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Three fundamental questions in DL

Output layer

— k-layer NNs: with k layers of
weights (along the deepest
path)

Hidden layer

— k-hidden-layer NNs: with k
hidden layers of nodes (i.e.,
(k + 1)-layer NNs)

Input layer

— Approximation: is it powerful, i.e., the H large enough for all
possible weights?

— Optimization: how to solve
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(now)

— Generalization: does the learned NN work well on “similar’ data?
(CSCI5525, and Deep Learning Theory)
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Optimality conditions of unconstrained optimization
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Optimization problems

Nothing takes place in the world
whose meaning is not that of some
f(z) maximum or minimum. — Euler

minimum

min f () s.t. © € C.

xr

— @ optimization variables, f (x): objective function, C" constraint
(or feasible) set

— C consists of continuous values (e.g., R™, [0,1]™): continuous
optimization; C consists of discrete values (e.g., {—1,+1}"):
discrete optimization

— C whole space R": unconstrained optimization; C a strict subset
of the space: constrained optimization

We focus on continuous, unconstrained optimization here.
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Global and local mins

Local _\I{u;imum Global Maximum
\ / Let f(x): R" — R,
RN ;
min £
% xR f ( )
Global Minimun Local Minimum

Credit: study.com

— x is a local minimizer if: 3¢ > 0, so that f (x¢) < f () for all
satisfying || — ||, < . The value f (xo) is called a local
minimum.

— g is a global minimizer if: f () < f (x) for all x € R™. The
value is f (xg) called the global minimum.

5/15



A naive method for optimization

Grid search

— For 1D problem, assume we know the global min lies in [—1, 1]
— Take uniformly grid points in [—1, 1] so that any adjacent points are
separated by €.

— Need O(s*) points to get an e-close point to the global min by

exhaustive search

For N-D problems, need O (¢~") computation.
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What we do in practice

o is the identity function

Qutput layer
RN 2
Input layer Hlll)n g Z Hyz —w leQ
i=1
Credit: D2L

]

mm flw ZH%—w %Hg—*Hy—Xng where X = |
T

= Vf(w) = %XT (Xw —y)

Vi(w)=0<+<= gXT (Xw—y)=0= w=(X"X)" XTy+null(X)
n

Optimality conditions: Reduce the search space by characterizing the

local /global mins
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Recall: Taylor’s theorem

Vector version: consider f (x) : R" — R
— If f is 1st-order differentiable at a, then
f®+8)=f(x)+ (Vf(x),d) +o(]d],) asd — 0.
— If f is 2nd-order differentiable at @, then
f@+8)=[ (@) + (V/(2).6) + - (5,9 (x)8) + o||8]|2) as & — 0.
Matrix version: consider f(X): R™*" — R

— If f is 1st-order differentiable at X, then
F(X+A)=[(X)+(V/(X).A)+o(Alr)as A — 0
— If f is 2nd-order differentiable at X, then
1 2 .
FX+A)=f(X)+(V[(X),A)+ 5 (A, V[ (X)[A]) +o(|A[lZ)
as A — 0.
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First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at xo. If 2o is a
local minimizer, V f (o) = 0.

Local ,\l\uimmn I/ Global Maximum Intuition: Vf IS “I’ate of Change” of function

Fa

value. If the rate is not zero at x¢, possible to

decrease f along —V f (o)

R

Global Minimum’ Local Minimum

Taylor's: f(xo + 8) = f (zo) + (V.f (®0),8) + o (||6]],). If zo is a local min:

— For all § sufficiently small,

S (@o +8) = f (o) = (Vf (20),0) + 0 (|ld]l,) =0

For all § sufficiently small, sign of (V f (o) ,8) + o (||6]|,) determined by
the sign of (Vf (z0),4d), i.e., (V[ (xzo),d) > 0.

So for all § sufficiently small, (Vf (x0),d) > 0 and

(Vf (o), =8) = =(Vf(20),0) 20 = (Vf(20),8) =0

So Vf (xzo) = 0.
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First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at xo. If o is a

local minimizer, then V f (o) = 0.

When sufficient? for convex functions

1)

— geometric def.: function for which any
line segment connecting two points of its
e+ -7 graph always lies above the graph

— algebraic def.: Vz,y and a € [0,1]:

e floz+(1-a)y) < af @)+(1-a) f (y).
Any convex function has only one local minimum (value!), which is also global!
Proof sketch: if z, z are both local minimizers and f (z) < f (),
flaz+ (1 -a)z) <af(z)+ (1 —a) f(2) <af(z)+(1-a)f(z)

Butaz+(1—a)x — x as o — 0.

f ().
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First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at xo. If 2o is a
local minimizer, then V f (o) = 0.

Sufficient condition: Assume f is convex and 1st-order differentiable. If
Vf(x) =0 at a point & = o, then xo is a local/global minimizer.

— Suppose f is twice differentiable. [ is convex <= V*f(x) = 0 for all
* Consider f(w) = |y — Xwl||; and its solutions again
* s f(W1,Ws) = ||y — WoWiz||3 convex?
— Convex analysis (i.e., theory) and optimization (i.e., numerical methods)
are relatively mature. Recommended resources: analysis:
[Hiriart-Urruty and Lemaréchal, 2001], optimization:
[Boyd and Vandenberghe, 2004]
— We don’t assume convexity unless stated, as DNN objectives are almost
always nonconvex.
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Second-order optimality condition

Necessary condition: Assume f (x) is 2-order differentiable at @o. If @o is
a local min, Vf (x¢) = 0 and V?f (xo) = 0O (i.e., positive semidefinite).

Sufficient condition: Assume f (x) is 2-order differentiable at xo. If
Vf (20) =0 and V2f (x0) - 0 (i.e., positive definite), a0 is a local min.

Taylor's: f(xo+ 8) = f(xo) + (VS (x0),0) + % <5, V2 f (x0) 5> +o0 (HéH;)

— If o is a local min, V f (x¢) = 0 (1st-order condition) and
F (o +8) = [ (o) + 5 (8,Vf (w0) &) + o (|I5][3)-
— So f(mo+8)— f(wo) =1 (8,V’f(m0) ) +o0 (H5||§) >0 for all §
sufficiently small
— For all § sufficiently small, sign of 2 (8, V*f (20) 8) + o (||8]13)
determined by the sign of % <5, V2 f (o) 5> = % <5,V2f (z0) 6> >0
- So V2f (z0) = 0.
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What’s in between?

2nd order sufficient: Vf (x0) = 0 and V2f (zo) = 0
2nd order necessary: Vf (zo) = 0 and V[ (20) = 0

flay) =a* -y gla.y) =" — ¢}




Coutour plot

A4

\___

contour/levelset plot gradient direction? why?

(Credit: Mathworks)
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