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Why graphs?



Graphs are everywhere!
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Image credit: Stanford CS224W

Graphs model
relationships/
interactions

Communication Software

Image credit: https://blogs.nvidia.com/blog/2022/10/24/what-are-graph-neural-networks/
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Different tasks on graphs

The whole graph is all available data
The whole graph is part of all

available data, i.e., a data point

Node prediction
Node level (classification/regression)
given labels over part of the

graph

G::;z;:i\:‘el Community Community

E : : (subgraph) detection/clustering

Graph : : level Clustering nodes/edges

generation :
Graph prediction Link prediction
(classification/regression), Edge-level Ppredict links should exists or
graph generation : not

A graph is a data point
Image credit: Stanford CS224W



AlphaFold DB today
200M+ Structures

Example task 1.
Protein folding

AlphaFold DB previously

~IM Structures

Experimental (PDB) today
190K Structures

Number of species represented in AlphaFold DB

Total increase from ~10K to ~IM

Today

Previously
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: : Key concept: Spatial graph %g : %k?
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Complete story: https:./www.deepmind.com/research/highlighted-research/alphafold
Paper. https./www.nature.com/articles/s41586-021-03819-2
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AlphaFold is running out of data —
so drug firms are building their own
version

Thousands of 3D protein structures locked up in big-pharma vaults will be used to create
anew Al tool that won’t be open to academics.

By Ewen Callaway
v f

An AlphaFold 3 model of a common cold spike protein (blue) interacting with antibodies (green). Credit

Google DeepMind

https://www.nature.com/articles/d41 586-025-00868-§
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Example task 2. Recommendation systems

Item Item
User

online shopping,
music/movie
recommendation

Nodes:
Users, items
Edges:
User-item
interactions

Image credit: Stanford CS224W Image credit: Stanford CS224W



Nodes: Drugs & Proteins
Edges: Interactions

A Drug @ Protein
r1 Gastrointestinal bleed side effect A—@® Drug-protein interaction
I'> Bradycardia side effect

©@—©@ Protein-protein interaction

Example task 3: Drug adverse effect discovery

Query: How likely
will Simvastatin and
Ciprofloxacin, when
taken together,
break down muscle
tissue?

Simvastatin

Ciprofloxacin

Image credit: Stanford CS224W 10



Example task 4: Traffic prediction
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Example task 4: Traffic prediction

= Nodes: Road segments Predicting Time of Arrival with Graph Neural
= Edges: Connectivity between road segments _Networks

= Prediction: Time of Arrival (ETA) ‘ ‘

S S\

ms mo =
Google Maps Candidate
routing user routes
system A+B
& D_EEQMlDd THF MODFI ARCHITFCTURF FOR NFTFRMINING OPTIMAI ROUTFS AND THFIR TRAVFI TIMF
Image credit: Stanford CS224W Image credit: Stanford CS224W
Subgraph discovery
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Example task 5: r ]
Drug discovery B\

Image credit: https./distilLpub/2021/ann-intro/ Molecules as graphs:
Nodes: atoms  Edges: chemical bounds

Chemical landscape

Directed message (Large scale predictions

passing neural network (upper limit 10° +) ] “
\ I

B |
o’*’}v&

Training set

Conventional small
molecule screening

-

full-graph prediction

4 Iterative Chemical screenin
(1o melsciles) mode (upper limit 10° - 10%)
l re-training

Machine learning

|

Predictions &
model validation

Hit validation
(1 - 3% hit rate)

Lead it
d identification Image credit:
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Graphs: basic notions



Basic objects

Undirected Directed
Links: undirected Links: directed
(symmetrical, reciprocal) (arcs)

Examples: Examples:
Collaborations Phone calls
Friendship on Facebook Following on Twitter

e /V : Nodes (also vertices)
o I : Edges (also links) Image credit: Stanford CS224\W/
e G(N,FE): Graph
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Heterogeneous graphs

Breast Discases
@
Breast Neoplasms cerebral
Neoplasms by Site S.A . é," S hacmarrhage
- ~ * N\
sggrgaton - 2 g @ @ Disoase
i Y
A BRCATY . fulvestrant & Adverse even
BIRC2 X o2 \0 &, 'cnsn Protein
pulmonary A Pathways
\ ¥ ¥ embolism )
- N >
ESR2 s, ABCB1 PIM1
ESA1
£S 04?
response
to estradiol

Biomedical Knowledge Graphs

Example node: Migraine

Example edge: (fulvestrant, Treats, Breast Neoplasms)
Example node type: Protein

Example edge type (relation): Causes

Nodes/Edges are multi-typed
G(N,E,T,R)

T. types of nodes
R: types of relationships

cite

\)

pubWhere hasTtile
Conference [« Paper »  Title
\)\oo‘ s
5 %
¥ L2
Author Year

Academic Graphs

Example node: ICML
Example edge: (GraphSAGE, NeurlPS)
Example node type: Author

Example edge type (relation): pubYear
P Sl In)wa%e credit: Stanford CS224\W/
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Graph representation

Undirected graphs
(@ 1 @ 1) .
1L 9 B 3 (2,
“Sla @ @ 2 3
(4,

L L I8

Adjacency matrix

Edge list

AwWNRE
IN

Adjacency list
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Graph representation

Directed graphs
(0 © O 1)
1 0 0 O o
. (2, 1)
O 0 0 O
(4, 2), (4, 3)
a1 1 a
Adjacency matrix Edge list

1:
2:
3:
4:

Adjacency list

2,3
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NETWORK

Internet
WWW
Power Grid
Phone Calls
Email

Science Collaboration

Actor Network

Citation Network

Protein Interactions

Density = |[E|/|N|*2

NODES

Routers

Nehnap
wWebpag

Power plants, transformers
Subscribers

Email Addresses

Scientists

Actors

Paper

Proteins

Adjacency matrix is often inefficient

LINKS

Internet connections
Link

Cables

Calls

Emails
Co-authorship

Co-acting

Citations

Binding interactions

DIRECTED/
UNDIRECTED

Undirected

Undirected
Directed
Directed
Undirected

Undirected
Directed

Undirected

192,244

325,729
4,941
36,595
57,194
23,133

702,388
449,673

2,018

E

609,066
1,497,134
6,594
91,826
103,731
93,439

29,397,908
4,689,479

2,930

Real-world graphs are often very sparse

Image credit: Stanford CS224W
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Weighted graphs
Unweighted

(undirected)

[a—
e e =
O D i e

Weighted

(undirected)

(0 2 05

% B
los 1 0
. 0 -4 0

Image credit: Stanford CS224W
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Graph isomorphism/equivalence

An isomorphism

Graph G Graph H
between G and H
fla) =1
@ /2> fib) =6
flc)=8
0 1 6 0 fld)=3
(5@ -
3 2 flh) =2
fliy=4
. . @ ® | ..
6 7 Image credit: Image credit: https:/enwikipedia.org/wiki/Graph_isomorphism
Image credit Isomorphism: there exists a bijective mapping, i.e.,

https:.//tonicanada.medium.com/brute-force-code-for-iso
morphisms-1241efi80570

permutation, results in the same neighborhood structure
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Permutation invariance

Image credit: Image credit: https:/distill.pub/2021/understanding-anns/

Permutation invariance: permuting the names of the nodes doesn't change the
graph, as graph nodes are intrinsically orderless

Mathematically: if A is (the adjacency matrix of) a graph, TTIAIITis (the
adjacency matrix of) an equivalent graph for any permutation matrix IT

22


https://distill.pub/2021/understanding-gnns/

Graph neural networks (GNNSs)



Representation learning for graphs

video : ;
. time series
audio (spectrogram)

traditional learning pipeline

I g FEature Extraction Learning Models Decision ~ 10(10s)
1/resol
modern learning pipeline
Grid ME"Y':T«:“%M 3 — machine translation, e.g., English =
j"i @ g;E Mhﬁgg Chinese
Data se— Feature Extraction & Learning Models m— D) eCisiON § S 3 LP% ' iy .
._._._. ga agnatural%g i — typing/writing prediction (smart compose)
i
§§ 5':&:% — semantic classification

Brain/neurons

| hidden layer 1 hidden layer 2 |



Where to put the features?

Train an ML model:
= Random forest

= SVM

= Neural network, etc.

X1 _’ Y1

XN —} Yn

€ RP
Graph-level . RD .......................................
Node features

€ RP

""--..Graph features

Apply the model:

= Given a new
node/link/graph, obtain
its features and make a
prediction

x —} y

Image credit: Stanford CS224W
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Node embedding

............................................. ‘.Z’Ui
node vector _~""ENC(u)
> .z,
¢ fru- RY U J / \\“ encode nodes s
Y o N /\ ..... ;
R4 \/ e oo TR,
Feature representation, ENC(v)
embedding original network embedding space
Image credit: Stanford CS224W
/N : set of nodes
: - - Node raw features: e.g.
- adjacency matrix . . 9.
NAd . / y f e Biomedical graphs: patient's EHR
X € RIN|xd: node (r.a\x/) eatures e Social network graphs: user profile and
U,V :nodesin [\ images
N (u): neighbors of 4, e \Xhen no features: node indicator vector,

constant vector -



How to define the [ ?

We'll bypass fully connected networks directly

1
Receptive — /7 3 3
field < 5//0‘ (~1x3)+(0x0)+(1x1)+
2| 31— (2x2)+(0xB)+(2x2)+ f I
=al (F1x2)+(0x4)+(1x1)=-3 : Ll '
0L-13 y : }
B2 Al = ] - Z
! 31 e 1 B 5
T3 g T 1+ ,
pgBs - g g
f}/ T 12 L+ LA No padding, no strides  Arbitrary padding, no strides  Half padding. no strides  Full padding, no strides
=] =% ndo g |1 L1
{ 6|~ L i/ L1 |~
| == Pl T4 ///./
| T & &
Convolution ’ L _/—/ 3
filter (3 x 3) L+ // 15 ‘ i
gy =1 LA
Destination — L1+ |+ : )
pixel | —1 L~ » ;
| // b
Convolved
image No padding, strides Padding, strides Padding. strides (odd)

(Credit: [Elgendy, 2020]) https://github.com/vdumoulin/conv_arithmetic

Convolution as performing local info aggregation (or message passing):
e Eachtime, the conv window focus on a local neighborhood of the current pixel
e Conv effectively aggregates the local info by weighted summation

27



How to define the [ ?

Convolution as performing local info aggregation (or message passing).
e Neighborhood: Each time, the conv window focus on a local neighborhood of the
current pixel

e Aggregation: Conv effectively aggregates the local info by weighted summation

®—o
: a =1 We need neighbors on the
‘ o s [ @ ' ol graphl
— or this: e, W
LX . .. o ,[ savnal The rigid, grid-based
4 . | . g z  Zad VR Y neighborhood doesn't work!

One layer of a graph
neural network (GNN)! o8

Image credit: Stanford CS224W




Graph in, graph out

Input Graph GNN blocks
o o
.......... » s | i L
[ J p
i './ > - ‘ 7 ~—

An end-to-end prediction task with a GNN model.

Transformed Graph Classification layer

Image credit: https:/distilLpub/2021/gnn-intro/

Prediction

29
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How to make supervised
predictions?

Final Layer Node Predictions
Q —£)
>

[\
A\
.................................... A /i Pl
v (»‘ | 4 O\ ’,// \O
/
®
final classification ¢ = ; ) .
] . L 4
Predictor on the node directly
Final Layer
Un
v

Image credit: https:/distilLpub/2021/gnn-intro/

Final Layer Edge Predictions

pooling functionp

Predictor on pairs of nodés™ " ¢ =

Global Prediction

Predictor on pooled feature on‘whole graph

final classification ¢ = &= : B

[
[ i
[ &

30
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How to perform unsupervised learning?

Goal: similarity(u,v) = z.z,
in the original netwc,rk\ Similarity of the embedding

L= Z CE(yp DEC(2y, 2,))
| Needto define! |

original network embedding space

Image credit: Stanford CS224W 31



Look into GNN layers

TARGET NODE

|

INPUT GRAPH

These aggregators sum up
neighboring info, and can be
represented by DNNs

32



Permutation
Invariance

Image credit: Image credit: https:./distill. pub/2021/understanding-gnns/

Feature vector for the
whole graph Permutation invariance: permuting the names of the nodes doesn't change the
graph, as graph nodes are intrinsically orderless

For f: G(A, X)—h . f(A1,X2) = f(Az, X2)

Orderplan1: 44, X4 Order plan 2: 4,, X,

For two order plans,
output of f should
be the same!
33
Image credit: Stanford CS224W




Permutation
equivariance

Order plan1: 44, X4

=1
&

f(A,X,) =

-nrnO('\w>

For f: G(A, X) — H € RINIxd
fTLAIIT, I1X) = x1£(A4, X)

for any permutation

Collection of feature
vectors on all nodes

Order plan 2: 4,, X,

|

In other words, if the nodes
are re-ordered, the learned
features are re-ordered
accordingly, so features
are attached to nodes not

f(Az,X5) = their names

E:-nrnUnUJZD

Image credit: Stanford CS224W
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A typical GNN consists of multiple permutation
equivariant/invariant layers

Image credit: Stanford CS224W
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Graph convolutional oW

networks (GCNs) ——

hS‘U) = Ty forallv € V.

embedding.

andfork =1,2,...upto K:

& . ) k—
h(¥) = f(]\) w*) Y + BW&) -hg‘ 1) forallv € V.
N ()]
Node v's Mean of v's Node v's
embedding at neighbour's embedding at
step k. embeddings at stepk — 1.
stepk — 1.
Color Codes:

M Embedding of node v.

B Embedding of a neighbour of node v.
Image credit: https:/distill.pub/2021/understanding-gnns/

M (Potentially) Learnable parameters.

Node v's ... is just node v's b '1'
initial original features. '

36
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Graph attention
networks (GATSs)

]15_0' T forallv e V.

Node v's ... Is just node v's
initial original features.
embedding.

andfork =1,2,...upto K:

: k 7 (K e — k—1 c— k—1)
hg.]') = f( ) | wk) E 041()}; l)hEI ) + af,f, l)hi, . forallv e V.
ueN (v)
Node v's Weighted mean of v Node v's
embedding at 's neighbour’s embedding at
step k. embeddings at step stepk — 1.

k-1

where the attention weights a'®) are generated by an attention mechanism A k)l

A”"}(hf,}"] ; hg,k))

(k) = f
« — - - orall (v,u)
. > AORD pF)
weN (v)
Color Codes:

Il Embedding of node v.
Il Embedding of a neighbour of node v.

Il (Potentially) Learnable parameters.

normalized such that the sum over all neighbours of each node v is 1:

e E.

Image credit: https:Z/distill.pub/2021/understanding-gnns/
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Graph sample
and aggregate
(GraphSAGE)

hE,‘” = Ty forallv e V.

Node v's ... is just node v's
initial original features.
embedding.

andfork =1,2,...upto K:

A (W"”- [AGG({hﬁf‘"”}), hﬁ“"”])

ueN (v)
Node v's Aggregation of v ... Node v's
embedding at 's neighbour's embedding at
step k. embeddings at stepk — 1.
stepk—1..
... concatenated
with ...
Color Codes:

[ Embedding of node v.
B Embedding of a neighbour of node v.

B (Potentially) Learnable parameters.

Image credit: https:/distill.pub/2021/understanding-gnns/

forallv € V.
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Graph
Isomorphism
networks
(GINS)

) =

v

Ty forallv e V.

Node v's ... is just node v's
initial original features.
embedding.
andfork =1,2,...upto K:
hi¥) = [ E A1 4 (14 €®)) . plk-
ueN (v)
Node v's Sum of v's Node v's
embedding at neighbour's embedding at
step k. embeddings at stepk — 1.
stepk — 1.

Color Codes:

B Embedding of node v.
B Embedding of a neighbour of node v.

B (Potentially) Learnable parameters.

forallv e V.

Image credit: https:/distill.pub/2021/understanding-gnns/
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Connection to CNNs and Transformers
filter:

=

[ J
[ J
Image Graph
O]
GNN formulation: hf,”l) = a(W, ZueN(v)% + B,hg)),Vl €{0;...;L.—1}

CNN formulation: h,(,“l) = 0(Luenw) W,“hff) + Blhg)), vl e {0,...,L.—1}

Image credit: Stanford CS224W

CNN is GNN that keeps
local ordering

CNN not
permutation-invariant
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Connection to CNNs
and Transformers

c
= i=]
o
u (] @ [T v — ;] = | o
275=5wt 50L2 5 2 EWE'Q 28 wa
Ehz288 238255688 . Evs35E .c€5 vV
| # 4
.
VU= -0 " HUNCTUH ' VN2 QUD “COUC °
£5598F 22838% £°8358 25 49
| =) - =] B E=a oO®
v t = 4
w c g.: o 0 g w S
a 2w 8 £ 3 VvV
© 0
ol
o & >
& & 2 &f o
& & § o & & &£
0\ PO & DN e
& ¢ o TS TS GO ¢
but
it
remains
involved
ind
programs -

with 4

ame - j==]
corp. =
. W | =
american
airlines

unit 1
and -

delta 4
E
lines -

OQulpul

roder

Probabilities
[_Softmax ]
[ Add & Norm |
encoder fan
Forward
deq
| Add & Norm F:
(L Adu s Nown ) Mlt-Head
Feed Attention
Forward % S Nx
— ]
Nix Add & Norm
{ Add & Norm Masked
Multi-Head Mutti-Head
Attention Attention
, S S
(— ) —
Positional Posilional
Eocodng ®—€9 E' tn(j(_)(_}lllg
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Self-attention (plus feed forward) is a layer of

GAT on a complete graph!
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Scaling up training



Practical graphs
are large yet sparse

How to perform mini-batch training?

0: Sampled nodes

All the nodes in G

e Mini-batch subsampling induces isolated

nodes
e No info to aggregate inside the mini-batch

for most nodes

Image credit: Stanford CS224W

Knowledge Graphs (KGs):

Wikidata
= Entities
Freebase 80M—90M
ML tasks:

Canada

Geoffrey Hinton

KG completion
* Reasoning

born in affiliated

UK

University of
Toronto Paul Martin

King's College,
Person Cambridge

Solution: structured subsampling

Layer-wise
node embeddings
update on the GPU

X I

Sampled subgraph
(small enough to
be put on a GPU)

Large graph
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Two structured sub-sampling strategies—I

Comp. graph Comp. graph
for 1-st node for 2-nd node for M-th node

Comp. graph

Mini-batch

Image credit: Stanford CS224W

. '.. / 44

M]IMNM

I.e., neighborhood sampling,
nes instead of iid uniform sampling




Two structured sub-sampling strategies—II

Cluster-GCN consists of two steps:

“ Pre-processing: Given a large graph, partition it into
groups of nodes (i.e., subgraphs).

* Mini-batch training: Sample one node group at a
time. Apply GNN’s message passing over the
induced subgraph.

E Mini-batch training
Input large graph Partitioning Message-passing

o N ,""\\ over induced subgraph
4
{ [ to compute the loss
\\ ,’ \\ y)
SOl ST -2 Sample

/ N

'O\A'

\

Image credit: Stanford CS224W

Rationale: important to keep
the community structures,

l.e., keep the "backbone”
nodes
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Software

PyTorch Geometric (PyG)

https:/pytorch-geometric.readthedocs.io/en/latest/

Deep Graph Library (DGL)

9 c

https:./www.dqglai/

DEEP
GRAPH
LIBRARY
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Further reading

e \Xhat are graph neural networks?
https.//blogs.nvidia.com/blog/2022/10/24/what-are-graph-neural-networks/

e A Gentle Introduction to Graph Neural Networks
https:/distillpub/2021/gnn-intro/

e Understanding Convolutions on Graphs
https:/distill.pub/2021/understanding-gnns/

e Graph Neural Networks: A Review of Methods and Applications
https://arxiv.org/abs/1812.08434

e Stanford CS224W: Machine Learning with Graphs
https.//web.stanford.edu/class/cs224w/index.html

e Graph Representation Learning  https:/www.cs.mcqill.ca/~wlh/grl_book/
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