
HOMEWORK SET 0
CSCI5527 Deep Learning (Spring 2025)

Due 11:59 pm, Feb 09 2025

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problems
requiring coding, organize all codes for each top-level problem (i.e., Problem 1, Problem 2, etc)
into a separate Jupyter notebook file (i.e., .ipynb file). Your submission to Gradescope should
include the single PDF and all notebook files—please DO NOT zip them! No late submission will
be accepted. For each problem, you should acknowledge your collaborators—including AI tools, if
any.

About the use of AI tools You are strongly encouraged to use AI tools—they are becoming our
workspace friends, such as ChatGPT (https://chat.openai.com/), Claude (https://claude.ai/
chats), and Github Copilot (https://github.com/features/copilot), to help you when trying
to solve problems. It takes a bit of practice to ask the right and effective questions/prompts to these
tools; we highly recommend that you go through this popular free short course ChatGPT Prompt
Engineering for Developers offered by https://learn.deeplearning.ai/ to get started.

If you use any AI tools for any of the problems, you should include screenshots of your
prompting questions and their answers in your writeup. The answers provided by such AI tools
often contain factual errors and reasoning gaps. So, if you only submit an AI answer with such
bugs for any problem, you will obtain a zero score for that problem. You obtain the scores only
when you explain the bugs and also correct them in your own writing. You can also choose not to
use any of these AI tools, in which case we will grade based on the efforts you have made.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Important notes You should carefully study the supplementary notes on review of high-dimen-
sional calculus (https://sunju.org/teach/DL-Spring-2025/calculus-review.pdf) before try-
ing to answer any questions here. If you struggle too much with this homework set, it is strongly
suggested that you either spend intensive efforts during the first few weeks to build up the back-
ground or consider taking a later iteration of the course when you feel ready.

Please provide detailed steps with justification for all problems; jumping to the final results
leads to a zero score. Also, if we ask you to use certain facts/tools to obtain something, you have
to use these facts/tools (perhaps plus others); otherwise, you get a zero score, e.g., if you prove
everything from scratch when we ask you to use an existing theorem.

Problem 1 (Matrix norms, inner products, traces; 7/15) Recall that for any vector v ∈ Rn, the
ℓp norm of v is defined as ∥v∥p

.= (
∑

i |vi|p)1/p. The cases where p = 1, 2, ∞ are often used. When
p = 2, it is also called the Euclidean norm. Similar norms can be defined for matrices. Particularly,
the direct generalization of the vector Euclidean norm is the Frobenius norm defined as

∥M∥F
.=

√∑
ij

m2
ij

for a matrix M . On the other hand, the inner (i.e., dot) product of matrices is defined similarly
to that of vectors. For A, B of the same size, ⟨A, B⟩ .=

∑
ij aijbij . Obviously, ⟨A, B⟩ = ⟨B, A⟩ and
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∥M∥F =
√

⟨M , M⟩. A third notion of interest is the matrix trace, tr (M) =
∑

i mii, i.e., sum of the
diagonal entries, which is only defined for square matrices.

(a) Show that ⟨A, B⟩ = tr (A⊺B), and then conclude that ∥M∥F =
√

tr (M⊺M). (1/15)

(b) Use the fact in (a) to show that tr (A⊺B) = tr (B⊺A). (1/15)

(c) Assume A and B have the same size. In general, AB⊺ and B⊺A have different sizes, but
tr (AB⊺) = tr (B⊺A). Use the fact in (a) to show it! (1/15)

(d) Use the fact in (c) to show that tr (M1M2M3) = tr (M3M1M2) = tr (M2M3M1), assuming
that the sizes of M1, M2 and M3 are compatible with all the matrix multiplications. This is
known as the cyclic property of the matrix trace. (1/15)

(e) For anymatrices A, B, C, D of compatible sizes, we always have ⟨ACB, D⟩ = ⟨CB, A⊺D⟩ =
⟨AC, DB⊺⟩, i.e., we can always move the leading matrix of one side of the inner product
to the other side as leading matrix once transposed (if these matrices are complex valued,
should be conjugate transposed), and similarly the trailingmatrix to the other side as trailing
matrix once transposed. Use the cyclic property of the matrix trace to show this. (1/15)

(f) ForM , let us performa compact SVD (if not sure, check upWikipedia! https://en.wikipedia.
org/wiki/Singular_value_decomposition#Compact_SVD) to obtain M = UΣV ⊺, so that
U and V are orthonormal (not necessarily square) matrices, i.e., U⊺U = I and V ⊺V = I .
Use the cyclic property of the matrix trace and that ∥M∥F =

√
tr (M⊺M) to show that

∥M∥F =

√√√√ r∑
i=1

σ2
i ,

assuming the rank of M is r. Here, σi’s are the singular values of M . (1/15)

(g) Let A, B, C be three matrices of the same size, and ⊙ denote the Hadamard (i.e., elementwise)
product (https://en.wikipedia.org/wiki/Hadamard_product_(matrices)) between two
matrices. Show that ⟨A ⊙ B, C⟩ = ⟨A, B ⊙ C⟩ = ⟨B, A ⊙ C⟩. (1/15)

Problem 2 (Gradient and Hessian, chain rules, perturbation-expansion method; 6.5/15)

(a) Let p (X; B) = e⟨B,X⟩

1+e⟨B,X⟩ . Consider the function

f (B) =
N∑

i=1
[yi log p (Xi; B) + (1 − yi) log (1 − p (Xi; B))]

=
N∑

i=1

[
yi ⟨B, Xi⟩ − log

(
1 + e⟨B,Xi⟩

)]
,

which is the log-likelihood loss for logistic regression with matrix inputs {Xi}N
i=1 and matrix

coefficient B, assuming N training points of the form {(Xi, yi)}N
i=1. Derive ∇f (B) using

the perturbation-expansion method. (Hint: by the single-variable Taylor’s theorem, log(1 +
ez+δ) = log(1 + ez) + ez

1+ez δ + O(δ2) as δ → 0). Validate your results either by analytic
derivation using the chain rule or by any AI tools or by https://www.matrixcalculus.org/;
show your derivation or screenshots. (1.5/15)
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(b) In (a), f(B) takes a matrix as input and so its Hessian ∇2f(B) is most naturally represented
as a 4-th order tensor (i.e., 4-dimensional array): this is because each element in B has two
indices, and so any of the second-order partial derivatives takes the form of

∂2f

∂bij∂bkℓ
,

which may be daunting to work with in practice. Fortunately, for the purpose of numerical
computation, it is often sufficient toworkwith∇2f(B)[V ]: here,V is a givenmatrix (direction)
and the output ∇2f(B)[V ] is another matrix—both matrices have the same size as that of B,
and we should think of ∇2f(B)[V ] as the “Hessian tensor” ∇2f(B) takes in B and returns
a matrix. To derive ∇2f(B)[V ], we can apply our usual perturbation-expansion method to
f(B + δV ) and then compare it to

f(B + δV ) = f(B) + δ ⟨∇f(B), V ⟩ + 1
2δ2

〈
V , ∇2f(B)[V ]

〉
+ o(δ2)

to extract out the corresponding ∇2f(B)[V ] term. Follow this idea to derive ∇2f(B)[V ]
for f(B) in (a). (Hint: by the single-variable Taylor’s theorem, log(1 + ez+δ) = log(1 + ez) +

ez

1+ez δ + 1
2

ez

(1+ez)2 δ2 + O(δ3) as δ → 0). Validate your results either by analytic derivation
using the chain rule (warning: this is going to be a prolonged path) or by any AI tools or by
https://www.matrixcalculus.org/; show your derivation or screenshots. (1.5/15)

(c) Consider the regression problem based on a one-layer network: g (W ) = ∥y − σ (W x)∥2
2,

where the activation σ = sin is applied elementwise to the vector W x. Derive ∇g(W ) using
whatever methods you are comfortable with. (Hint: If following the perturbation-expansion
idea, you may want to first show that σ ((W + ∆) x) = σ (W x)+σ′ (W x)⊙ (∆x)+o(∥∆∥F )
when ∆ → 0, and then plug it back into the square and expand the square using the identity
∥a + b + c∥2

2 = ∥a∥2
2 + ∥b∥2

2 + ∥c∥2
2 + 2 ⟨a, b⟩ + 2 ⟨a, c⟩ + 2 ⟨b, c⟩. Keep in mind that to derive

the gradient, any terms of order lower than ∥∆∥F are not interesting.) Validate your results
either by analytic derivation using the chain rule (warning: this is going to be a prolonged
path) or by any AI tools or by https://www.matrixcalculus.org/; show your derivation or
screenshots. (1.5/15)

(d) Consider f(x) = 1
2 ∥y − Ax∥2

2 + λ ∥x∥2
2 with λ > 0. Any x0 is a candidate minimizer of f(x)

if ∇f(x0) = 0 (i.e.,the first-order optimality condition). Please find all candidate minimizers
of f(x). How many can you find in total? Please include your detailed calculation and
reasoning; you can use whatever way you want to derive ∇f(x) if necessary. (Hint: recall that
a symmetric matrix M is positive definite if and only if v⊺Mv > 0 for all v ̸= 0; all positive
definite matrices are invertible) (1.5/15)

(e) Continuing with (d). What happens when λ < 0? (0.5/15)

Problem 3 (Conditional probability and Bayes’ Rule; 1.5/15) Let P (A | B) be the probability of
event A given event B. Bayes’ theorem states that

P (A | B) = P (B | A) P (A)
P (B) .

In general, for a partition {Ai} of the sample space,

P (Ai | B) = P (B | Ai) P (Ai)∑
i P (B | Ai) P (Ai)

.
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(a) Suppose that women who often drink alcohol are 10 times more likely to develop stomach
cancer than women who do not, while the corresponding risk for men is 20 (drinker v.s.
non-drinker). Statistical data show that 40% of women drink alcohol often. Now, a woman
has been diagnosed with stomach cancer. But due to some privacy issues, it is impossible
for you to get other information about this woman. Based on the limited information, is it
possible to calculate the probability that she is a drinker? If yes, what is the probability? If
not, explain why and what additional information you will need.1 (1/15)

(b) Doctors apply a standardized test for a certain disease. If the patient has the disease, the test
shows a positive result with a probability of 99%. However, with 2% probability, a healthy
patient can have a positive test result. Statistical data show that 1 of 1000 in the population
have the disease. What is the probability that a patient with a positive test is affected by the
disease? (0.5/15)

1All data and information in this question are made up. No medical studies/institutions have proven it.
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