
HOMEWORK SET 2
CSCI5527 Deep Learning (Spring 2025)

Due 11:59 pm, Mar 16 2025
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each top-level problem (i.e., Problem 1, Problem 2, etc)
into a separate Jupyter notebook file (i.e., .ipynb file). Your submission to Gradescope should
include the single PDF and all notebook files—please DO NOT zip them! No late submission will
be accepted. For each problem, you should acknowledge your collaborators—including AI tools, if
any.
About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.
Important notes Please provide detailed steps with justification for all problems; jumping to the
final results leads to a zero score. Also, if we ask you to use certain facts/tools to obtain something,
you have to use these facts/tools (perhaps plus others); otherwise, you get a zero score, e.g., if you
prove everything from scratch when we ask you to use an existing theorem.

Preparation Please carefully work through the following two PyTorch official tutorials

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/basics/intro.html

before attempting any problems in this homework set. You can also use TensorFlow or Jax, but you
should figure out how to start by yourself. Basic torch built-in functions are listed at

https://pytorch.org/docs/stable/torch.html.

The tensor class and its built-in functions are listed at

https://pytorch.org/docs/stable/tensors.html.

1

https://chat.openai.com/
https://claude.ai/chats
https://claude.ai/chats
https://github.com/features/copilot
https://learn.deeplearning.ai/
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/tensors.html


Problem 1 (Autoencoder, factorization, and PCA; gradient descent and back-tracking line search;
6/15) Let x1, . . . , xm be a collection of points in Rn and suppose that they are zero-centered, i.e.,∑m

i=1 xi = 0. We write X = [x1 . . . xm]⊺ ∈ Rm×n, i.e., stacking the data points row-wise into a
data matrix. Recall that PCA extracts the top r (with r ≤ n) eigenvectors of X⊺X , collects them
columnwise into a matrix U ∈ Rn×r, and obtains a new representation of each data point xi as
U⊺xi ∈ Rr. Geometrically, PCA amounts to deriving the best rank-r linear subspace approximation
to the set of points {x1, . . . , xm}:

min
U∈Rn×r,Z∈Rm×r

1
m

∥X − ZU⊺∥2
F s.t. U⊺U = I

So a crucial step in PCA is to compute the subspace basis U . Let’s now generate a synthetic point
set as shown in Fig. 1; see also 2025_HW2_Prob1.ipynb (please do NOT change the random seed
and the dimensions), and complete the following tasks—your X[0, 0] should be approximately

Figure 1: Code segment for generating the data for PCA

4.1656 (if you use the default float32 precision).

(a) Continue the code in 2025_HW2_Prob1.ipynb to compute the basis for the best rank-10 sub-
space approximation to X , i.e., a matrix A1 ∈ Rn×10 that contains the first 10 PCA basis
vectors. (1/15)

(b) A classic unsupervised learning technique in deep learning is the autoencoder (we’ll cover it
later in the course). The mathematical formulation specialized to our case is

min
A∈Rn×10

f (A) .= 1
m

∥X − XAA⊺∥2
F .

(i) Implement the gradient descent method to solve the optimization problem, with back-
tracking line search for the step size and appropriate stopping criterion (say, by
checking the gradient norm). You can use whatever methods to compute the numerical
gradients, including auto-differentiation. Since f(A) is nonconvex, you may want to
repeat your gradient descent algorithm multiple times using different random initializa-
tions to find a reasonably good solution. (2/15).

2



(ii) Let’s say the solution computed from the last step is A2. Now we want to compare the
subspaces represented by A1 and A2. We cannot directly do A1 − A2, as from linear
algebra we know that even if A1 and A2 span the same column/range space, they could
take very different forms. Instead, a reasonable metric here is the difference between
the subspace projectors induced by them, i.e., ∥A1A†

1 − A2A†
2∥F /∥A2A†

2∥F
1, where

A† denotes the matrix pseudoinverse (https://en.wikipedia.org/wiki/Moore%E2%
80%93Penrose_inverse; in PyTorch, you can call this function torch.linalg.pinv
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html). Report
your result here. Is it close to 0 or not? (0.5/15)

(c) Consider another formulation, which is normally called factorization:

min
A∈Rn×10,Z∈Rm×10

g (A, Z) .= ∥X − ZA⊺∥2
F .

(i) Implement the gradient descent method to solve the optimization problem, with back-
tracking line search for the step size and appropriate stopping criterion (say, by
checking the gradient norm). You can use whatever methods to compute the numer-
ical gradients, including auto-differentiation. Since f(A, Z) is nonconvex, you may
want to repeat your gradient descent algorithm multiple times using different random
initializations to find a reasonably good solution. (2/15)

(ii) Let’s say the solution computed from the last step is A3. Please compute the subspace
differences between A1, A2 and A3 and report your results here. Are they close to 0 or
not? (0.5/15)

Problem 2 (Automatic differentiation (AD)—scalar version; 3/15) Consider the the following
three-variable function

f (x1, x2, x3) = 1
x3

(x1x2 sin x3 + ex1x2) . (1)

(a) Draw the computational graph for this function. Note that depending on how you parse the
function, computational graph for a function may not be unique. But the AD results should
not be affected by this. (1/15)

(b) List detailed computational steps to compute the partial derivative ∂f
∂x2

at the point (1, 1.5, 2)
using the forward mode. Specifically, provide the numerical values of vi and v̇i for all i. For
numerical values, you only need to keep four digits after the decimal point. To help you get
started, let’s assume that x1, x2 and x3 are renamed into variables v−2, v−1 and v0. Then

v−2 = 1, v̇−2 = ∂v−2
∂x2

= 0, (2)

v−1 = 1.5, v̇−1 = ∂v−1
∂x2

= 1, (3)

v0 = 2, v̇0 = ∂v0
∂x2

= 0. (4)

Please continue and provide the values for all other nodes in your computational graph.
(1/15)

1We use this relative difference to remove the dependency of the metric on dimensionality. It is fine to use ∥A1A†
1∥F

on the denominator also.

3

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html


(c) List detailed computational steps to compute the partial derivative ∂f
∂x2

at the point (1, 1.5, 2)
using the reverse mode. Specifically, provide the numerical values of vi and vi for all i. For
numerical values, you only need to keep four digits after the decimal point. (1/15)

Problem 3 (Automatic differentiation (AD) in DNNs; 4/15) In principle, we can perform reverse-
mode AD for DNNs using scalar variables. But the scalar version is messy due to the many variables
in typical DNNs. More importantly, modern computing hardware and software environments are
optimized to perform direct matrix and tensor operations. So it makes perfect sense to perform AD
directly on matrices and tensors. To illustrate the idea, let’s consider a three-layer fully-connected
neural network x 7→ W3σ (W2σ (W1x)), and the following training objective

f (W1, W2, W3) .= 1
2 ∥Y − W3σ (W2σ (W1X))∥2

F , (5)

where the activation σ is ReLU. The computational graph is shown in Fig. 2. Let’s fix a random seed

Figure 2: Computational graph of Eq. (5).

55272025, and generate Y ∈ R2×50, X ∈ R5×50, W1 ∈ R4×5, W2 ∈ R3×4, and W3 ∈ R2×3 all as iid
Gaussian. You should fix these matrices once generated.

Suppose that each node in the computational graph has two fields: .v holds the numerical value
of the variable itself, and .g holds the numerical value of the gradient of f with respect to the current
variable. Recall there are two stages in reverse-mode AD: forward pass and backward pass.

(a) Forward pass: Now that X.v, Y .v, W1.v, W2.v, W3.v are known, compute the numerical
values of all other variables (i.e., V1.v, V2.v, etc) in the computational graph. You only need
to keep 4 digits after the decimal point. (1/15)

(b) Backward pass: Now we start to work out the backward pass. Obvious z.g = 1 as ∇zf = 1
(remember f = z). Moreover, ∇Dz = D. So D.g = D.v. From this point onward, we start
to see the trouble of working with Jacobians as tensors. For example, V5 = W3V4 and so
the Jacobian ∂V5

∂V4
is a tensor as both V4 and V5 are matrices—direct implementation involves

tensor-matrix product. Fortunately, we can get around the mess by the crucial observation:
by implementing chain-rule for gradient, we only care about the result of the Jacobian-matrix
product here, not the Jacobian itself. Now, suppose that Vj is a function of Vi, and we want to
compute ∇Vif given ∇Vj f . It turns out

∇Vif = J ⊺
Vi 7→Vj

(
∇Vj f

)
= ∇Vi

〈
Vj , ∇Vj f

〉
.

The last inner product form avoids the Jacobian tensor JVi 7→Vj entirely, and now we only need
to derive the gradient of a matrix-to-scalar function.

• For V5.g, where the numerical value D.g is known:
∇V5f = ∇V5 ⟨D, D.g⟩ = ∇V5 ⟨Y − V5, D.g⟩ = ∇V5 ⟨−V5, D.g⟩ = ∇V5 ⟨V5, −D.g⟩ = −D.g,

where we recall the fact that ∇X ⟨A, X⟩ = A for any fixed A not dependent on X .

4



• Y is given data and not an optimization variable, so∇Y f = 0 (In PyTorch, these variables
do not require gradients so will be directly ignored for gradient calculation).

• For V4.g, where the numerical value V5.g is known:

∇V4f = ∇V4 ⟨V5, V5.g⟩ = ∇V4 ⟨W3V4, V5.g⟩ = ∇V4 ⟨W ⊺
3 V5.g, V4⟩ = W ⊺

3 V5.g.

So V4.g = (W3.v)⊺V5.g.

Question: You should substitute and obtain the numerical values for the above quantities.
Now, carry on the backward pass and obtain all the numerical values of gradients for all
variables. (2.5/15)

(c) Go through the tutorials below and learn how to call Pytorch autograd to compute numerical
gradients and read off the gradient values

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html.

Now use it to compute the values of W1.g, W2.g, and W3.g. Do they agree with your results
in part (a)? (1/15)

Problem 4 (Classification of dry beans; 2/15) In this problem, we consider the classification
of dry beans using their visual features, based on this UCI Dry Bean Dataset: https://archive.
ics.uci.edu/dataset/602/dry+bean+dataset. Please check out the details of the dataset from
the webpage and also how to import the data into a Python environment by clicking the button
“IMPORT IN PYTHON” and following their instructions. Split the data as 60% : 20% : 20% into
training, validation, and test sets, respectively.

(a) Train a classifier based on one of the three models: support vector machines, random forest, or
boosting. Note that for hyperparameter tuning, you can only use the training and validation
sets, not the test data. You can use whatever machine learning libraries you want to build
your training, hyper-parameter tuning, and test pipeline, to the level of calling any of their
built-in functions; we highly recommend the scikit-learn library https://scikit-learn.org/
stable/. You need to get 90% classification accuracy to get the score. (1/15)

(b) Train a classifier based on multi-layer perceptrons, i.e., multi-layer fully connected networks.
Note that for hyperparameter tuning, you can only use the training and validation sets, not
the test data. You are supposed to use PyTorch (or TensorFlow, Jax) to build your train-
ing, hyper-parameter tuning, and test pipeline. You may find this tutorial helpful when
loading datasets not built into PyTorch: https://pytorch.org/tutorials/beginner/data_
loading_tutorial.html. You need to get 90% classification accuracy to get the score. (1/15)

5

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

