Basics of Numerical Optimization: Optimality Conditions

Ju Sun

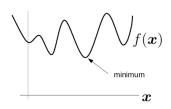
Computer Science & Engineering University of Minnesota, Twin Cities

February 4, 2025

Outline

Optimality conditions of unconstrained optimization

Optimization problems



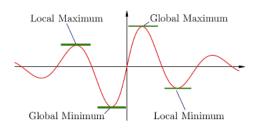
Nothing takes place in the world whose meaning is not that of some maximum or minimum. – Euler

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s. t. $\boldsymbol{x} \in C$.

- x: optimization variables, f(x): objective function, C: constraint (or feasible) set
- C consists of continuous values (e.g., \mathbb{R}^n , $[0,1]^n$): **continuous optimization**; C consists of discrete values (e.g., $\{-1,+1\}^n$): discrete optimization
- C whole space \mathbb{R}^n : unconstrained optimization; C a strict subset of the space: constrained optimization

We focus on continuous, unconstrained optimization here.

Global and local mins



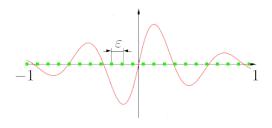
Let
$$f\left(x\right):\mathbb{R}^{n} \rightarrow \mathbb{R}$$
,
$$\min_{x \in \mathbb{R}^{n}} f\left(x\right)$$

Credit: study.com

- x_0 is a **local minimizer** if: $\exists \varepsilon > 0$, so that $f(x_0) \leq f(x)$ for all x satisfying $\|x x_0\|_2 < \varepsilon$. The value $f(x_0)$ is called a **local minimum**.
- x_0 is a **global minimizer** if: $f(x_0) \leq f(x)$ for all $x \in \mathbb{R}^n$. The value is $f(x_0)$ called the **global minimum**.

A naive method for optimization

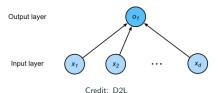
Grid search



- For 1D problem, assume we know the global min lies in [-1, 1]
- Take uniformly grid points in [-1,1] so that any adjacent points are separated by ε .
- Need $O(\varepsilon^{-1})$ points to get an ε -close point to the global min by exhaustive search

For N-D problems, need $O\left(\varepsilon^{-n}\right)$ computation.

What we do in practice



 σ is the identity function

$$\min_{\boldsymbol{w}} \ \frac{1}{n} \sum_{i=1}^{n} \left\| y_i - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i \right\|_2^2$$

$$\begin{aligned} \min_{\boldsymbol{w}} \ f(\boldsymbol{w}) &\doteq \frac{1}{n} \sum_{i=1}^{n} \|y_i - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i\|_2^2 = \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_2^2 \quad \text{where } \boldsymbol{X} \doteq \begin{bmatrix} \boldsymbol{x}_1^{\mathsf{T}} \\ \vdots \\ \boldsymbol{x}_n^{\mathsf{T}} \end{bmatrix} \\ &\Longrightarrow \nabla f(\boldsymbol{w}) = \frac{2}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}) \end{aligned}$$

$$\nabla f(\boldsymbol{w}) = \boldsymbol{0} \Longleftrightarrow \frac{2}{n} \boldsymbol{X}^{\intercal} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}) = \boldsymbol{0} \Longrightarrow \boldsymbol{w} = (\boldsymbol{X}^{\intercal} \boldsymbol{X})^{+} \boldsymbol{X}^{\intercal} \boldsymbol{y} + \text{null}(\boldsymbol{X})$$

Optimality conditions: Reduce the search space by **characterizing** the local/global mins

Recall: Taylor's theorem

Vector version: consider $f(x): \mathbb{R}^n \to \mathbb{R}$

- If f is 1st-order differentiable at x, then

$$f(\mathbf{x} + \mathbf{\delta}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{\delta} \rangle + o(\|\mathbf{\delta}\|_2) \text{ as } \mathbf{\delta} \to \mathbf{0}.$$

- If f is 2nd-order differentiable at x, then

$$f\left(oldsymbol{x}+oldsymbol{\delta}
ight)=f\left(oldsymbol{x}
ight)+\left\langle
abla f\left(oldsymbol{x}
ight),oldsymbol{\delta}
ight
angle +rac{1}{2}\left\langle oldsymbol{\delta},
abla^{2}f\left(oldsymbol{x}
ight)oldsymbol{\delta}
ight
angle +o(\|oldsymbol{\delta}\|_{2}^{2}) ext{ as }oldsymbol{\delta}
ightarrow 0.$$

Matrix version: consider $f(X) : \mathbb{R}^{m \times n} \to \mathbb{R}$

- If f is 1st-order differentiable at X, then

$$f\left(\boldsymbol{X}+\boldsymbol{\Delta}\right)=f\left(\boldsymbol{X}\right)+\left\langle \nabla f\left(\boldsymbol{X}\right),\boldsymbol{\Delta}\right\rangle +o(\left\|\boldsymbol{\Delta}\right\|_{F})\text{ as }\boldsymbol{\Delta}\rightarrow\mathbf{0}.$$

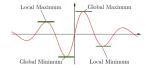
- If f is 2nd-order differentiable at X, then

$$f\left(\boldsymbol{X}+\boldsymbol{\Delta}\right)=f\left(\boldsymbol{X}\right)+\left\langle \nabla f\left(\boldsymbol{X}\right),\boldsymbol{\Delta}\right\rangle +\frac{1}{2}\left\langle \boldsymbol{\Delta},\nabla^{2}f\left(\boldsymbol{X}\right)\left[\boldsymbol{\Delta}\right]\right\rangle +o(\left\|\boldsymbol{\Delta}\right\|_{F}^{2})$$

as
$$oldsymbol{\Delta}
ightarrow oldsymbol{0}$$
 .

First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=\mathbf{0}$.



Intuition: ∇f is "rate of change" of function value. If the rate is not zero at \boldsymbol{x}_0 , possible to decrease f along $-\nabla f\left(\boldsymbol{x}_0\right)$

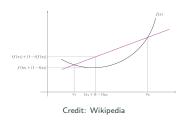
Taylor's: $f(x_0 + \delta) = f(x_0) + \langle \nabla f(x_0), \delta \rangle + o(\|\delta\|_2)$. If x_0 is a local min:

- For all δ sufficiently small, $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}\right)\geq0$
- For all δ sufficiently small, sign of $\langle \nabla f\left(x_{0}\right),\delta\rangle+o\left(\left\|\delta\right\|_{2}\right)$ determined by the sign of $\langle \nabla f\left(x_{0}\right),\delta\rangle$, i.e., $\langle \nabla f\left(x_{0}\right),\delta\rangle\geq0$.
- So for all δ sufficiently small, $\langle \nabla f(x_0), \delta \rangle \geq 0$ and $\langle \nabla f(x_0), -\delta \rangle = -\langle \nabla f(x_0), \delta \rangle \geq 0 \Longrightarrow \langle \nabla f(x_0), \delta \rangle = 0$
- So $\nabla f(\boldsymbol{x}_0) = \boldsymbol{0}$.

First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, then $\nabla f(x_0) = 0$.

When sufficient? for convex functions



- geometric def.: function for which any line segment connecting two points of its graph always lies above the graph
- algebraic def.: $\forall \, \boldsymbol{x}, \boldsymbol{y} \text{ and } \alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha) y) \le \alpha f(x) + (1 - \alpha) f(y)$$
.

Any convex function has only one local minimum (value!), which is also global!

Proof sketch: if x, z are both local minimizers and f(z) < f(x),

$$f(\alpha z + (1 - \alpha)x) \le \alpha f(z) + (1 - \alpha)f(x) < \alpha f(x) + (1 - \alpha)f(x) = f(x).$$

But $\alpha \boldsymbol{z} + (1 - \alpha) \boldsymbol{x} \to \boldsymbol{x}$ as $\alpha \to 0$.

First-order optimality condition

Necessary condition: Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, then $\nabla f\left(x_0\right)=0$.

Sufficient condition: Assume f is convex and 1st-order differentiable. If $\nabla f(x) = 0$ at a point $x = x_0$, then x_0 is a local/global minimizer.

- Suppose f is twice differentiable. f is convex $\iff
 abla^2 f(x) \succeq \mathbf{0}$ for all x
 - * Consider $f(oldsymbol{w}) = rac{1}{n} \left\| oldsymbol{y} oldsymbol{X} oldsymbol{w}
 ight\|_2^2$ and its solutions again
 - * Is $f(W_1, W_2) = \|y W_2 W_1 x\|_2^2$ convex?
- Convex analysis (i.e., theory) and optimization (i.e., numerical methods) are relatively mature. Recommended resources: analysis:
 [Hiriart-Urruty and Lemaréchal, 2001], optimization:
 [Boyd and Vandenberghe, 2004]
- We don't assume convexity unless stated, as DNN objectives are almost always nonconvex.

Second-order optimality condition

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

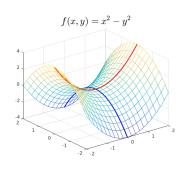
Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succ \mathbf{0}$ (i.e., positive definite), x_0 is a local min.

Taylor's:
$$f(\mathbf{x}_0 + \mathbf{\delta}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{\delta} \rangle + \frac{1}{2} \langle \mathbf{\delta}, \nabla^2 f(\mathbf{x}_0) \mathbf{\delta} \rangle + o(\|\mathbf{\delta}\|_2^2).$$

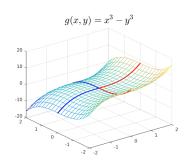
- If x_0 is a local min, $\nabla f(x_0) = 0$ (1st-order condition) and $f(x_0 + \delta) = f(x_0) + \frac{1}{2} \langle \delta, \nabla^2 f(x_0) \delta \rangle + o(\|\delta\|_2^2)$.
- So $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2}f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right)\geq0$ for all $\boldsymbol{\delta}$ sufficiently small
- For all δ sufficiently small, sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(\boldsymbol{x}_0 \right) \delta \right\rangle + o\left(\left\| \delta \right\|_2^2 \right)$ determined by the sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(\boldsymbol{x}_0 \right) \delta \right\rangle \Longrightarrow \frac{1}{2} \left\langle \delta, \nabla^2 f\left(\boldsymbol{x}_0 \right) \delta \right\rangle \geq 0$
- So $\nabla^2 f(\boldsymbol{x}_0) \succeq \boldsymbol{0}$.

What's in between?

2nd order sufficient: $\nabla f\left(x_{0}\right) = \mathbf{0}$ and $\nabla^{2} f\left(x_{0}\right) \succ \mathbf{0}$ 2nd order necessary: $\nabla f\left(x_{0}\right) = \mathbf{0}$ and $\nabla^{2} f\left(x_{0}\right) \succeq \mathbf{0}$

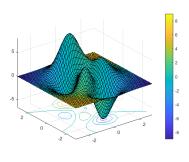


$$\nabla f = \begin{bmatrix} 2x \\ -2y \end{bmatrix}, \nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$



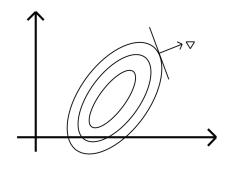
$$\nabla g = \begin{bmatrix} 3x^2 \\ -3y^2 \end{bmatrix}, \nabla^2 g = \begin{bmatrix} 6x & 0 \\ 0 & -6y \end{bmatrix}$$

Coutour plot



contour/levelset plot

(Credit: Mathworks)



gradient direction? why?

References i

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

[Hiriart-Urruty and Lemaréchal, 2001] Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of Convex Analysis. Springer Berlin Heidelberg.