Basics of Numerical Optimization: Iterative Methods

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

February 4, 2025

 $\min_{\boldsymbol{x}} f(\boldsymbol{x})$

Grid search: incurs $O(\varepsilon^{-n})$ cost

Smart search

1st-order necessary condition: Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, then $\nabla f(x_0) = 0$.

x with $\nabla f(x) = 0$: 1st-order stationary point (10SP)

2nd-order necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$.

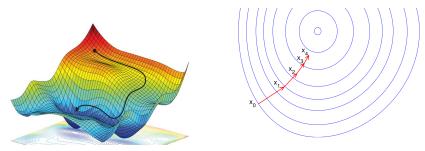
x with $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$: 2nd-order stationary point (20SP)

x with $\nabla f(x) = 0$: 1st-order stationary point (1OSP) x with $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$: 2nd-order stationary point (2OSP)

- Analytic method: find 1OSP's using gradient first, then study them using Hessian — for simple functions! e.g., $f(x) = ||y - Ax||_2^2$, or $f(x, y) = x^2y^2 - x^3y + y^2 - 1$)
- Iterative methods: find 1OSP's/2OSP's by making consecutive small movements

This lecture: iterative methods

Iterative methods



Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

- Line-search methods: direction first, size second
- Trust-region methods: size first, direction second

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

A word on constrained problems

A generic line search algorithm

Input: initialization x_0 , stopping criterion (SC), k = 1

- 1: while SC not satisfied do
- 2: choose a direction d_k
- 3: decide a step size t_k
- 4: make a step: $oldsymbol{x}_k = oldsymbol{x}_{k-1} + t_k oldsymbol{d}_k$
- 5: update counter: k = k + 1
- 6: end while

Four questions:

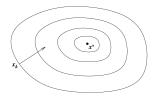
- How to choose direction d_k ?
- How to choose step size t_k ?
- Where to initialize?
- When to stop?

We want to decrease the function value toward global minimum... **shortsighted answer**: find a direction to decrease most rapidly

for any fixed $t>0,\ensuremath{\text{using 1st}}$ order Taylor expansion

$$f(\boldsymbol{x}_{k}+t\boldsymbol{v})-f(\boldsymbol{x}_{k})\approx t\left\langle
abla f(\boldsymbol{x}_{k}),\boldsymbol{v}
ight
angle$$

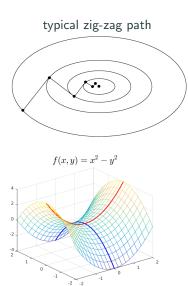
$$\min_{\left\|\boldsymbol{v}\right\|_{2}=1}\left\langle \nabla f\left(\boldsymbol{x}_{k}\right),\boldsymbol{v}\right\rangle \Longrightarrow \boldsymbol{v}=-\frac{\nabla f\left(\boldsymbol{x}_{k}\right)}{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}$$



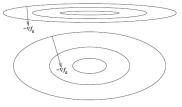
Set $\boldsymbol{d}_{k+1} = -\nabla f\left(\boldsymbol{x}_{k}\right)$

gradient/steepest descent: $x_{k+1} = x_k - t \nabla f(x_k)$

 $\min_{x} x^{\mathsf{T}}Ax + b^{\mathsf{T}}x$



conditioning affects the path length



- remember direction curvature? $\mathbf{v}^{\intercal} \nabla^2 f(\mathbf{x}) \mathbf{v} = \frac{d^2}{dt^2} f(\mathbf{x} + t\mathbf{v}) \Big|_{t=0}$
- large curvature \leftrightarrow narrow valley
- directional curvatures encoded in the Hessian
 8 / 49

We want to decrease the function value toward global minimum...

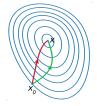
shortsighted answer: find a direction to decrease most rapidly farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

$$\begin{split} f\left(\boldsymbol{x}_{k}+t\boldsymbol{v}\right)-f\left(\boldsymbol{x}_{k}\right) &\approx t\left\langle \nabla f\left(\boldsymbol{x}_{k}\right),\boldsymbol{v}\right\rangle \\ &+\frac{1}{2}t^{2}\left\langle \boldsymbol{v},\nabla^{2}f\left(\boldsymbol{x}_{k}\right)\boldsymbol{v}\right\rangle \end{split}$$

minimizing the right side

$$\Longrightarrow \boldsymbol{v} = -t^{-1} \left[\nabla^2 f\left(\boldsymbol{x}_k \right) \right]^{-1} \nabla f\left(\boldsymbol{x}_k \right)$$



grad desc: green; Newton: red

Set
$$\boldsymbol{d}_{k+1} = -\left[\nabla^2 f\left(\boldsymbol{x}_k\right)\right]^{-1} \nabla f\left(\boldsymbol{x}_k\right)$$

Newton's method: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t \left[\nabla^2 f \left(\boldsymbol{x}_k \right) \right]^{-1} \nabla f \left(\boldsymbol{x}_k \right)$,

t is often set to be 1.

Newton's method:
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t \left[\nabla^2 f(\boldsymbol{x}_k) \right]^{-1} \nabla f(\boldsymbol{x}_k),$$

Recall Newton's method for root-finding: f(x) = 0

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

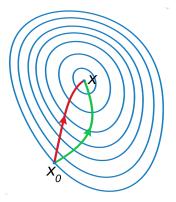
Newton's method for solving nonlinear system: f(x) = 0

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - \left[oldsymbol{J}_f\left(oldsymbol{x}_k
ight)
ight]^\dagger oldsymbol{f}\left(oldsymbol{x}_k
ight)$$

Newton's method for solving $abla f(x) = \mathbf{0}$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left[\nabla^2 f\left(\boldsymbol{x}_k\right)\right]^{-1} \nabla \boldsymbol{f}\left(\boldsymbol{x}_k\right)$$

How to choose a search direction?



grad desc: green; Newton: red

Newton's method take fewer steps

nearsighted choice: cost O(n) per step

gradient/steepest descent:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t\nabla f\left(\boldsymbol{x}_k\right)$$

farsighted choice: cost $O(n^3)$ per step

Newton's method: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t \left[\nabla^2 f \left(\boldsymbol{x}_k \right) \right]^{-1} \nabla f \left(\boldsymbol{x}_k \right)$,

Implication: The plain Newton never used for large-scale problems. More on this later ...

Newton's method:
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t \left[\nabla^2 f(\boldsymbol{x}_k) \right]^{-1} \nabla f(\boldsymbol{x}_k)$$
,

for any fixed t > 0, using 2nd-order Taylor expansion

$$egin{aligned} &f\left(oldsymbol{x}_{k}+toldsymbol{v}
ight)-f\left(oldsymbol{x}_{k}
ight)pprox t\left\langle
abla
ight
angle \left(oldsymbol{x}_{k}
ight),oldsymbol{v}
ight
angle \ &+rac{1}{2}t^{2}\left\langleoldsymbol{v},
abla^{2}f\left(oldsymbol{x}_{k}
ight)oldsymbol{v} \end{aligned}$$

minimizing the right side $\Longrightarrow \boldsymbol{v} = -t^{-1} \left[\nabla^2 f\left(\boldsymbol{x}_k \right) \right]^{-1} \nabla f\left(\boldsymbol{x}_k \right)$

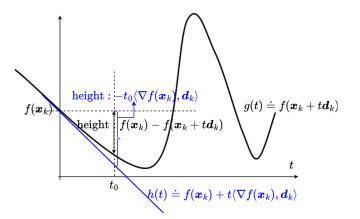
- $\nabla^{2} f\left(oldsymbol{x}_{k}
 ight)$ may be non-invertible
- the minimum value is $-\frac{1}{2} \langle \nabla f(\boldsymbol{x}_k), [\nabla^2 f(\boldsymbol{x}_k)]^{-1} \nabla f(\boldsymbol{x}_k) \rangle$. If $\nabla^2 f(\boldsymbol{x}_k)$ not positive definite, may be positive

solution: e.g., modify the Hessian $\nabla^2 f(\boldsymbol{x}_k) + \tau \boldsymbol{I}$ with τ sufficiently large

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + t_k \boldsymbol{d}_k$

- Naive choice: sufficiently small constant t for all k
- A robust and practical choice: back-tracking line search

Intuition for back-tracking line search:



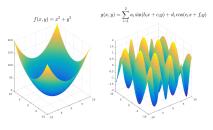
Back-tracking line search

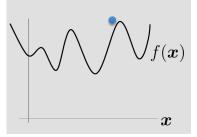
- $f(\boldsymbol{x}_{k} + t\boldsymbol{d}_{k}) = f(\boldsymbol{x}_{k}) + t \langle \nabla f(\boldsymbol{x}_{k}), \boldsymbol{d}_{k} \rangle + o(t \|\boldsymbol{d}_{k}\|_{2})$ when t sufficiently small $t \langle \nabla f(\boldsymbol{x}_{k}), \boldsymbol{d}_{k} \rangle$ dictates the value decrease
- But we also want t large as possible to make rapid progress
- idea: find a large possible t^* to make sure $f(\boldsymbol{x}_k + t^*\boldsymbol{d}_k) - f(\boldsymbol{x}_k) \leq ct^* \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{d}_k \rangle$ (key condition) for a chosen parameter $c \in (0, 1)$, and no less
- details: start from t = 1. If the key condition not satisfied, $t = \rho t$ for a chosen parameter $\rho \in (0, 1)$.

A widely implemented strategy in numerical optimization packages

Back-tracking line search Input: initial t > 0, $\rho \in (0, 1)$, $c \in (0, 1)$ 1: while $f(x_k + td_k) - f(x_k) \ge ct \langle \nabla f(x_k), d_k \rangle$ do 2: $t = \rho t$ 3: end while Output: $t_k = t$.

Where to initialize?





convex vs. nonconvex functions

- Convex: most iterative methods converge to the global min no matter the initialization
- Nonconvex: initialization matters a lot. Common heuristics: random initialization, multiple independent runs
- Nonconvex: clever initialization is possible with certain assumptions on the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

1st-order necessary condition: Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, then $\nabla f(x_0) = \mathbf{0}$. **2nd-order necessary condition**: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$.

Fix some positive tolerance values ε_g , ε_H , ε_f , ε_v . Possibilities:

- $\left\|
 abla f\left({oldsymbol x}_k
 ight) \right\|_2 \le arepsilon_g$, i.e., check 1st order cond
- $\left\| \nabla f\left(\boldsymbol{x}_{k} \right) \right\|_{2} \leq \varepsilon_{g}$ and $\lambda_{\min}\left(\nabla^{2} f\left(\boldsymbol{x}_{k} \right) \right) \geq -\varepsilon_{H}$, i.e., check 2nd order cond

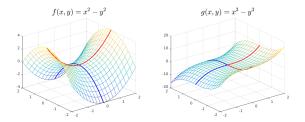
$$- |f(\boldsymbol{x}_{k}) - f(\boldsymbol{x}_{k-1})| \le \varepsilon_{f}$$

 $- \|\boldsymbol{x}_k - \boldsymbol{x}_{k-1}\|_2 \leq \varepsilon_v$

Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard! (see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: $\nabla f(\mathbf{x}_0) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}_0) \succ \mathbf{0}$ 2nd order necessary: $\nabla f(\mathbf{x}_0) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}_0) \succeq \mathbf{0}$



Cases in between: local shapes around SOSP determined by **spectral properties of higher-order derivative tensors**, calculating which is hard [Hillar and Lim, 2013]!

Outline

Classic line-search methods

Advanced line-search methods Momentum methods Quasi-Newton methods Coordinate descent Conjugate gradient methods Trust-region methods

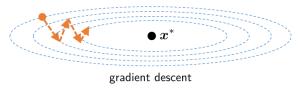
A word on constrained problems

Outline

Classic line-search methods

Advanced line-search methods Momentum methods

A word on constrained problems



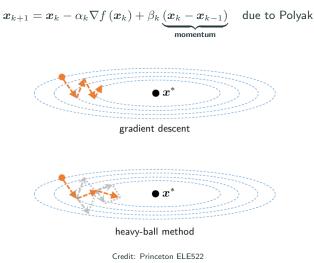
Credit: Princeton ELE522

- GD is cheap (O(n) per step) but overall convergence sensitive to conditioning
- Newton's convergence is not sensitive to conditioning but expensive (${\cal O}(n^3)$ per step)

A cheap way to achieve faster convergence? Answer: using historic information

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change of velocity.

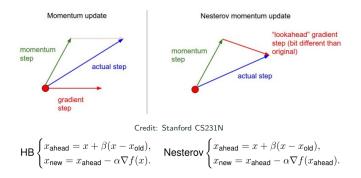


History helps to smooth out the zig-zag path!

Nesterov's accelerated gradient methods

Another version, due to Y. Nesterov

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \beta_k \left(\boldsymbol{x}_k - \boldsymbol{x}_{k-1} \right) - \alpha_k \nabla f \left(\boldsymbol{x}_k + \beta_k \left(\boldsymbol{x}_k - \boldsymbol{x}_{k-1} \right) \right)$$



For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].

Outline

Classic line-search methods

Advanced line-search methods Momentum methods Quasi-Newton methods Coordinate descent Conjugate gradient methods

A word on constrained problems

quasi-: seemingly; apparently but not really.

Newton's method: cost $O(n^2)$ storage and $O(n^3)$ computation per step

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t \left[\nabla^2 f \left(\boldsymbol{x}_k \right) \right]^{-1} \nabla f \left(\boldsymbol{x}_k \right)$$

Idea: approximate $\nabla^2 f(\boldsymbol{x}_k)$ or $\left[\nabla^2 f(\boldsymbol{x}_k)\right]^{-1}$ to allow efficient storage and computation — Quasi-Newton Methods

Choose \boldsymbol{H}_{k} to approximate $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ so that

- avoid calculation of second derivatives
- simplify matrix inversion, i.e., computing the search direction

given: starting point $x_0 \in \text{dom } f, H_0 > 0$

for k = 0, 1, ...

1. compute quasi-Newton direction $\Delta x_k = -H_k^{-1}\nabla f(x_k)$

2. determine step size t_k (e.g., by backtracking line search)

3. compute
$$x_{k+1} = x_k + t_k \Delta x_k$$

- 4. compute H_{k+1}
- Different variants differ on how to compute $oldsymbol{H}_{k+1}$
- Normally $m{H}_k^{-1}$ or its factorized version stored to simplify calculation of $\Delta m{x}_k$

Credit: UCLA ECE236C

BFGS method

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

BFGS update

$$H_{k+1} = H_k + \frac{yy^T}{y^Ts} - \frac{H_k ss^T H_k}{s^T H_k s}$$

where

$$s = x_{k+1} - x_k, \qquad y = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Inverse update

$$H_{k+1}^{-1} = \left(I - \frac{sy^T}{y^T s}\right) H_k^{-1} \left(I - \frac{ys^T}{y^T s}\right) + \frac{ss^T}{y^T s}$$

Cost of update: $O(n^2)$ (vs. $O(n^3)$ in Newton's method), storage: $O(n^2)$ To derive the update equations, three conditions are imposed:

- secant condition: $H_{k+1}s = y$ (think of 1st Taylor expansion to ∇f)
- curvature condition: $s_k^{\mathsf{T}} y_k > 0$ to ensure that $H_{k+1} \succ \mathbf{0}$ if $H_k \succ \mathbf{0}$
- H_{k+1} and H_k are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

Limited-memory BFGS (L-BFGS)

Limited-memory BFGS (L-BFGS): do not store H_{k}^{-1} explicitly

instead we store up to m (e.g., m = 30) values of

$$s_j = x_{j+1} - x_j,$$
 $y_j = \nabla f(x_{j+1}) - \nabla f(x_j)$

• we evaluate $\Delta x_k = H_k^{-1} \nabla f(x_k)$ recursively, using

$$H_{j+1}^{-1} = \left(I - \frac{s_j y_j^T}{y_j^T s_j}\right) H_j^{-1} \left(I - \frac{y_j s_j^T}{y_j^T s_j}\right) + \frac{s_j s_j^T}{y_j^T s_j}$$

for $j = k - 1, \ldots, k - m$, assuming, for example, $H_{k-m} = I$

an alternative is to restart after m iterations

Cost of update: O(mn) (vs. $O(n^2)$ in BFGS), storage: O(mn) (vs. $O(n^2)$ in BFGS) — linear in dimension n! recall the cost of GD? See Chap 7 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

Outline

Classic line-search methods

Advanced line-search methods

- Momentum methods
- Quasi-Newton methods
- Coordinate descent
- Conjugate gradient methods
- Trust-region methods
- A word on constrained problems

Block coordinate descent

Consider a function $f(\pmb{x}_1,\ldots,\pmb{x}_p)$ with $\pmb{x}_1\in\mathbb{R}^{n_1},\ldots,\pmb{x}_p\in\mathbb{R}^{n_p}$

A generic block coordinate descent algorithm

Input: initialization $(x_{1,0}, \ldots, x_{p,0})$ (the 2nd subscript indexes iteration number)

- 1: for k = 1, 2, ... do
- 2: Pick a block index $i \in \{1, \dots, p\}$
- 3: Minimize wrt the chosen block:

 $\boldsymbol{x}_{i,k} = \arg\min_{\boldsymbol{\xi} \in \mathbb{R}^{n_i}} f(\boldsymbol{x}_{1,k-1}, \dots, \boldsymbol{x}_{i-1,k-1}, \boldsymbol{\xi}, \boldsymbol{x}_{i+1,k-1}, \dots, \boldsymbol{x}_{p,k-1})$

4: Leave other blocks unchanged: $x_{j,k} = x_{j,k-1} \; \forall \; j \neq i$

5: end for

- Also called alternating direction/minimization methods
- When $n_1 = n_2 = \cdots = n_p = 1$, called **coordinate descent**
- Minimization in Line 3 can be inexact: e.g.,

 $\boldsymbol{x}_{i,k} = \boldsymbol{x}_{i,k-1} - t_k \frac{\partial f}{\partial \boldsymbol{\xi}} \left(\boldsymbol{x}_{1,k-1}, \dots, \boldsymbol{x}_{i-1,k-1}, \boldsymbol{x}_{i,k-1}, \boldsymbol{x}_{i+1,k-1}, \dots, \boldsymbol{x}_{p,k-1} \right)$

 In Line 2, many different ways of picking an index, e.g., cyclic, randomized, weighted sampling, etc

Block coordinate descent: examples

Least-squares
$$\min_{oldsymbol{x}} \ f\left(oldsymbol{x}
ight) = \left\|oldsymbol{y} - oldsymbol{A}oldsymbol{x}
ight\|_{2}^{2}$$

$$- \| y - A x \|_{2}^{2} = \| y - A_{-i} x_{-i} - a_{i} x_{i} \|^{2}$$

- coordinate descent: $\min_{\xi \in \mathbb{R}} \; \left\| oldsymbol{y} - oldsymbol{A}_{-i} oldsymbol{x}_{-i} - oldsymbol{a}_i oldsymbol{\xi}
ight\|^2$

$$\implies x_{i,+} = \frac{\langle \boldsymbol{y} - \boldsymbol{A}_{-i} \boldsymbol{x}_{-i}, \boldsymbol{a}_i \rangle}{\|\boldsymbol{a}_i\|_2^2}$$

 $(A_{-i} \text{ is } A \text{ with the } i\text{-th column removed}; x_{-i} \text{ is } x \text{ with the } i\text{-th coordinate removed})$

Matrix factorization $\min_{\boldsymbol{A},\boldsymbol{B}} \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\|_F^2$

- Two groups of variables, consider block coordinate descent
- Updates:

$$egin{aligned} & A_+ = oldsymbol{Y} B^\dagger, \ & B_+ = oldsymbol{A}^\dagger oldsymbol{Y}. \end{aligned}$$

 $(\cdot)^{\dagger}$ denotes the matrix pseudoinverse.

- may work with constrained problems and non-differentiable problems (e.g., $\min_{A,B} \|Y AB\|_F^2$, s.t. *A* orthogonal, Lasso: $\min_x \|y Ax\|_2^2 + \lambda \|x\|_1$)
- may be faster than gradient descent or Newton (next)
- may be simple and cheap!

Some references:

- [Wright, 2015]
- Lecture notes by Prof. Ruoyu Sun

Outline

Classic line-search methods

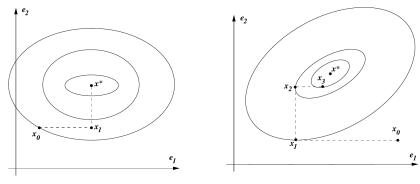
Advanced line-search methods

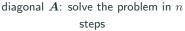
- Momentum methods
- Quasi-Newton methods
- Coordinate descent
- Conjugate gradient methods
- Trust-region methods
- A word on constrained problems

Conjugate direction methods

Solve linear equation $y = Ax \Longleftrightarrow \min_x rac{1}{2}x^\intercal Ax - b^\intercal x$ with $A \succ 0$

apply coordinate descent...

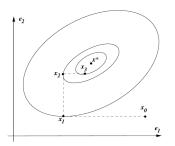




non-diagonal A: does not solve the problem in n steps

Conjugate direction methods

Solve linear equation $y = Ax \Longleftrightarrow \min_x \frac{1}{2}x^\intercal Ax - b^\intercal x$ with $A \succ 0$



non-diagonal A: does not solve the problem in n steps

Idea: define n "conjugate directions" $\{p_1, \ldots, p_n\}$ so that $p_i^{\mathsf{T}} A p_j = 0$ for all $i \neq j$ —conjugate as generalization of orthogonal

- Write $P = [p_1, \dots, p_n]$. Can verify that $P^\intercal A P$ is diagonal and positive
- Write x = Ps. Then $\frac{1}{2}x^{\mathsf{T}}Ax b^{\mathsf{T}}x = \frac{1}{2}s^{\mathsf{T}} (P^{\mathsf{T}}AP)s (P^{\mathsf{T}}b)^{\mathsf{T}}s$ quadratic with diagonal $P^{\mathsf{T}}AP$
- Perform updates in the s space, but write the equivalent form in x space
- The *i*-the coordinate direction in the s
 space is p_i in the x space

In short, change of variable trick!

Conjugate gradient methods

Solve linear equation $y = Ax \iff \min_x \frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x$ with $A \succ 0$ **Idea**: define *n* "conjugate directions" $\{p_1, \ldots, p_n\}$ so that $p_i^{\mathsf{T}}Ap_j = 0$ for all $i \neq j$ —conjugate as generalization of orthogonal

Generally, many choices for $\{ oldsymbol{p}_1, \dots, oldsymbol{p}_n \}.$

Conjugate gradient methods: choice based on ideas from steepest descent

Algorithm 5.2 (CG).

Given x_0 ; Set $r_0 \leftarrow Ax_0 - b$, $p_0 \leftarrow -r_0$, $k \leftarrow 0$; while $r_k \neq 0$

$$\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k}; \tag{5.24a}$$

$$x_{k+1} \leftarrow x_k + \alpha_k \, p_k; \tag{5.24b}$$

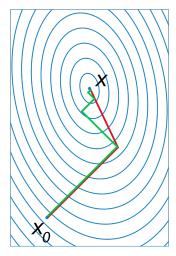
$$r_{k+1} \leftarrow r_k + \alpha_k A p_k; \tag{5.24c}$$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^{r}r_{k+1}}{r_{k}^{T}r_{k}}; \tag{5.24d}$$

$$p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k; \tag{5.24e}$$

 $k \leftarrow k+1;$ (5.24f)

Conjugate gradient methods



CG vs. GD (Green: GD, Red: CG)

- Can be extended to general non-quadratic functions
- Often used to solve subproblems of other iterative methods, e.g., truncated Newton method, the trust-region subproblem (later)
- See Chap 5
- of [Nocedal and Wright, 2006]

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

A word on constrained problems

Iterative methods

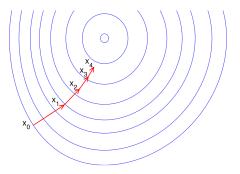


Illustration of iterative methods on the contour/levelset plot (i.e., the function assumes the same value on each curve)

Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

- Line-search methods: direction first, size second
- Trust-region methods (TRM): size first, direction second

Ideas behind TRM

Recall Taylor expansion $f(\boldsymbol{x} + \boldsymbol{d}) \approx f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{d} \rangle + \frac{1}{2} \langle \boldsymbol{d}, \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{d} \rangle$

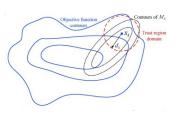
Start with x_0 . Repeat the following:

 At x_k, approximate f by the quadratic function (called model function dotted black in the left plot)

$$m_{k}\left(\boldsymbol{d}\right) = f\left(\boldsymbol{x}_{k}\right) + \left\langle \nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{d} \right\rangle + \frac{1}{2}\left\langle \boldsymbol{d}, \boldsymbol{B}_{k} \boldsymbol{d} \right\rangle$$

i.e., $m_k\left(m{d}
ight) pprox f\left(m{x}_k + m{d}
ight)$, and $m{B}_k$ to approximate $abla^2 f\left(m{x}_k
ight)$

- Minimize $m_k(d)$ within a **trust region** $\{d: \|d\| \le \Delta\}$, i.e., a norm ball (in red), to obtain d_k
- If the approximation is inaccurate, decrease the region size; if the approximation is sufficiently accurate, increase the region size.
- If the approximation is reasonably accurate, update the iterate $x_{k+1} = x_k + d_k$.



Credit: [Arezki et al., 2018]

To measure approximation quality: $\rho_k \doteq \frac{f(\boldsymbol{x}_k) - f(\boldsymbol{x}_k + \boldsymbol{d}_k)}{m_k(\boldsymbol{0}) - m_k(\boldsymbol{d}_k)} = \frac{\text{actual decrease}}{\text{model decrease}}$

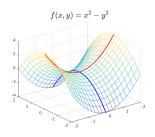
A generic trust-region algorithm

Input: \boldsymbol{x}_0 , radius cap $\widehat{\Delta} > 0$, initial radius Δ_0 , acceptance ratio $\eta \in [0, 1/4)$ 1: for k = 0, 1, ... do 2: 3: $d_k = \arg \min_d m_k(d)$, s.t. $\|d\| < \Delta_k$ (TR Subproblem) if $\rho_h < 1/4$ then 4: $\Delta_{k\pm 1} = \Delta_k / 4$ 5: 6: else if $\rho_k > 3/4$ and $\|\boldsymbol{d}_k\| = \Delta_k$ then 7: $\Delta_{k+1} = \min\left(2\Delta_k, \widehat{\Delta}\right)$ 8: else 9: $\Delta_{k+1} = \Delta_k$ 10: end if 11: end if 12: if $\rho_k > \eta$ then 13: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{d}_k$ 14: else 15: $x_{k+1} = x_k$ 16: end if 17: end for

Why TRM?

Recall the model function $m_k(d) \doteq f(x_k) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} \langle d, \boldsymbol{B}_k d \rangle$

- Take $\boldsymbol{B}_{k}=\nabla^{2}f\left(\boldsymbol{x}_{k}\right)$
- Gradient descent: stop at $abla f\left(oldsymbol{x}_{k}
 ight) = oldsymbol{0}$
- Newton's method: $\left[\nabla^2 f(\boldsymbol{x}_k)\right]^{-1} \nabla f(\boldsymbol{x}_k)$ may just stop at $\nabla f(\boldsymbol{x}_k) = \mathbf{0}$ or be ill-defined
- Trust-region method: $\min_{\boldsymbol{d}} m_k(\boldsymbol{d})$ s.t. $\|\boldsymbol{d}\| \leq \Delta_k$



When $\nabla f(\boldsymbol{x}_k) = \boldsymbol{0}$,

$$m_{k}\left(\boldsymbol{d}\right)-f\left(\boldsymbol{x}_{k}
ight)=rac{1}{2}\left\langle \boldsymbol{d},
abla^{2}f\left(\boldsymbol{x}_{k}
ight)\boldsymbol{d}
ight
angle .$$

If $\nabla^2 f(\boldsymbol{x}_k)$ has negative eigenvalues, i.e., there are negative directional curvatures, $\frac{1}{2} \langle \boldsymbol{d}, \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{d} \rangle < 0$ for certain choices of \boldsymbol{d} (e.g., eigenvectors corresponding to the negative eigenvalues)

TRM can help to move away from "nice" saddle points!

- A comprehensive reference [Conn et al., 2000]
- A closely-related alternative: cubic regularized second-order (CRSOM)
 method [Nesterov and Polyak, 2006, Agarwal et al., 2018]
- Example implementation of both TRM and CRSOM: Manopt (in Matlab, Python, and Julia) https://www.manopt.org/ (choosing the Euclidean manifold)
- Computational complexity of numerical optimization methods [Cartis et al., 2022]

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

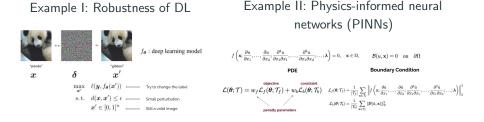
Trust-region methods

A word on constrained problems

General constrained optimization (nonlinear programming, NLP):

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t.} \underbrace{g_i(\boldsymbol{x}) \leq 0 \; \forall \; i \in \mathcal{I}}_{\text{inequality constraints}}, \quad \underbrace{h_e(\boldsymbol{x}) = 0 \; \forall \; e \in \mathcal{E}}_{\text{equality constraints}}$$

 $f(\pmb{x})\text{, }g_i(\pmb{x})\text{'s, and }h_e(\pmb{x})$ can be nonconvex, and non-differentiable



Solvers for constrained optimization

current Tensorflow and Pytorch only target unconstrained problems

Solvers	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem
SDPT3, Gurobi, Cplex, TFOCS, CVX(PY), AMPL, YALMIP	×	V	×	×	×
PyTorch, Tensorflow	\checkmark	\checkmark	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt, GeoTorch	~	~	~	×	×
KNITRO, IPOPT, GENO, ensmallen	\checkmark	\checkmark	\checkmark	~	×
Scikit-learn, MLib, Weka	\checkmark	\checkmark	×	×	\checkmark

NCVX for constrained DL optimization

NCVX PyGRANSO

- more info in https://ncvx.org/tutorials/_files/SDM23_ Deep_Learning_with_Nontrivial_Constraints.pdf and https://arxiv.org/abs/2210.00973
- complete code examples for machine/deep learning applications https://ncvx.org/examples/index.html

Quick examples

$$\min_{oldsymbol{w},b,\zeta}rac{1}{2}\left\|oldsymbol{w}
ight\|^2+C\sum_{i=1}^n\zeta_i$$

s.t. $y_i (\boldsymbol{w}^{\intercal} \boldsymbol{x}_i + b) \ge 1 - \zeta_i, \ \zeta_i \ge 0 \ \forall i = 1, ..., n$

```
def comb_fn(X_struct):
    # obtain optimization variables
    w = X_struct.w
    b = X_struct.b
    zeta = X_struct.zeta
    # objective function
    f = 0.5*w.T@w + C*torch.sum(zeta)
    # inequality constraints
    ci = pygransoStruct()
    ci.cl = 1 - zeta - y*(x@w+b)
    ci.c2 = -zeta
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variables
var_in = {"w": [d,1], "b": [1,1], "zeta": [n,1]}
# pygranso main algorithm
    soln = pygranso(var_in,comb_fn)
```

$$\begin{aligned} \max_{\boldsymbol{x}'} \quad & \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')) \\ \text{s.t.} \quad & d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon \\ & \boldsymbol{x}' \in [0, 1]^n \end{aligned}$$

```
def comb_fn(X_struct):
    # obtain optimization variables
    x_prime = X_struct.x_prime
    # objective function
    f = loss_func(y, f_theta(x_prime))
    # inequality constraints
    ci = pygransoStruct()
    ci.cl = d(x,x_prime) - epsilon
    ci.c2 = -x_prime
    ci.c3 = x_prime-1
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variable (tensor)
var_in = {"x_prime": list(x.shape)}
# pygranso main algorithm
    soln = pygransof(var in,comb_fn)
```

- [Agarwal et al., 2018] Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. (2018). Adaptive regularization with cubics on manifolds. *arXiv:1806.00065*.
- [Arezki et al., 2018] Arezki, Y., Nouira, H., Anwer, N., and Mehdi-Souzani, C. (2018). A novel hybrid trust region minimax fitting algorithm for accurate dimensional metrology of aspherical shapes. *Measurement*, 127:134–140.
- [Beck, 2017] Beck, A. (2017). First-Order Methods in Optimization. Society for Industrial and Applied Mathematics.
- [Cartis et al., 2022] Cartis, C., Gould, N., and Toint, P. (2022). Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation and Perspectives. SIAM.
- [Conn et al., 2000] Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust Region Methods. Society for Industrial and Applied Mathematics.
- [Hillar and Lim, 2013] Hillar, C. J. and Lim, L.-H. (2013). Most tensor problems are NP-hard. *Journal of the ACM*, 60(6):1–39.

- [Murty and Kabadi, 1987] Murty, K. G. and Kabadi, S. N. (1987). Some NP-complete problems in quadratic and nonlinear programming. *Mathematical Programming*, 39(2):117–129.
- [Nesterov, 2018] Nesterov, Y. (2018). Lectures on Convex Optimization. Springer International Publishing.
- [Nesterov and Polyak, 2006] Nesterov, Y. and Polyak, B. (2006). Cubic regularization of newton method and its global performance. *Mathematical Programming*, 108(1):177–205.
- [Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical **Optimization.** Springer New York.
- [Wright, 2015] Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming, 151(1):3–34.