvx.org/examples/index.html

Quick examples

. 1 9 n
min 2 flwl” + CZ;Q

sty (wiae; +b)>1-¢, >0 Vi

dlz,z’) < e
z' €0,1]"

comb fn(X struct):
comb_fn(X struct):
w = X struct.w
b = X struct.b X _prime = X struct.x prime
zeta = X_struct.zeta
loss func(y, f theta(x prime))
).5%w.T@wW + C*torch.sum(zeta)
ci = pygransoStruct()
= pygransoStruct() ci.cl = d(x,x prime) - epsilon
.cl =1 - zeta - y*(x@w+b) ci.c2 = -x prime

-C2 = -zeta ci.c3 = x prime-1

Lty icel [f,ci,ce]

var_in
{ { i : list(x.shape)}

soln = pygranso(var_in,comb _fn)
pygranso(var_in,comb fn)

References i

[Agarwal et al., 2018] Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. (2018).
Adaptive regularization with cubics on manifolds. arXiv:1806.00065.

[Arezki et al., 2018] Arezki, Y., Nouira, H., Anwer, N., and Mehdi-Souzani, C. (2018).
A novel hybrid trust region minimax fitting algorithm for accurate dimensional
metrology of aspherical shapes. Measurement, 127:134-140.

[Beck, 2017] Beck, A. (2017). First-Order Methods in Optimization. Society for
Industrial and Applied Mathematics.

[Cartis et al., 2022] Cartis, C., Gould, N., and Toint, P. (2022). Evaluation Complexity
of Algorithms for Nonconvex Optimization: Theory, Computation and
Perspectives. SIAM.

[Conn et al., 2000] Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust
Region Methods. Society for Industrial and Applied Mathematics.

[Hillar and Lim, 2013] Hillar, C. J. and Lim, L.-H. (2013). Most tensor problems are
NP-hard. Journal of the ACM, 60(6):1-39.

48 /49

References

[Murty and Kabadi, 1987] Murty, K. G. and Kabadi, S. N. (1987). Some NP-complete
problems in quadratic and nonlinear programming. Mathematical Programming,
39(2):117-129.

[Nesterov, 2018] Nesterov, Y. (2018). Lectures on Convex Optimization. Springer

International Publishing.

[Nesterov and Polyak, 2006] Nesterov, Y. and Polyak, B. (2006). Cubic regularization
of newton method and its global performance. Mathematical Programming,
108(1):177-205.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical
Optimization. Springer New York.

[Wright, 2015] Wright, S. J. (2015). Coordinate descent algorithms. Mathematical
Programming, 151(1):3-34.

49 /49

	Classic line-search methods
	Advanced line-search methods
	Trust-region methods
	A word on constrained problems

