
HOMEWORK SET 4
CSCI5527 Deep Learning (Spring 2025)

Due 11:59 pm, Apr 23 2025

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each top-level problem (i.e., Problem 1, Problem 2, etc)
into a separate Jupyter notebook file (i.e., .ipynb file). Your submission to Gradescope should
include the single PDF and all notebook files—please DO NOT zip them! No late submission will
be accepted. For each problem, you should acknowledge your collaborators—including AI tools, if
any.

About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Important notes Please provide detailed steps with justification for all problems; jumping to the
final results leads to a zero score. Also, if we ask you to use certain facts/tools to obtain something,
you have to use these facts/tools (perhaps plus others); otherwise, you get a zero score, e.g., if you
prove everything from scratch when we ask you to use an existing theorem.

Problem 1 (Recurrent neural networks; 4/15) In this problem, we will solve a simple text-based
sentiment analysis problem. The dataset is at https://www.kaggle.com/kazanova/sentiment140.
This github site https://github.com/bentrevett/pytorch-sentiment-analysis includes de-
tailed tutorials on performing sentiment analysis using basic and advanced RNNmodels in PyTorch
on the classical IMDb dataset. Please go over the tutorials and feel free to adapt the codes there.

(a) Implement an LSTM cell, and compare its behavior with the PyTorch built-in at https://
pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html#torch.nn.LSTMCell. For
the implementation, please follow the exact formulas on the previous website; for comparison,
you can follow these steps: (i) follow the example at the bottom of the torch.nn.LSTMCell
page to create the output; (ii) read the random initialized weights inside the rnn module in
that example (note that these weights are the module variables as described in their docu-
mentation), and use these weights for your own implementation of LSTM; (iii) execute the
example based on your implementation of the LSTM module and compare the outputs from
the two different versions. (1/15)

1

https://chat.openai.com/
https://claude.ai/chats
https://claude.ai/chats
https://github.com/features/copilot
https://learn.deeplearning.ai/
https://www.kaggle.com/kazanova/sentiment140
https://github.com/bentrevett/pytorch-sentiment-analysis
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html#torch.nn.LSTMCell
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html#torch.nn.LSTMCell

(b) Read the instruction on the Kaggle website and load the data from the sentiment140 dataset.
We will use the text field to predict the target, i.e., polarity. The text field is not as clean as the
IMDb dataset, e.g., the “@ xxxx" part is probably not useful for sentiment analysis. Perform
data clean-up when necessary. There is a single data file in the dataset. Please split it into
60% training, 20% validation, and 20% test. (1/15)

(c) Design and train a sentiment analysis model on the data. Again, feel free to start with the
above-mentioned sentiment analysis tutorial and adapt the models there. (1/15)

(d) A “85%" test: you’ll get 1 point if your classification accuracy exceeds 85%. (1/15)

Problem 2 (Attention and Transformers; 6/15) In this problem, we will practice the basics of
the attention mechanism and try to get a precise understanding of the building components in
Transformers.

(a) Take 10 random digit images from MNIST, one for each class, and then vectorize them. These
are the source vectors. Then follow the same procedure to independently form 10 target
vectors. Write code to calculate the (cross-)attention between the 10 target vectors and the 10
source vectors, i.e., for each target vector, follow the standard dot-product attention to form a
weighted sum of the source vectors, and then reshape and display your weighted sum as an
image—of the same size as the original MNIST images. (0.5/15)
In addition, display the 10 × 10 attention matrix, which visualizes the combination weights.
What do you observe from the attention matrix? (0.5/15)

(b) For any pair of given vectors x ∈ Rm, y ∈ Rn where m may or may not equal n in practice, the
attention score simply measures “similarity” between them. In classical machine learning, ker-
nels are a systematic way of measuring similarities: for x, x′ ∈ Rn, K(x, x′) = ⟨Φ(x), Φ(x′)⟩,
where Φ(·) is the feature mapping induced by the kernel K. Recall that in kernel methods, we
do not need to define themappingΦ but instead just need to defineK directly. For example, the
famous Gaussian (or radial basis function, RBF) kernel is: K(x, x′) = exp(− ∥x − x′∥2

2 /σ2).
What are the relative pros and cons of using attention vs. using the classical kernel to measure
similarities? (1/15)

(c) Moving to self-attention, for each input, we have a learnable (query, key, value) triple, and the
output will be a weighted sum of all the values based on attention mechanism. Given a data
matrix X ∈ RN×d where each row represents a token, the output can be succinctly written as

Xnew = softmax(XW Q(W K)⊺X⊺)XW V , (1)

where the three matrices W Q, W K , W V ∈ Rd×D are learnable. What is the computational
complexity of (1) for a forward pass? What happens when N is large? (1/15)
Given any N × N permutation matrix Π (https://en.wikipedia.org/wiki/Permutation_
matrix), ΠX permutes the rows of X , i.e., the input tokens. Prove that the output will change
into ΠXnew, i.e., the output tokens will be permuted in the same way as to the input. (0.5/15)

(d) Each encoder layer in the Transformer model consists of multi-head self-attention layer fol-
lowed by a shallow feedforward network applied to each position separately and identically.
Implement an encoder layer; you probably want to check out the related sections of the origi-
nal paper https://arxiv.org/abs/1706.03762 or other online resources for details. (1/15)
(Optional) Youmaywant to compare your implementation against the PyTorch built-in https:

2

https://en.wikipedia.org/wiki/Permutation_matrix
https://en.wikipedia.org/wiki/Permutation_matrix
https://arxiv.org/abs/1706.03762
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html

//pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html, but
it takes some effort to figure out how to read the weights inside a Transformer layer.

(e) Check out this tutorial on French-to-English translation using a RNN-based Seq2Seq model:
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html and
then: (1) Replace the embeddings with pre-trained word embeddings such as word2vec or
GloVe; (2) Replace the model with a Transformer-based encoder-decoder model (the WMT
2014 English-to-French translation task in the original Transformer paper https://arxiv.
org/abs/1706.03762 might be helpful also); you can use PyTorch built-in Transformer imple-
mentation https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html, re-
train the model, and compare your result with that obtained from the RNN-based Seq2Seq
model. (1.5/15)

Problem 3 (Graph neural networks (GNNs); 5/15)

(a) From applied domains that you are familiar with, describe a problem that can be formulated
as a task on graphs. What are the graph nodes and edges and what exactly is the task in graph
language? (1/15)

(b) Real-world graphs are typically very sparse, and hence the node-list or edge-list represen-
tation is preferred over the affinity matrix representation. Popular GNN libraries such as
PyTorch Geometric (PyG, https://pytorch-geometric.readthedocs.io/en/latest/) and
Deep Graph Library (DGL, https://www.dgl.ai/) both use the edge-list format by default,
i.e., by specifying the list of all edges as a 2 × |E| tensor, where |E| is the number of edges and
each column contains the index of the source and end nodes (i.e., directed edges by default),
respectively.
Wewill use PyGhere. Pleasewalk through their quick introduction https://pytorch-geometric.
readthedocs.io/en/latest/get_started/introduction.html, and perform the following
tasks—you can use any of their built-in functions unless explicitly told not: (1) load the
KarateClub dataset (the directed version) from their built-in dataset; (2) find all distance-1
neighbors of Node 10; (3) find the largest connected subgraph inside the graph; (4) implement
one-layer plain graph convolution based on distance-1 neighborhood, and apply it on the
graph and display your resulting features. For simplicity, we assume that both trainable
weight matrices are I . Here, you can use the built-in neighbor function to find the neighbors,
but the convolution operation must be your own implementation. (2/15)

(c) Load the WikipediaNetwork dataset under torch_geometric.datasets, and randomly di-
vide the dataset into 80% : 20% for training and test, respectively. Details of the datasets, graph
structures, and node features can be found from https://pytorch-geometric.readthedocs.
io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.
datasets.WikipediaNetwork, and in particular also under the “Wikipedia graphs” bullet
point paragraph (page 11) of the original paper https://arxiv.org/pdf/1909.13021.pdf.
Design your own graph neural network architecture and predictor and report the regression
performance that you get. You should measure your performance by the mean absolute error.
(2/15)

3

https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://arxiv.org/pdf/1909.13021.pdf

