
Training DNNs: Basic Methods and
Tricks

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

March 4, 2025

1 / 89

Supervised learning as data-fitting

– Step 1 Gather training set (x1,y1), . . . , (xn,ym)

– Step 2 Choose a NN with k neurons, so that there exist weights

(w1, . . . ,wk) to ensure yi ≈ {NN (w1, . . . ,wk)} (xi), ∀i
– Step 3 Set up a loss function ℓ

– Step 4 Find weights (w1, . . . ,wk) to minimize the average loss

1

m

m∑
i=1

ℓ [yi, {NN (w1, . . . ,wk)} (xi)]

Three fundamental questions in DL

– Approximation: is it powerful, i.e., the H large enough for all possible

weights?

– Optimization: how to solve

min
w′

is

1

m

m∑
i=1

ℓ [yi, {NN (w1, . . . ,wk)} (xi)]

– Generalization: does the learned NN work well on “similar” data?

(CSCI5525, and Deep Learning Theory)

2 / 89

Basics of numerical optimization

– 1st and 2nd optimality conditions

– iterative methods

Credit: aria42.com

– gradient descent

– Newton’s method

– momentum methods

– quasi-Newton methods

– coordinate descent

– conjugate gradient methods

– trust-region methods

– etc

3 / 89

Computing derivatives

Credit: [Baydin et al., 2017]

– Analytic differentiation (by hand or by software)

– Finite difference approximation

– Automatic/Algorithmic differentiation (AD)
4 / 89

A simple example

train model y = a+ bx+ cx2 + dx3 using plain pytorch

5 / 89

A simple example

train model y = a+ bx+ cx2 + dx3 using PyTorch with autodiff (backward)

6 / 89

A simple example

train model y = [a b c d]⊺[1 x x2 x3] using PyTorch with torch.nn

7 / 89

A simple example

train model y = [a b c d]⊺[1 x x2 x3] using PyTorch with torch.nn and a

built-in optimizer

PyTorch optimizers: https://pytorch.org/docs/stable/optim.html

8 / 89

https://pytorch.org/docs/stable/optim.html

A simple example

train model y = [a b c d]⊺[1 x x2 x3] using PyTorch with customized model class

based on torch.nn

9 / 89

Build an MLP

Please work through Introduction to PyTorch

https://pytorch.org/tutorials/beginner/basics/intro.html

by yourself

10 / 89

https://pytorch.org/tutorials/beginner/basics/intro.html

Ready to optimize DNNs!?

10 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

11 / 89

Set up the problem

DNN activation function

Credit: Stanford CS231N

min
W

∑
i

ℓ (yi,DNNW (xi)) + Ω (W)

– Which activation at the hidden nodes?

– Which activation at the output node?

– Which ℓ?

12 / 89

Which activation at the hidden nodes?

Is the sign (·) activation good for derivative-based optimization?

∇wℓ (sign (w⊺x) , y) = ℓ′ (sign (w⊺x) , y) sign′ (w⊺x)x = 0

almost everywhere (But why the classic Perceptron algorithm converges?)

Desiderata for activation:

– Differentiable or almost everywhere differentiable

– Nonzero derivatives (almost) everywhere

– Cheap to compute
13 / 89

Sigmoid and hypertangent

σ (x) = 1
1+e−x

– Differentiable? Yes!

– Nonzero derivatives? Yes and No! What happens

for large positive and negative inputs?

– Cheap? exp (·) is relatively expensive

What about tanh?

14 / 89

ReLU and friends

σ (x) = max (0, x)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes and No! What happens

for x < 0?

– Cheap? Yes!

σ (x) = max (αx, x) (e.g., α = 0.01)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes! (almost everywhere)

– Cheap? Yes!

15 / 89

ReLU and friends

– ReLU and Leaky ReLU are the most popular

– tanh less preferred but okay; sigmoid should be avoided

https://pytorch.org/docs/stable/nn.html#

non-linear-activations-weighted-sum-nonlinearity
16 / 89

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Which activation at output node?

DNN

depending on the desired output

– unbounded scalar/vector output (e.g. , regression): identity activation

– binary classification with 0 or 1 output: e.g., sigmoid σ (x) = 1
1+e−x or

σ (x) = 1
2
(sin(x) + 1)

– multiclass classification: labels into vectors via one-hot encoding

Lk =⇒ [0, . . . , 0,︸ ︷︷ ︸
k−1 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k 0′s

]⊺

e.g., softmax activation:

z 7→
[

ez1∑
j e

zj , . . . ,
ezp∑
j e

zj

]⊺
.

– discrete probability distribution: softmax 17 / 89

Which loss?

Which ℓ to choose? Make it differentiable, or almost so

– regression: ∥·∥22 (common, torch.nn.MSELoss), ∥·∥1 (for robustness,

torch.nn.L1Loss), etc

– binary classification: encoder the classes as {0, 1}, ∥·∥22 or cross-entropy:

ℓ (y, ŷ) = y log ŷ − (1− y) log(1− ŷ) (min at ŷ = y,

torch.nn.BCELoss)

– multiclass classification based on one-hot encoding and softmax

activation: ∥·∥22 or cross-entropy: ℓ (y, ŷ) = −
∑

i yi log ŷi (min at

y = ŷ, torch.nn.CrossEntropyLoss)

* label smoothing: one-hot encoding makes all yi’s zero except for

the target class, but yi = 0 =⇒ ∇wyi log ŷi = 0 =⇒ no update

contributed from yi.

Remedy: relax ... change [0, . . . , 0, 1, 0, . . . , 0]⊺ into

[ε, . . . , ε, 1− (m− 1)ε, ε, . . . , ε]⊺ for a small ε

– difference between distributions: Kullback-Leibler divergence loss

(torch.nn.KLDivLoss) or Wasserstein metric

18 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

19 / 89

Framework of line-search methods

A generic line search algorithm

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: choose a direction dk

3: decide a step size tk

4: make a step: xk+1 = xk + tkdk

5: update counter: k = k + 1

6: end while

Four questions:

– How to choose direction dk?

– How to choose step size tk?

– Where to initialize?

– When to stop?
20 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

21 / 89

From deterministic to stochastic optimization

Recall our optimization problem:

min
W

1

m

∑m

i=1
ℓ (yi,DNNW (xi)) + Ω (W)

What happens when m is large, i.e., in the “big data” regime?

Blessing: assume (xi,yi)’s are iid, then

1
m

∑m
i=1 ℓ (yi,DNNW (xi))→ Ex,yℓ (y,DNNW (x))

by the law of large numbers. Large m ≈ good generalization!

Curse: storage and computation

– storage: {(xi,yi)} typically
loaded onto GPU/TPU for parallel

computing—loading whole dataset

not feasible

– computation: each iteration costs

at least O(mn), where n is #(opt

variables)—both can be large for

training DNNs!

22 / 89

From deterministic to stochastic optimization

How to get around for large m?

stochastic optimization (stochastic = random)

Idea: use a small batch of data samples to approximate quantities of interest

– gradient: 1
m

∑m
i=1∇W ℓ (yi,DNNW (xi))→ Ex,y∇W ℓ (y,DNNW (x))

approximated by stochastic gradient:

1
|J|
∑

j∈J ∇W ℓ
(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | ≪ m

– Hessian: 1
m

∑m
i=1∇

2
W ℓ (yi,DNNW (xi))→ Ex,y∇2

W ℓ (y,DNNW (x))

approximated by stochastic Hessian:

1
|J|
∑

j∈J ∇
2
W ℓ

(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | ≪ m

... justified by the law of large numbers

23 / 89

Stochastic gradient descent (SGD)

In general (i.e., not only for DNNs), suppose we want to solve

min
w

F (w)
.
=

1

m

∑m

i=1
f (w; ξi) ξi’s are data samples

idea: replace gradient with a stochastic gradient in each step of GD

Stochastic gradient descent (SGD)

Input: initialization w0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: sample a random subset Jk ⊂ {0, . . . ,m− 1}
3: calculate the stochastic gradient ĝk

.
= 1

|Jk|
∑

j∈Jk
∇wf

(
wk−1; ξj

)
4: decide a step size tk

5: make a step: wk = wk−1 − tkĝk

6: update counter: k = k + 1

7: end while

– Jk is redrawn in each iteration

– Traditional SGD: |Jk| = 1. The version presented is also called mini-batch

gradient descent
24 / 89

What’s an epoch?

– Canonical SGD: sample a random subset Jk ⊂ {1, . . . ,m} each
iteration—sampling with replacement

– Practical SGD: shuffle the training set, and take a consecutive batch of

size B (called batch size) each iteration—sampling without replacement

one pass of the shuffled training set is called one epoch.

Practical stochastic gradient descent (SGD)

Input: init. w0, SC, batch size B, iteration counter k = 1, epoch counter ℓ = 1

1: while SC not satisfied do

2: permute the index set {0, · · · ,m} and divide it into batches of size B

3: for i ∈ {1, . . . ,#batches} do
4: calculate the stochastic gradient ĝk based on the ith batch

5: decide a step size tk

6: make a step: wk = wk−1 − tkĝk

7: update iteration counter: k = k + 1

8: end for

9: update epoch counter: ℓ = ℓ+ 1

10: end while
25 / 89

GD vs. SGD

Consider minw ∥y −Xw∥22, where X ∈ R10000×500, y ∈ R10000, w ∈ R500

– By iteration: GD is faster

– By iter(GD)/epoch(SGD): SGD is faster

– Remember, cost of one epoch of SGD ≈ cost of one iteration of GD!

SGD is quicker to find a medium-accuracy solution with lower cost, which

suffices for most purposes in machine learning [Bottou and Bousquet, 2008].

26 / 89

Step size (learning rate) for SGD

Recall the recommended step size rule for GD: back-tracking line search

key idea: F (w − t∇F (w))− F (w) ≈ −ct ∥∇F (w)∥2 for a certain c ∈ (0, 1)

Shall we do it for SGD? No, but why?

– SGD tries to avoid the m factor in computing the full gradient

∇wF (w) = 1
m

∑m
i=1∇wf (w; ξi), i.e., reducing m to B (batch size)

– But computing F (w) = 1
m

∑m
i=1 f (w; ξi) or

F (w − tĝ) = 1
m

∑m
i=1 f (w − tĝ; ξi) brings back the m factor; similarly

for ∇F

– What about computing approximations to the objective values based on

small batches also? Approximation errors for F and ∇F may ruin the

stability of the Taylor criterion

27 / 89

Step size (learning rate, or LR) for SGD

Classical theory for SGD on convex problems requires∑
k

tk =∞,
∑
k

t2k <∞.

Practical implementation: diminishing step size/LR, e.g.,

– 1/k delay: tk = α/(1 + βk), α, β: tunable parameters, k: iteration index

– exponential delay: tk = αe−βk, α, β: tunable parameters, k: iteration

index

– staircase delay: start from t0, divide it by a factor (e.g., 5 or 10) every L

(say, 10) epochs—popular in practice. Some heuristic variants:

(lr scheduler.ReduceLROnPlateau)

– watch the validation error and decrease the LR when it stagnates

– watch the objective and decrease the LR when it stagnates

check out torch.optim.lr scheduler in PyTorch! https:

//pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

28 / 89

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

Beyond the vanilla SGD

– Momentum/acceleration methods

– SGD with adaptive learning rates

– Stochastic 2nd order methods

29 / 89

Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

30 / 89

Heavy ball method

In physics, a heavy object has a large inertia/momentum—resistance to change

in velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 31 / 89

Nesterov’s accelerated gradient methods

due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

SGD with momentum/acceleration: replace the gradient term ∇f by the

stochastic gradient ĝ based on small batches

check out torch.optim.SGD at (their convention slightly differs from here)

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD 32 / 89

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD

Why SGD with adaptive learning rate?

Recall the struggle of GD on elongated functions, e.g., f (x1, x2) = x2
1 + 4x2

2

– (Quasi-)Newton’s method: take the full curvature info, but expensive

– Momentum methods: use historic direction(s) to cancel out wiggles

Another heuristic remedy: balance out movements in all coordinate directions.

Suppose g is the (stochastic) gradient, for all i,

divide gi by historic gradient magnitudes in the ith coordinate

Benefit: coordinate directions always with small (large) derivatives get sped up

(slowed down). Think of the above f (x1, x2) example!

33 / 89

Method 1: Adagrad

divide gi by historic gradient magnitudes in the ith coordinate

At the (k + 1)th iteration, for all i,

xi,k+1 = xi,k − tk
gi,k√∑k

j=1 g
2
i,j + ε

or in elementwise notation

xk+1 = xk − tk
gk√∑k

j=1 g
2
j + ε

Write sk
.
=
∑k

j=1 g
2
j . Note that sk = sk−1 + g2

k. So only need to incrementally

update the sk sequence, which is cheap

In PyTorch, torch.optim.Adagrad

https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad

34 / 89

https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad

Method 2: RMSprop

Adagrad:

xk+1 = xk − tk
gk√
sk + ε

with sk
.
=

k∑
j=1

g2
j .

update equation for sk : sk = sk−1 + g2
k

Problems:

– Magnitudes in sk becomes larger when k grows, and hence movements

tk
gk√
sk+ε

become small when k is large.

– Remote history may not be relevant

Solution: RMSprop—gradually phase out the history. For some β ∈ (0, 1)

sk = βsk−1 + (1− β) g2
k ⇐⇒ sk = (1− β)

(
g2
k + βg2

k−1 + β2g2
k−2 + . . .

)
Typical values for β: 0.9, 0.99. In PyTorch, torch.optim.RMSprop

https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop

35 / 89

https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop

Method 3: Adam

Combine RMSprop with momentum methods

mk = β1mk−1 + (1− β1) gk (combine momentum and stochastic gradient)

sk = β2sk−1 + (1− β2) g
2
k (scaling factor update as in RMSprop)

xk+1 = xk − tk
mk√
sk + ε

– Typical parameters: β1 = 0.9, β2 = 0.999, ε= 1e-8.

– In PyTorch, torch.optim.Adam

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

– Several recent variants: torch.optim.AdamW, torch.optim.SparseAdam,

torch.optim.Adamax

36 / 89

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Thoughts on adaptive LR methods

– adapting the LR or adapting the (stochastic) gradient? Two views of the

same thing (⊙ denotes elementwise product)

xk+1 = xk −
tk√

sk + ε
⊙ gk vs. xk+1 = xk − tk

gk√
sk + ε

– adapting the gradient, familiar? What happens in Newton’s method?

xk+1 = xk − tk diag

(
1√

sk + ε

)
gk vs. xk+1 = xk − tkH

−1
k gk.

... approximate the Hessian (inverse) with a diagonal matrix. So adaptive

methods are approximate 2nd order methods, and more faithful

approximation possible.

– Learning rate tk: similar to that for the vanilla SGD, but less sensitive and

can be large

37 / 89

Diagnosis of LR

Credit: Stanford CS231N

– Low LR always leads to convergence, but takes forever

– Premature flattening is a sign of large LR; premature sloping is a sign of

early stopping—increase the number of epochs!

– Remember the starecase LR schedule!

38 / 89

Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) =
1
m

∑m
i=1 ℓ (yi, σ (W kσ(W k−1 . . . (W 1xi))))

Derivatives for early layers tend to be order of magnitude smaller than those for

late layers, i.e., the gradient vanishing/exploding phenomenon

See more discussion and explanation in

http://neuralnetworksanddeeplearning.com/chap5.html
39 / 89

http://neuralnetworksanddeeplearning.com/chap5.html

Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) =
1
m

∑m
i=1 ℓ (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Hypothesis: F has many saddle points and escaping saddle points causes

the difficulty of training [Choromanska et al., 2015, Pascanu et al., 2014,

Dauphin et al., 2014, Baskerville et al., 2020]

– Adaptive methods can escape saddle points efficiently; see, e.g.,

[Staib et al., 2020]

visual comparison https://imgur.com/a/Hqolp

40 / 89

https://imgur.com/a/Hqolp

Stochastic 2nd order methods

Recall scalable 2nd order methods

– Quasi-Newton methods, esp. L-BFGS

– Trust-region methods

When #samples is large, we also want to use only mini batches to estimate any

quantities of interest

– stochastic quasi-Newton methods: e.g., [Martens and Grosse, 2015]

[Byrd et al., 2016] [Anil et al., 2020]

[Roosta-Khorasani and Mahoney, 2018]

– stochastic trust-region methods: e.g., [Curtis and Shi, 2019],

[Chauhan et al., 2018]

https://github.com/hjmshi/PyTorch-LBFGS

https://pytorch-optimizers.readthedocs.io/en/latest/ (collectes

many optimizers not officially supported by PyTorch)

still active area of research. Hardware seems to be the main limiting factor

41 / 89

https://github.com/hjmshi/PyTorch-LBFGS
https://pytorch-optimizers.readthedocs.io/en/latest/

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

42 / 89

Where to initialize? the general picture

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

43 / 89

https://sunju.org/research/nonconvex/

Where to initialize for DNNs?

F (W 1, . . . ,W k) =
1
m

∑m
i=1 ℓ (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Are there bad initializations? Consider a simple case

F (W 1,W 2) =
1

m

m∑
i=1

∥yi −W 2σ (W 1xi)∥22

∇W 1F (W 1,W 2) = −
2

m

m∑
i=1

[
W ⊺

2 (yi −W 2σ (W 1xi))⊙ σ′ (W 1xi)
]
x⊺

i

* What about W = 0? ∇W 1F = 0—no movement on W 1

* What about very large (small) W ? Large (small) value &

gradient—the problem becomes significant when there are more

layers

– Are there principled ways of initialization?

* random initialization with proper scaling

* orthogonal initialization

44 / 89

Random initialization

Idea: make all entries in W iid random, and also W i’s and W ⊺
i ’s “well

behaved”

A reasonable goal: if all entries in v ∈ Rd are independent and have zero

mean, unit variance, the output σ (w⊺v) ∈ R (i.e., output of a single

neuron) has a unit variance.

To seek a specific setting for w ∈ Rd, suppose w is iid with zero mean and σ is

identity. Then:

Var (w⊺v) = Var

(∑
i

wivi

)
=
∑
i

Var (wivi) =
∑
i

Var (wi)Var (vi) = dVar(wi).

To make Var (w⊺v) = 1, we will set Var (wi) = 1/d.

For W i with d inputs, set W i iid zero-mean and 1/d variance

45 / 89

Random initialization

For W i with din inputs, set W i iid zero-mean and 1/din variance

A similar consideration of W ⊺
i (due to its role in the gradient) also suggests that

For W i with dout outputs, set W i iid zero-mean and 1/dout-variance

Xavier Initialization: set W i ∈ Rdout×din iid zero-mean and
2

din+dout
-variance. For example:

– W i ∼iid N
(
0, 2

din+dout

)
torch.nn.init.xavier normal

– W i ∼iid uniform
(
−
√

6
din+dout

,
√

6
din+dout

)
torch.nn.init.xavier uniform

46 / 89

Random initialization

Recall our derivation assumed σ is identity, which may not be accurate.

For ReLU, assume v iid 0-mean, unit variance, w iid 0-mean, and both v, w are

symmetric and independent (i,e., −v has the same dist as v; similarly for w)

E
[
ReLU2 (w⊺v)

]
=

1

2
E
[
(w⊺v)2

]
=

1

2
Var (w⊺v) =

1

2
dVar (wi) .

Kaiming Initialization (for ReLU): set W i ∈ Rdout×din iid zero-mean and

2
din

-variance. For example:

– W i ∼iid N
(
0, 2

din

)
torch.nn.init.kaiming normal

– W i ∼iid uniform
(
−
√

6
din

,
√

6
din

)
torch.nn.init.kaiming uniform

But it only accounts for din or dout; a proposed modification: set the variance to

c√
dindout

for some constant c [Defazio and Bottou, 2019]

47 / 89

Orthogonal initialization

Making all W i’s orthonormal is empirically shown to lead to competitive

performance with fewer tricks (covered next lectures). See Sec 4.2

of [Sun, 2019] torch.nn.init.orthogonal

There is a body of research proposing contraining/regularizing W i’s to be

orthonormal, e.g., [Arjovsky et al., 2016, Bansal et al., 2018,

Lezcano-Casado and Mart́ınez-Rubio, 2019, Li et al., 2020]

See also the modified PyTorch package that allows manifold constraints

https://github.com/mctorch/mctorch

and the NCVX package that can handle general constrained deep learning

https://ncvx.org/

48 / 89

https://github.com/mctorch/mctorch
https://ncvx.org/

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

49 / 89

When to stop in training DNNs?

Recall that a natural stopping criterion for general GD is ∥∇f (w)∥ ≤ ε for a

small ε. Is this good when training DNNs?

– Computing ∇f (w) each iterate is expensive (recall why GD into SGD)

– Stochastic gradient is noisy—norm at a true critical point may be large

– Non-differentiable objectives are common in deep learning

A practical/pragmatic stopping strategy for classification: early stopping

... periodically check the validation error and stop when it doesn’t improve

50 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

51 / 89

Recap

Training DNNs

min
W

1

m

m∑
i=1

ℓ (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

Now: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

52 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

53 / 89

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ℓ (w

⊺xi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ∥yi −w⊺xi∥22

– Logistic regression: minw − 1
m

∑m
i=1

[
yiw

⊺xi − log
(
1 + ew

⊺xi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ∥yi − σ (w⊺xi)∥22

Gradient: ∇wf = 1
m

∑m
i=1 ℓ

′ (w⊺xi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 ℓ

′′ (w⊺xi; yi)xix
⊺
i .

– Suppose the off-diagonal elements of xix
⊺
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

54 / 89

Fix the scaling: first idea

Normalization: make each feature zero-mean and unit variance, i.e., make

each feature/column of X zero-mean and unit variance, i.e.

X ′ =
X − µ

σ
(µ—col means, σ—col std, broadcasting applies)

X = (X - X.mean(axis=0))/X.std(axis=0)

Credit: Stanford CS231N

55 / 89

Fix the scaling: first idea

For LS, works well when features are approximately independent

before vs. after the normalization

For LS, works not so well when features are highly dependent.

before vs. after the normalization

How to remove the feature dependency? 56 / 89

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=0) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = X@VT.T #rotate/decorrelate the data

(math: X = USV ⊺, then XV = US)

Whitening: PCA + normalize the coordinates by singular values

Xwhite = Xrot/(S+eps) # (math: Xwhite = U)

Credit: Stanford CS231N 57 / 89

Fix the scaling: second idea

For LS, works well when features are approximately independent

before vs. after the whitening

For LS, also works well when features are highly dependent.

before vs. after the whitening

58 / 89

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ℓ (w

⊺xi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ℓ (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of w⊺xi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

59 / 89

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of w⊺xi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN(σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z =

[
z
⊺
1

...
z
⊺
|B|

]
,

BN(Zj) =
Zj − µZj

σZj

for each j, i.e., for each neuron/feature.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj (Zj) = γj
Zj − µZj

σZj

+ βj for each j.

Here, γj ’s and β’s are trainable (optimization) variables!
60 / 89

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN(σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj (Zj) = γj
Zj − µZj

σZj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ℓ (yi, σ (W kBN(σ (W k−1 . . .BN(σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj
(Zj) is nothing but a differentiable function of Zj ,

γj , and βj — chain rule applies!

– µZj and σZj are differentiable functions of Zj , and

(Zj , γj , βj) 7→ BNγj ,βj
(Zj) is a vector-to-vector mapping

– Any col Zj depends on all xk’s in the current mini-batch B as zi ←− xi

for i = 1, . . . , |B|
– Without BN: ∇W

1
|B|
∑|B|

k=1 ℓ (W ;xk,yk) =
1

|B|
∑|B|

k=1∇W ℓ (W ;xk,yk),

the summands can be computed in parallel and then aggregated

With BN: ∇W
1

|B|
∑|B|

k=1 ℓ (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

61 / 89

Batch normalization: implementation details

BNγj ,βj
(Zj) = γj

Zj − µZj

σZj

+ βj ∀ j

What about validation/test, where only a single sample is seen each time?

idea: use the average µzj ’s and σzj ’s over the training data (γj ’s and βj ’s

are learned)

In practice, collect the momentum-weighted running averages: e.g., for each

hidden node with BN,

µ = (1− η)µold + ηµnew

σ = (1− η)σold + ησnew

with e.g., η = 0.1. In PyTorch, torch.nn.BatchNorm1d,

torch.nn.BatchNorm2d, torch.nn.BatchNorm3d depending on the input

shapes

62 / 89

Training and evaluation modes

In practice, collect the momentum-weighted running averages: e.g., for each

hidden node with BN,

µ = (1− η)µold + ηµnew

σ = (1− η)σold + ησnew

with e.g., η = 0.1.

– Different behaviors in training and evaluation modes for BatchNorm

(similarly for Dropout discussed later)

– Pytorch implements .train() and .eval() to switch between the modes

63 / 89

Batch normalization: implementation details

Question: BN before or after the activation?

W 2σ (W 1xi) −→ W 2BN(σ (W 1xi)) (after)

W 2σ (W 1xi) −→ W 2 (σ (BN (W 1xi))) (before)

– The original paper [Ioffe and Szegedy, 2015] proposed the “before” version

(most of the original intuition has since proved wrong)

– But the “after” version is more intuitive as we have seen

– Both are used in practice and debatable which one is more effective

* https://www.reddit.com/r/MachineLearning/comments/

67gonq/d_batch_normalization_before_or_after_relu/

* https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/

* https://github.com/gcr/torch-residual-networks/issues/5

* [Chen et al., 2019]

64 / 89

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://github.com/gcr/torch-residual-networks/issues/5

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

65 / 89

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening? Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

66 / 89

Zoo of normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

– N is the batch axis

– C is the # output nodes (often called “channels” in CNN context)

– WH is the per output dimension (1 for fully connected, but 2D for CNNs)

layer/group normalization:

– small N (batch size) is possible

– simplicity: training/test normalizations are consistent
67 / 89

Zoo of normalization

weight normalization: decompose the weight as magnitude and direction

w = g v
∥v∥2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

Check out PyTorch normalization layers

https://pytorch.org/docs/stable/nn.html#normalization-layers

68 / 89

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://pytorch.org/docs/stable/nn.html#normalization-layers

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

69 / 89

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ℓ (yi,DNNW (xi)) + λΩ(W) with explicit

regularization Ω. But which Ω?

– Ω(W) =
∑

k ∥W k∥2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω(W) =
∑

k ∥W k∥1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω(W) = ∥JDNNW (x)∥2F — promotes slow change of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C

∞ W /∈ C
, e.g., binary, norm bound

– many others!

70 / 89

Implicit regularization

Training DNNs minW
1
m

∑m
i=1 ℓ (yi,DNNW (xi)) + λΩ (W) with

implicit regularization — operation that is not built into the objective

but avoids overfitting

– early stopping

– (batch) normalization

– dropout

– algorithm choice

– etc

71 / 89

Early stopping

A practical/pragmatic stopping strategy: early stopping

... periodically check the validation error and stop when it doesn’t improve

Intuition: avoid the model to be too specialized/perfect for the training data

More concrete math examples: [Bishop, 1995, Sjöberg and Ljung, 1995]

72 / 89

Batch/general normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

weight normalization: decompose the weight as magnitude and direction

w = g v
∥v∥2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

73 / 89

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Dropout

Credit: [Srivastava et al., 2014]

Idea: kill each non-output neuron with probability 1− p, called Dropout

– perform Dropout independently for each training sample and each iteration

– for each neuron, if the original output is x, then the expected output with

Dropout: px. So rescale the actual output by 1/p

– no Dropout at test time!

74 / 89

Dropout: implementation details

Credit: Stanford CS231N

What about derivatives? Back-propagation for each sample and then aggregate

PyTorch: torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d

75 / 89

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting Credit: [Srivastava et al., 2014]

For an n-node network, O(2n) possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

ℓ (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

76 / 89

Implementation details

– Different behaviors in training and evaluation modes for Dropout

(similarly for BatchNorm discussed earlier)

– Pytorch implements .train() and .eval() to switch between the modes

77 / 89

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

78 / 89

Hyperparameter search

...tunable parameters (vs. learnable parameters, or optimization variables)

– Network architecture (depth, width, activation, loss, etc)

– Optimization methods

– Initialization schemes

– Initial LR and LR schedule/parameters

– regularization methods and parameters

– etc

https://cs231n.github.io/neural-networks-3/#hyper

Credit: [Bergstra and Bengio, 2012] 79 / 89

https://cs231n.github.io/neural-networks-3/#hyper

Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html80 / 89

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Tricks

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

81 / 89

Suggested reading

– Chap 7, Deep Learning (Goodfellow et al)

– Sun, Ruoyu. “Optimization for deep learning: theory and algorithms.”

arXiv preprint arXiv:1912.08957 (2019).

– UIUC IE598-ODL Optimization Theory for Deep Learning

https://wiki.illinois.edu/wiki/display/IE598ODLSP19/

IE598-ODL++Optimization+Theory+for+Deep+Learning

– Stanford CS231n course notes: Neural Networks Part 1: Setting up the

Architecture https://cs231n.github.io/neural-networks-1/

– Stanford CS231n course notes: Neural Networks Part 2: Setting up the

Data and the Loss https://cs231n.github.io/neural-networks-2/

– Stanford CS231n course notes: Neural Networks Part 3: Learning and

Evaluation https://cs231n.github.io/neural-networks-3/

– http://neuralnetworksanddeeplearning.com/chap3.html

82 / 89

https://wiki.illinois.edu/wiki/display/IE598ODLSP19/IE598-ODL++Optimization+Theory+for+Deep+Learning
https://wiki.illinois.edu/wiki/display/IE598ODLSP19/IE598-ODL++Optimization+Theory+for+Deep+Learning
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-2/
https://cs231n.github.io/neural-networks-3/
http://neuralnetworksanddeeplearning.com/chap3.html

References i

[Anil et al., 2020] Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y. (2020).

Second order optimization made practical. arXiv:2002.09018.

[Arjovsky et al., 2016] Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary

evolution recurrent neural networks. In International Conference on Machine

Learning, pages 1120–1128.

[Bansal et al., 2018] Bansal, N., Chen, X., and Wang, Z. (2018). Can we gain more

from orthogonality regularizations in training deep cnns? In Proceedings of the

32nd International Conference on Neural Information Processing Systems, pages

4266–4276. Curran Associates Inc.

[Baskerville et al., 2020] Baskerville, N. P., Keating, J. P., Mezzadri, F., and Najnudel,

J. (2020). The loss surfaces of neural networks with general activation functions.

arXiv:2004.03959.

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,

J. M. (2017). Automatic differentiation in machine learning: a survey. The Journal

of Machine Learning Research, 18(1):5595–5637.

83 / 89

References ii

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for

hyper-parameter optimization. Journal of machine learning research,

13(Feb):281–305.

[Bishop, 1995] Bishop, C. M. (1995). Regularization and complexity control in

feed-forward networks. In International Conference on Artificial Neural Networks

ICANN.

[Bottou and Bousquet, 2008] Bottou, L. and Bousquet, O. (2008). The tradeoffs of

large scale learning. In Advances in neural information processing systems, pages

161–168.

[Byrd et al., 2016] Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. (2016). A

stochastic quasi-newton method for large-scale optimization. SIAM Journal on

Optimization, 26(2):1008–1031.

[Chan et al., 2019] Chan, A., Tay, Y., Ong, Y. S., and Fu, J. (2019). Jacobian

adversarially regularized networks for robustness. arXiv:1912.10185.

[Chauhan et al., 2018] Chauhan, V. K., Sharma, A., and Dahiya, K. (2018).

Stochastic trust region inexact newton method for large-scale machine learning.

arXiv:1812.10426.

84 / 89

References iii

[Chen et al., 2019] Chen, G., Chen, P., Shi, Y., Hsieh, C.-Y., Liao, B., and Zhang, S.

(2019). Rethinking the usage of batch normalization and dropout in the training of

deep neural networks. arXiv:1905.05928.

[Choromanska et al., 2015] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,

and LeCun, Y. (2015). The loss surfaces of multilayer networks. In Artificial

intelligence and statistics, pages 192–204.

[Curtis and Shi, 2019] Curtis, F. E. and Shi, R. (2019). A fully stochastic

second-order trust region method. arXiv:1911.06920.

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S.,

and Bengio, Y. (2014). Identifying and attacking the saddle point problem in

high-dimensional non-convex optimization. In Advances in neural information

processing systems, pages 2933–2941.

[Defazio and Bottou, 2019] Defazio, A. and Bottou, L. (2019). Scaling laws for the

principled design, initialization and preconditioning of relu networks.

arXiv:1906.04267.

[Hoffman et al., 2019] Hoffman, J., Roberts, D. A., and Yaida, S. (2019). Robust

learning with jacobian regularization. arXiv:1908.02729.

85 / 89

References iv

[Huang et al., 2019] Huang, L., Zhou, Y., Zhu, F., Liu, L., and Shao, L. (2019).

Iterative normalization: Beyond standardization towards efficient whitening. pages

4869–4878. IEEE.

[Huangi et al., 2018] Huangi, L., Huangi, L., Yang, D., Lang, B., and Deng, J. (2018).

Decorrelated batch normalization. pages 791–800. IEEE.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate shift. In The

32nd International Conference on Machine Learning.

[Kohler et al., 2019] Kohler, J. M., Daneshmand, H., Lucchi, A., Hofmann, T., Zhou,

M., and Neymeyr, K. (2019). Exponential convergence rates for batch

normalization: The power of length-direction decoupling in non-convex

optimization. In The 22nd International Conference on Artificial Intelligence and

Statistics.

[Lezcano-Casado and Mart́ınez-Rubio, 2019] Lezcano-Casado, M. and Mart́ınez-Rubio,

D. (2019). Cheap orthogonal constraints in neural networks: A simple

parametrization of the orthogonal and unitary group. arXiv1901.08428.

86 / 89

References v

[Li et al., 2020] Li, J., Fuxin, L., and Todorovic, S. (2020). Efficient riemannian

optimization on the stiefel manifold via the cayley transform. arXiv:2002.01113.

[Lipton and Steinhardt, 2019] Lipton, Z. C. and Steinhardt, J. (2019). Troubling

trends in machine learning scholarship. ACM Queue, 17(1):80.

[Martens and Grosse, 2015] Martens, J. and Grosse, R. (2015). Optimizing neural

networks with kronecker-factored approximate curvature. In International

conference on machine learning, pages 2408–2417.

[Pascanu et al., 2014] Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y.

(2014). On the saddle point problem for non-convex optimization. arXiv preprint

arXiv:1405.4604.

[Roosta-Khorasani and Mahoney, 2018] Roosta-Khorasani, F. and Mahoney, M. W.

(2018). Sub-sampled newton methods. Mathematical Programming,

174(1-2):293–326.

[Santurkar et al., 2018] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018).

How does batch normalization help optimization? In Advances in Neural

Information Processing Systems, pages 2483–2493.

87 / 89

References vi

[Sjöberg and Ljung, 1995] Sjöberg, J. and Ljung, L. (1995). Overtraining,

regularization and searching for a minimum, with application to neural networks.

International Journal of Control, 62(6):1391–1407.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research, 15(1):1929–1958.

[Staib et al., 2020] Staib, M., Reddi, S. J., Kale, S., Kumar, S., and Sra, S. (2020).

Escaping saddle points with adaptive gradient methods. arXiv:1901.09149.

[Sun, 2019] Sun, R. (2019). Optimization for deep learning: theory and algorithms.

arXiv:1912.08957.

[Varga et al., 2017] Varga, D., Csiszárik, A., and Zombori, Z. (2017). Gradient

regularization improves accuracy of discriminative models. arXiv:1712.09936.

[Wang et al., 2016] Wang, M., Fang, E. X., and Liu, H. (2016). Stochastic

compositional gradient descent: algorithms for minimizing compositions of

expected-value functions. Mathematical Programming, 161(1-2):419–449.

88 / 89

References vii

[Wang et al., 2017] Wang, M., Liu, J., and Fang, E. X. (2017). Accelerating

stochastic composition optimization. The Journal of Machine Learning Research,

18(1):3721–3743.

[Wang et al., 2019] Wang, W., Dang, Z., Hu, Y., Fua, P., and Salzmann, M. (2019).

Backpropagation-friendly eigendecomposition. In Advances in Neural Information

Processing Systems, pages 3156–3164.

[Wu and He, 2018] Wu, Y. and He, K. (2018). Group normalization. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 3–19.

89 / 89

	Three design choices
	Training algorithms
	Which method
	Where to start
	When to stop

	Tricks
	Data Normalization
	Regularization
	Hyperparameter search, data augmentation

	Suggested reading

