
HOMEWORK SET 1
CSCI5527 Deep Learning (Spring 2025)

Due 11:59 pm, Feb 24 2025

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each top-level problem (i.e., Problem 1, Problem 2, etc)
into a separate Jupyter notebook file (i.e., .ipynb file). Your submission to Gradescope should
include the single PDF and all notebook files—please DO NOT zip them! No late submission will
be accepted. For each problem, you should acknowledge your collaborators—including AI tools, if
any.

About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Important notes Please provide detailed steps with justification for all problems; jumping to the
final results leads to a zero score. Also, if we ask you to use certain facts/tools to obtain something,
you have to use these facts/tools (perhaps plus others); otherwise, you get a zero score, e.g., if you
prove everything from scratch when we ask you to use an existing theorem.

Problem 1 (Neural networks can represent all Boolean functions; 5/15) The standard perceptron
is a single-layer, single-output neural network with the step function as the activation, i.e.,

f(x) = step(w⊺x + b),

where step(z) = 1 if z ≥ 0 and 0 otherwise. Geometrically, f is a {0, 1}-valued function with the
hyperplane {x : w⊺x + b = 0} as the separating boundary between the 0- and the 1-region; see
Fig. 1 (left). Consider Boolean functions {0, 1}n → {0, 1}. We will work out how arbitrary Boolean
functions can be represented by two-layer or deep neural networks.

(a) Consider n = 1 first. Show that the NOT function can be implemented using a single-input
perceptron by setting the weight w and the bias b appropriately; please write down the set of
all possible pairs of (w, b). (0.5/15)

(b) Now consider the case n = 2. Show that the two-input AND, OR functions can be implemented
using a two-input perceptron; please write down the set of all possible such (w, b) pairs.

1

https://chat.openai.com/
https://claude.ai/chats
https://claude.ai/chats
https://github.com/features/copilot
https://learn.deeplearning.ai/

Figure 1: (left) Geometric illustration of the perceptron. (right) An example truth table.

Hint: the geometric view might help. For example, for the AND function, we are effectively
trying to separate the point (1, 1) from (1, 0), (0, 1) and (0, 0). The hint applies to all subsequent
subproblems of Problem 1. (1/15)

(c) Can we encode the XOR function (https://en.wikipedia.org/wiki/Exclusive_or) using a
two-input perceptron? How if yes? Why if not? (1/15)

(d) For general n ≥ 2, we consider general AND functions that take n inputs, where each input is
either xi or xi. A typical such function looks like x1 · x2 · x3 · xn−1 · xn. Show that all general
n-input AND function can be implemented using an n-input perceptron. Similarly, show that
all n-input general OR function can be implemented using an n-input perceptron. Please write
down the set of all possible such (w, b) pairs for both cases. (1/15)

(e) Any Boolean function is fully specified by a list of all variable combinations that are evaluated
to 1. Such a list is often tabulated, and the resulting table is called the truth table. For example,
in the truth table of Fig. 1 (right), the Boolean function represented reads (i.e., “1” position
we put the variable itself, and “0” position we put the vaiable negated, and each summand
below corresponds to a row of the table)

x1 x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4 x5 + x1x2 x3 x4 x5 + x1x2x3x4x5 + x1x2x3 x4x5,

where product · (which is omitted) means AND and summation + means OR. In Boolean logic,
this is called the disjunctive normal form (https://en.wikipedia.org/wiki/Disjunctive_
normal_form). All Boolean functions can be represented in the disjunctive normal form.

Based on these, show that all n-input Boolean functions can be represented by a two-layer
neural network. In the worst case, how many hidden nodes are needed? (1.5/15)

Figure 2: ReLU function

Problem 2 (Universal approximation property of ReLU networks;
2/15) Recall how we argued that two-layer neural networks with
the sigmoid activation function (i.e., σ(z) = 1

1+e−z) can approximate
any functions that map R to R. We constructed the step function
and then the bump function, and finally, we summed up the bumps
to form the approximation. We also briefly discussed in class how
to use two ReLU functions (h(z) = max(0, z)) to approximate a step
function.

2

https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Disjunctive_normal_form

(a) Obviously, we can directly choose the activation σ as the step function or even the bump
function. This not only makes the approximation much more accurate, but also simplifies the
neural network we need. Is this good for computation? And why? (1/15)

(b) Sketch the main steps of using ReLU networks for approximating an arbitrary function that
maps from R to R, i.e., ReLU → step function → bump function → approximating the original
function. (1/15)

Problem 3 (Optimality conditions; 4/15)

(a) Derive the gradient and Hessian of the quadratic function h(x) = x⊺Ax + b⊺x and remember
to include the detailed steps. Here, A is square but not necessarily symmetric. (Hint: You
can use whatever methods you feel comfortable with; also, feel free to use AI or online tools
to validate your calculation). (1/15)

(b) We talk about the algebraic and geometric definitions of convex functions in class. But it is
often a tedious process to tell convex functions using the definition. To simplify the job, we
rely on additional properties and characterizations. A twice-differentiable function f(x) is
convex if and only if its Hessian is positive semidefinite, i.e., ∇2f ⪰ 0 for all x. Apply this to
h(x) in (a) and state the condition for h(x) being convex. Do we have a unique minimizer or
not for h(x), and why? (1/15)

(c) We talked of the first- and second-order optimality conditions for minx f(x) for a generic
differentiable function f . What are the first- and second-order optimality conditions for
maxx f(x), i.e., conditions for locating local maximizers? And why? (1/15)

(d) In this course, we will not think much about constrained optimization. But let’s play with a
simple yet important one here. Consider constrained optimization problems of the form

min
x

f(x) s. t. g(x) = 0,

where g(x) is a vector-to-vector function and conveniently collects together all the single scalar
constraints. Introduce a Lagrangian multipler vector λ and form the Lagrangian function

L(x, λ) = f(x) + ⟨λ, g(x)⟩ .

The first-order optimality condition says if x∗ is an optimal solution and if Jg(x∗) has full row
rank, then there exists a λ∗ so that ∇xL(x∗, λ∗) = 0.
Now consider a constrained optimization problem

max
x

x⊺Ax s. t. ∥x∥2
2 = 1,

where A is a square but not necessarily symmetric matrix. Write down the first-order
optimality condition andwhat can you say about the solution (1/15; Hint: think of eigenvalues
and eigenvectors)?
(Optional) For those familiar with the second-order condition (https://en.wikipedia.org/
wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Necessary_conditions), you’re
encouraged to dig in and find the exact solution to the problem, but this is optional. This
problem is closely connected to the famous Rayleigh quotient (https://en.wikipedia.org/
wiki/Rayleigh_quotient).

3

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Necessary_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Necessary_conditions
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://en.wikipedia.org/wiki/Rayleigh_quotient

Problem 4 (Deep learning problems are typically non-convex; 4/15) Convex analysis and
optimization have dominated classical machine learning (e.g., the famous support vector machines,
and lasso for variable selection), as with convexity most of the time we can focus on the modeling
part andworry little about the possibility of finding a bad local solution for the resulting optimization
problem. In deep learning, the optimization problems involved are almost always non-convex.
Let’s try to convince ourselves using two different arguments. When you deriving gradients and
Hessians, feel free to use AI or online tools to validate your calculation.

(a) Consider a simplistic two-layer, single-hidden-node network with identity activation, i.e.,
f(x) = w2w1x. For a training set {(xi, yi)}i=1,...,N , let’s take the mean squared loss and set up
a supervised learning objective

L(w1, w2) = 1
N

N∑
i=1

(yi − f(xi))2.

Show that L(w1, w2) is non-convex by checking its Hessian. (Hint: recall how to check
convexity from Problem 3(b) above; also, when a 2 × 2 matrix is positive semidefinite, both
its trace and determinant are nonnegative. 1/15)

(b) An alternative way to see L is non-convex is to prove by contradiction. Let’s assume that L is
indeed convex. In class, we recognized that for any (w1, w2), L(w1, w2) = L(−w1, −w2). If a
particular pair (w∗

1, w∗
2) is a globalminimizer ofL, what canwe say about (0, 0)? Then conclude

thatL being convexwill lead to trivial learning. (Hint: (0, 0) is a convex combination of (w∗
1, w∗

2)
and (−w∗

1, −w∗
2), i.e., lying on the line segment connecting (w∗

1, w∗
2) and (−w∗

1, −w∗
2).) (1/15)

(c) Is L convex if f(x) = wkwk−1 . . . w2w1x, i.e., when the network is k-layer with k ≥ 3? What
happens when we replace the mean squared loss by the mean absolute error, i.e.,

L(w1, w2, . . . , wk−1, wk) = 1
N

N∑
i=1

|yi − f(xi)|?

(1/15)

(d) Now let’s move to realistic multi-layer perceptrons with multi-neuron hidden layers. To fix the
notation, assume that the input dimension is n0, and we have L hidden layers with n1, . . . , nL

hidden neurons, respectively, and nf outputs, that is,

f(x) = W L+1 ◦ σ ◦ W L ◦ σ · · · ◦ W 1 ◦ σ ◦ W 0x,

where ◦means the composition of the function (https://en.wikipedia.org/wiki/Function_
composition; we use this neat notation to avoid nesting many parentheses), and activation σ
is always applied elementwise. Suppose that we take the mean squared loss, i.e.,

L(W 1, . . . , W L+1) = 1
N

N∑
i=1

∥yi − f(xi)∥2
2,

argue that L is in general nonconvex to achieve nontrivial learning. (Hint: Assume σ is
the identity for simplicity. We have that W 1W 0x = (W 1Π)(Π⊺W 0)x for any permutation
matrix Π ∈ Rn1×n1 . What is the average of all permutation matrices?) (1/15)

4

https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition

