
HOMEWORK SET 3
CSCI5527 Deep Learning (Spring 2025)

Due 11:59 pm, Apr 03 2025
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each top-level problem (i.e., Problem 1, Problem 2, etc)
into a separate Jupyter notebook file (i.e., .ipynb file). Your submission to Gradescope should
include the single PDF and all notebook files—please DO NOT zip them! No late submission will
be accepted. For each problem, you should acknowledge your collaborators—including AI tools, if
any.
About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.
Important notes Please provide detailed steps with justification for all problems; jumping to the
final results leads to a zero score. Also, if we ask you to use certain facts/tools to obtain something,
you have to use these facts/tools (perhaps plus others); otherwise, you get a zero score, e.g., if you
prove everything from scratch when we ask you to use an existing theorem.

Preparation Please carefully work through the following two PyTorch official tutorials

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/basics/intro.html

before attempting any problems in this homework set. You can also use TensorFlow or Jax, but you
should figure out how to start by yourself. Basic torch built-in functions are listed at

https://pytorch.org/docs/stable/torch.html.

The tensor class and its built-in functions are listed at

https://pytorch.org/docs/stable/tensors.html.

1

https://chat.openai.com/
https://claude.ai/chats
https://claude.ai/chats
https://github.com/features/copilot
https://learn.deeplearning.ai/
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/tensors.html


Problem 1 (Stochastic optimization methods for MNIST digital recognition; 4.5/15) In this
problem, we’re going to train a shallow neural network based on different stochastic gradient
descent (SGD) methods that we learned in class. Neural networks modules and autograd are
allowed in this problem, but no built-in optimizers in PyTorch are allowed.

First, you should load the MNIST dataset into your workspace. Note that MNIST is a pre-
loaded dataset in PyTorch. If you’re not sure what this means, revisit this required tutorial page
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html, and also check out
the pre-loaded image, text, and audio datasets from there.

(a) Design a neural network model no deeper than 3 layers. You’re free to choose the archi-
tecture, i.e., number of hidden nodes, activation functions, layers (fully connected, or even
convolutional, etc layers). Also, choose an appropriate loss for your training objective. (0.5/15)

(b) Implement the Adagrad algorithm. You’re free to choose your hyperparameters (initialization,
batch size, learning rate, learning rate scheduler, etc). Please include a plot of how the objective
value changes with respect to the epoch. (1/15)

(c) Implement the RMSprob algorithm. The requirement is the same as (b). (0.5/15)

(d) Implement the Adam algorithm. The requirement is the same as (b). The version covered in
our lecture is a reduced version of Algorithm 1 of the original paper (https://arxiv.org/
abs/1412.6980) that also handles the initial instability. Please implement the original version.
(1.5/15)

(e) A “98%" test: MNIST is a relatively easy classification task, and state-of-the-art learningmodels
can achieve near-perfect recognition performance. If you get a test accuracy ≥ 98% for any
two of (b), (c), and (d), you get 1 point here. For this, you are free to adopt any strategy to
avoid overfitting if necessary. You may also compare the performance of your implemented
optimizers with the built-in ones (https://pytorch.org/docs/stable/optim.html), but
the results you report must be obtained from your own implementations. (1/15)

Problem 2 (Correlation and template matching; 7/15) Theword “convolutional" in convolutional
neural networks is a misnomer. Cross-correlation, which is a close relative of convolution and
is commonly used in signal processing, is actually used. In this problem, we explore some basic
properties and applications of the cross-correlation operation. We use the standard notation ⋆ to
denote cross-correlation, vs. ∗, which is often used to denote convolution.

(a) For two vectors x ∈ Rn1 , y ∈ Rn2 , the cross-correlation x ⋆ y is obtained as follows:

We fix the position of y, and shift x to the left until x and y only have one overlapped element
spatially, i.e., xn1 with y1—that’s the starting point. We calculate the inner product of two

2

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://pytorch.org/docs/stable/optim.html


overlapped subvectors—in the beginning, only two scalars actually. Then we repeatedly do
this: shift x to the right by one element and calculate the corresponding inner product of the
two overlapped subvectors (i.e., think of a sliding window). We end the process until x and
y overlap only at one element, i.e., x1 with yn2 . The cross-correlation x ⋆ y is basically the
vector that collects all the inner product values that we have obtained in the left-to-right order.
It is easy to see that x ⋆ y ∈ Rn1+n2−1.
Question: Calculate [3, 2, 1] ⋆ [4, 6, 3, 9]. In general, is it true that x ⋆ y = y ⋆ x? If not, what
relationship between x ⋆ y and y ⋆ x do you observe? (1/15)

(b) In convolutional neural networks, we have building blocks of the form w ⋆ x, where w
represents a group of learnable weights, often called filter or kernel following the signal
processing convention. For simplicity, let’s assume w ∈ R3 and x ∈ R4. Show that w ⋆ x can
be written equivalently as Cwx for a certain matrix Cw ∈ R6×4 and write Cw explicitly in
terms of the elements of w = [w1, w2, w3]⊺. (1/15)

(c) To apply reverse-mode auto differentiation, we need to specify ∂
∂w (w ⋆ x), i.e., the associated

Jacobian. Assume again w ∈ R3 and x ∈ R4, can you derive the analytic form of the Jacobian?
(1/15; Hint: Is it possible to write w ⋆ x as Cxw for a certain Cx?)

(d) The 2D cross-correlation is a natural generalization of the 1D cross-correlation to matrices, as
illustrated in Fig. 1. Compared to the 1D version, now we start from the top-left corner and

Figure 1: Illustration of 2D cross-correlation (image credit: https://arxiv.org/abs/1603.07285; check
out https://github.com/vdumoulin/conv_arithmetic to see the dynamic demonstration under the full
padding, no strides setting. The additional dotted boxes indicate padded zeros.

end at the bottom-right corner. We scan row by row, and now the inner products are taken
between the overlapped submatrices. All the inner product values are naturally organized
into a matrix. In the above pictorial illustration, we consider X ⋆ Y , where X ∈ R3×3 is the
gray matrix, and Y ∈ R5×5 is the blue matrix, the resulting green matrix X ⋆Y ∈ R7×7, where
7 = 3 + 5 − 1.
Question: In Numpy, implement a 2D cross-correlation function. The function should take
two general matrices Z1 ∈ Rn1×n2 and Z2 ∈ Rm1×m2 and return the resulting cross-correlation
matrix. To debug your implementation, please generate a couple of random cases and bench-
mark against the Scipy built-in function scipy.signal.correlate2d (remember to set mode
= ’full’) (1/15)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html .

(e) Most basic image processing algorithms are implemented as cross-correlation of a small fil-
ter X with the image of interest Y . Check out the examples at the bottom of the page https://

3

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html. Use
their image ascent, let’s test your implementation of 2D cross-correlation. Try two filters

X1 =

 −3 0 3
−10 0 10
−3 0 3

 and X2 = X⊺
1 .

Let’s say they generate two resulting matrices G1 = X1 ⋆ Y and G2 = X2 ⋆ Y . Calculate
(G2

1 +G2
2)1/2, where the operations (·)2 and (·)1/2 are applied elementwise. Display your result

(i.e., imshow as in the online example). Does your result look like the gradient magnitude
plot, except for the image boundaries? (1/15)

(f) Another way of thinking about cross-correlation is template matching. Imagine that X is a 2D
pattern of interest. During the cross-correlation process, the inner product measures the agree-
ment of the 2D pattern and the local patches in Y . If the value is relatively large, very likely
we find a match. After we complete the cross-correlation calculation, we can spot the locations
of the largest values in the cross-correlation matrix as candidate matching locations. Study the
example here https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
correlate2d.html and compare the performance of your implementation with that of the
example using scipy.signal.correlate2d. (1/15)

(g) In practice, we often have multichannel cross-correlation. Let’s consider the following setting:
for an input Y (we use script font to denote tensors) of size H(height)×W (width)×D(depth),
we consider a filter X of size h × w × D, and note that depth of the filter matches the depth of
the input. There are two equivalent ways of thinking about cross-correlation:

• Summation of 2D cross-correlation. We compute the 2D cross correlations of corre-
sponding layers of the input and the filter, and then sum them up, i.e.,

D−1∑
d=0

X [:, :, d] ⋆ Y[:, :, d] + b, (1)

where b is the bias term;
• Restricted/degenerated 3D cross-correlation. We can generalize the previous 2D cross-

correlation to 3D cases—that will generate a 3D tensor in principle. But here we do not
shift the filter X in the depth direction and only shift it in the height and width directions.
In other words, at each position, we take the inner product of two overlapped 3D “tubes".

Implement multichannel cross correlation (let’s assume b = 0), and test your implementation
with H = W = D = 50 and h = w = 3 by generating a pair of random X and Y and then
comparing your result with that generated by PyTorch from https://pytorch.org/docs/
stable/generated/torch.nn.Conv2d.html. We take the output size as (H + h − 1) × (W +
w − 1). So, you need to perform proper padding in PyTorch’s version to ensure that the output
size is correct. (1/15)

Problem 3 (The normalization zoo; 1.5/15) Normalization is a crucial building component of
deep neural networks (DNNs) that boosts the numerical stability. Simply put, it’s about normalizing
each slice of multidimensional data in tensor form into zero-mean, unit variance data,

x̂i = xi − µ

σ
∀ xi inside the slice, where µ : slice mean σ : slice standard deviation (2)

4

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


Figure 2: Illustration of different normalization methods; figure taken from the paper https://arxiv.org/
abs/1803.08494

and feeding these normalized data into the next layer. Different normalization methods differ in
how they form the slices, as illustrated in Fig. 2.

Generate a random 4 way tensor of size H(50) × W (50) × C(64) × N(64), and implement and
apply the batch norm, the layer norm, and the instance norm to the tensor. Compare your results
with those generated from PyTorch:

• https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html

• https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

• https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html

You can set their trainable scaling factor γ = 1 and the shift factor β = 0. To compare two tensors X
and Y of the same size, we can take the relative difference between them:

∥vec(X ) − vec(Y)∥2
max (∥vec(X )∥2 , ∥vec(Y)∥2) , (3)

where vec means vectorization or flattening. If X and Y are close, the relative difference between
them should be close to 0. Why do the built-in functions place an ε in the denominators? For your
random data, it’s fine you set their ε = 0.

Problem 4 (Transfer learning; 2/15) In computer vision and natural language processing, large-
scale datasets are available and high-performing deep models that are already trained on these
datasets, called pretrained models, are readily usable. For example, in Pytorch, a list of pretrained
models on the renowned ImageNet dataset is available here https://pytorch.org/docs/stable/
torchvision/models.html. Since these datasets are large-scale and believed to adequately repre-
sent the domain distributions, the learned features tend to be shareable across tasks. For example,
in computer vision, when coming to a new image classification task, it is rare that people will train
a model from scratch. Instead, a pretrained model will be taken and only finetuning of the model
on the new task will be performed.

The different possibilities of finetuning have been explained in class; this webpage provides
an excellent summary https://cs231n.github.io/transfer-learning/. A Pytorch tutorial on
the implementation of transfer learning for vision tasks can be found here https://pytorch.
org/tutorials/beginner/transfer_learning_tutorial.html. In this problem, we will perform
transfer learning for classifying pneumonia from chest x-rays. Read the instruction for this Kaggle
competition https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia, download
(you’ll need a kaggle account) and setup the dataset.

5

https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1803.08494
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://cs231n.github.io/transfer-learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


(a) Set up an appropriate transfer learning pipeline to perform the classification. Feel free to
choose pretrained models you like (or can fit into your resource constraint—large models can
be more powerful but need powerful GPUs). You may want to play with different transfer
learning strategies and think about the following factors: (1) Do you want to freeze all or only
some of the convolutional layers? (2) or do you want to make all layers trainable, but only
iterate a few steps? (3) or may be borrowing the architecture is sufficient and training can be
done from scratch? You may also want to check out our truncated transfer learning paper
https://arxiv.org/abs/2106.05152. (1/15)
Hint on training: the two classes are not balanced; it may be helpful to put different weights
on the positive and negative samples—e.g., weighting theminority class slightly more than the
dominant class—when constructing the training objective; many PyTorch functions already
implement the weighting mechanism, e.g., the weight input in torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html. To learn
more about the complicated issues around learning from imbalanced data, you may want to
refer to our paper https://arxiv.org/abs/2210.12234 for a quick review of these.

(b) A “90%" test: you’ll get 1 point if your classification accuracy exceeds 90%. But make sure to
show all your work in (a) even if you don’t make it 90%. Optionally, you’re also encouraged
to report the balanced accuracy (https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.balanced_accuracy_score.html), and also average precision (https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.
html), but we won’t grade you based on the latter two metrics. (1/15)

6

https://arxiv.org/abs/2106.05152
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://arxiv.org/abs/2210.12234
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

