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Recap: CNNs

— (neuro-inspired) locality and weight

sharing = reduced complexity (than
FCNN)

— conv + pooling = (approx.)
translation/deformation invariance (part of

Comvalution Max pooing  Comvo Mt uyc
G Sl X ExShema G

the learning can be avoided; see

scattering transform
(Credit: [Elgendy, 2020])

[Bruna and Mallat, 2013, Mallat, 2016, Zarka et al., 2019] )

CNNs are not only for images: ideal for tensors where locality matters

video . .
. time series
audio (spectrogram)
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Model sequences

. where directions matter

temporal sequences

disease prognosis  event analysis/video generation

speech to text

lexical sequences—most tasks in Natural Language Processing (NLP)

data '3Y0U evaluation
understanding o . . .
gg’_g‘ o“wpog.i‘";ﬁt'i:z:’:';m e — machine translation, e.g., English <
2B o Zoomputer (e .
iig o g § Chinese
al O) s
£ 2:NLP R
_§a S E — typing/writing prediction (smart compose)
5o . P
3im — semantic classification
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Basic RNNs
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Basic setup

A sequence: Ty — L1 — T2 —> ... Lp_1

A state-space model: h denotes the state, and state transition modeled by the
recurrence formula

h, = fW (ht71~,$t)

with optional output

Y, = gv (he)
expanded form compact form
y
h h h h
UN o\ BEEN o, ELR o, EEFGER .\ RNN P

(Credit: Stanford CS231N) 5 / 44



A simple (vanilla) RNN

(Credit: Stanford CS231N)

h; = tanh (Wrhi_1 + Waxy)
y, = Vyhy

Wi, Wg and V, are shared across the sequence
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A first example: language modeling

— language modeling is the task of predicting future words
The vaccine is effective, and COVID-19 will be _

— applications: typing prediction (smart compose), machine translation,
ChatGPT, etc

Google

— (traditional) statistical formalism: given a sequence of words
@™ ... 2® compute
P [m(m) | 2™ ____m<1)}

where %1 can be any word from a vocabulary {w,...,wx}, or
sometimes given some text M. ,m<T)

T
P [w(1)7 cee w(T)} = H]P [m(t) | m“*l), cee mm}
t=1
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Modern neural language modeling—word embedding

Representing words: word embedding

— one hot encoding
I+ [1,0,0,0,...],you + [0,1,0,0,...],we — [0,0,1,0,...],...

— word-to-vector embedding: map words into dense vectors so that certain
arithmetic operations are consistent with semantics

Cosine Similarity

)
A-B
g sim(A4,B) = cos(0) = ———
Il

(Credit: https://www.adityathakker.com/
(Credit: https://towardsdatascience.com/

introduction-to-word2vec-how-it-works/)
introduction-to-word-embedding-and-word2vec-652d0c206

e.g., word2vec, BloVe, ELMo
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Modern neural language modeling—prediction

RNN modeling: predicting the next word each time

output distribution ﬂ_ﬂ_ﬂ_ﬁ_ﬂ
g = softmax (Uh(’) + bz) eRWVI

a

z00

I

R h(%)_. h(-‘L h4)

hidden states @ (] @ ()
_ W, |@| W, |@| W W,

) — (t-1) ©) h h h | @ h|@®
RO = o (Wih=) + Weel +b,) ® ° 4 °
h(©) is the initial hidden state o (] (] (]

d beddi 8 S S S
word embeddings (1) 2| O 3) © )| ©
o®) — Ea® ¢ ° € ° “leo| ¢ °

(@)
o = o s
words / one-hot vectors -
z® ¢ RIVI M (2 E)) @

(Credit: adapted from Stanford CS224N)
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Modern neural language modeling—training

Training the RNN model

T
Loss — JO@) + JO@) + JO@O) + JO@) +.. = J(b'):%ZJ(”(H)
[ ]
Predicted
— g (2) ;(3) (1)
prob dists Y Y Y Y
U U U
h(0) h) h(2) h3) A
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Corpus —— the students  opened their exams
2 (2 z®) @

(Credit: Stanford CS224N)
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Modern neural language modeling—whole pipeline

The whole training pipeline

— Step 1: collect a large corpus of text, i.e., a long sequence
T=z® 5 ... & 2D (e.g., a sentence, a document, etc)

— Step 2: feed T into the model, and compute output distribution @(t) for
each ¢

— Step 3: define loss, e.g., cross entropy between §<t) and y(t> (one-hot
encoding of z'*Y)
J90) ==y log @) = —log ., )
wev

— Step 4: gather and average all losses:

7(6) = % 3@ (0)

— Step 5: optimization: SGD (are the summation terms iid in the objective?),
etc
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Test example: generate texts

favorlte season is spring
samp\e Tsamp\c Tsamp\c Tsamp\e

yu yu)

h (1) 3
W, W, W, W,

favorite season & spring

(Credit: Stanford CS224N)

starting from h(®) and my, repeat:

— compute y“ and sample a word from the distribution
— feed the word as input to the next step
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Vanishing/exploding gradients
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How to compute gradients?

computational graph

(Credit: Stanford CS231N)

— acyclic directed graph = auto differentiation can be applied

— W is shared across all steps!
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Look into the gradient

Ye
Yi
W—> —> tanh
O W—>9—> tanh
h h I
- ] tack —>
1 t ht—1 - % T ht
Xt Xt
(Credit: Stanford CS231N) (Credit: Stanford CS231N)
Ohy

h: = tanh (Wphi—1 + Waxy)
= tanh <W [htl
Lt

where W = [Wh Wm}

o diag (tanh” (Wrhi—1 + Waxi)) W)

> where

tanh’(z) = 1 — tanh®(z)
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Look into the gradient
oL T OLy

L= ZtT:1 Ly = total gradient: 535 = > ;1 v

hi1
Tt

h; = tanh (Wrhi_1 + Wgx) = tanh <W

Oh:  _ diag (tanh” (Wrhi 1 + Waz)) W
Oh¢—1

oML z0ts

Gradients over multiple time steps:

O W—" )z tanh 7 == tanh —— (anh
hy == stack h == sback T slack s!ack

X

(Credit: Stanford CS231N)

_ 0Ly Ohs  Ohi _ 0L, H Ohy \ Ohq
" Ohy Ohy_1 W Oh, ow

0L,
ow

first block
st <H dlag tanh (Wrhi—1 + Wm:ck)) Wh> %
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What’s wrong with the gradient?

consider [ [} _, diag (tanh’ (Wphi—1 + Wazy)) W)

— for intuition, consider identity activation first, i.e., szz W, = W’;;].
But |[W !
* when ||W| > 1, gradient explodes if ¢ large

|, i.e., the largest singular value of W', scales as |[W,["""

* when ||W| < 1, gradient vanishes if ¢ large
— what happens with the tanh activation?
* tanh’(z) = 1 — tanh?(z) < 1—effectively always smaller

* we have

t

H iag (tanh’ (Whhir—1 + Waxy)) W
k=2

¢
< H |d1ag tanh (Wrhy— 1+Wacwk) H Wl
k=2

t
<[] || diag (tanh’ (W nhi—1 + Wazk))|| [[Wa|" "
k=2

product of many numbers < 1 when ¢ large

gradient vanishing is more common 17 /44



Gradient clipping

When the gradient is too large (exploding), rescale (i.e., clip) it. Let g be the
gradient and £ > 0 be a threshold

g9

g=&-0
lgll

Without clipping With clipping

(Credit: [Goodfellow et al., 2017])
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Problem with gradient vanishing

Gradients over multiple time steps: o

C 4" /~> tanh —( )= tanh D= tanh
hy = stack h T svack T slack s(ack

(Credit: Stanford CS231N)

— gradient vanishing: g% is (exponentially) small when t is large
—> earlier states have little impact on latter states, i.e., memory is short

— but we hope to use RNN to encode reasonably long-term
historical /contextual information

Solution? Modify the architecture
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Gated RNNs
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Long Short-Term Memory (LSTM)

key idea: introduce a cell state ¢ to explicitly store history, besides the hidden
state h

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i Input gate, whether to write to cell
f: Forget gate, Whether to erase cell

o: Output gate, How much to reveal cell

vector from g: Gate gate (?), How much to write to cell
below (x)
o [ [V
w f 4 hi—1
vector from — B ol = o w ( 4 )
before (h) g tanh
Exn .
=f0c1+i0yg
*
4h x 2h 4h 4*h ht = 0 ® tanh(cy)

(Credit: Stanford CS231N)

where o denotes sigmoid
f: memory controller and i: writing controller and o: output controller learned

independently
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Gated Recurrent Unit (GRU)

simplified version of LSTM ...
GRU: no cell state

ii Input gate, whether to write to cell w: update gate, control state update
f: Forget gate, Whether to erase cell X
o: Qutput gate, How much to reveal cell r: reset gate, control how previous state affects
g: Gate gate (?), How much to write to cell
new content

. g: new content

K3 o

fl_ o - hi—

ol — I IV( .;nl) u h

g tanh rl = g w t—1

a=fOc 1 +iGg o Ty

hy = 0 ® tanh(c;) g

g =tanh (Wh (r © ht—1) + Wax: + bg)

f: memory controller and : hi=u®hi 1+ (1-u)Og
writing controller and o: output
controller learned independently f. ¢, o are merged
long-term memory when f = 1 long-term memory when u =1 and r =1

LSTM is more flexible and powerful but less efficient in speed
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Do they save the vanishing gradient?

e N ; -
c . - O—> +— ¢, ———> 1 hi—
e f g fl_| W<t1>
¢ 0 o N
g tanh
1 .
W—() }@ tanh c=fOc1+i0Og
_ . hy = 0 ® tanh(c;)
ht»1 —'\ stack o> 0 ht 1.
A 4
| (Credit: Stanford CS231N)
X der s T
' 5e, 7 = diag (f) — no multiplication
(Credit: Stanford CS231N) by wW

Uninterrupted gradient flow!

—=c— ot C o=t =c—=C
Tl ] 10N
f f f
o ko — ko o — @ ko o
eefir e-efin! e |
T en %T o iy %T o Lo R

(Credit: Stanford CS231N)
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Look familiar?

Uninterrupted gradient flow!

(Credit: Stanford CS231N)

Shortcut path = x

Add both paths = f(x) +x

- .
x/

Main path = (x)

a residual block (Credit: [Elgendy, 2020])

(Credit: [Huang et al., 2016])
They are all skip-connections! Similarly for GRU.

— skip connections allow better modeling of long-distance dependency

— but no guarantee of solving the grad vanishing/explosion problem
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Do we need to modify the architecture?

problem: W, can have singular values other than 1
solution: ensure all singular values are 1 = W, is orthogonal

min L (W), s.t. W, orthogonal,i.e., Wi W =1

hWa
Good empirical performance, but cost is high for large-scale problems. See, e.g.,
[Arjovsky et al., 2016, Lezcano-Casado and Martinez-Rubio, 2019]

Time lag = 300

" Baseline

Time lag = 500

s
RNN with tanh

Cross entropy

Cross entropy

Figure 1. Results of the copying memory problem for time Tags of 100,200, 300, 500. The LSTM is able to beat the baseline only for
100 times steps. Conversely the uRNN is able to completely solve each time length in very few training iterations, without getting stuck
at the baseline.

(Credit: [Arjovsky et al., 2016])

(see demo based on PyGRANSO

https://ncvx.org/examples/D3_orthogonal_rnn.html) 25 /44
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Modern RNNs
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Context is important!

sentiment classification

positive

Sentence encoding

the movie was terribly exciting !

(Credit: adapted from Stanford CS224N)

— the state vectors are contextual representation of the input words

— but to tell sentiment, “exciting”, which is to the right of “terribly” is

crucial 2744



Bidirectional RNNs

Concatenated
hidden states

simplified schematic

S

the movie was terribly exciting !

00000000

00000000
00000000
00000000
00000000

% 00000000

Backward RNN

Forward RNN

(Credit: Stanford CS224N)

the movie was terribly  exciting !

(Credit: Stanford CS224N)

— both left and right contexts are now encoded!

— applicable when the full sequence is available
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Deep RNNs

hidden state h can be thought of representation, and so far we only have one
layer

Go deeper for more powerful representation learning!

|
|

I
!
%

RNN layer 3

l

RNN layer 2

|

~—(0eee) (e0ee] (ecee)

l

—(ecoe} (0000} (000

l

Y Y T =YY T I== Y YY)

RNN layer 1

—[(ecoe} —(e00e]—(co00)
——(eeee} —(eoee] (ece0)

movie was terribly  exciting

=3
®

(Credit: Stanford CS231N)

multi-layer RNNs or stacked RNNs. Typically only few layers (much less than

that of CNNs) 29 /44



Sequence to sequence models (Seq2Seq)

machine translation, image-to-text, speech-to-text, etc

Target sentence (output)
A

me with a pie <END>

argmax
argmax
argmax

Encoder RNN

H_J
NNY J2p0223

e m’ entarté <START> he hit me with a pie

(Credit: Stanford CS231N)

— Falls under encoder-decoder models
— Encoder RNN translate source into an encoding
— Decoder RNN is a language model generates output sentence based on the

encoding
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Seq2Seq—training

g = negative log = negative log
prob of “he” prob of “with” prob of <END>

r
1
]=th;1't = 1 +1T2 + 53 #H Jal+ Js + Js +| J7
B P ¥ B P T W
=z o
= 2
4 %} (o] o (o] (o] o o o
5 ol Jol ol Jel Jol fol o o
e oflefle[ e[ lo[>|o[ o @
o o] |o| |eo] |e] [e| |[of |o -
o
c z
i =z
il a m’  entarté <START> he hit me  with a pie
N J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

(Credit: Stanford CS231N)
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Seq2Seq—the information bottleneck problem

Target sentence (output)
A

he hit me with a pie <END>

Encoder RNN
NNY 12podaq

il a m’  entarté <START> he hit me  with a pie
N J

Y
Source sentence (input)

(Credit: Stanford CS231N)
Problem: the encoding has to capture all info of the source to be effective

Solution: make each target state dependent on all source states
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Seq2Seq—the information bottleneck problem

Problem: the encoding has to capture all info of the source to be effective
Solution: make each target state dependent on all source states

Assume source state vectors 81,...,8N € Rh, and current target state vector ¢;

— Idea 1: concatenate, i.e., form [s1;...;sn;t;] as the new state vector for
the current target step. What's wrong?

— Idea 2: sum and concatenate, i.e., [+ Z;V:] s;;t;]. What's wrong?
— Idea 3: weighted sum and concatenate, i.e., [Zé\[:l w; ;5]
* What weights? Emphasize those most relevant to t;

* Set w; = similarity(s;,t;): attention mechanism

Attention is about measuring (nonlinear) correlation/similarity
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Attention in Seq2Seq models

Attention he

Attention hit
output output T
c S - e &
2% 52
€ 3 é- =]
g= a2
8 £ 5
<2 iz
8w S v
2 g s ¢
S
23 g3
< <
] 5
$z 3z
c e s
o o]
il a m’  entarté <START> il a m’  entarté <START> he
\ J
\ v J v
Source sentence (input) Source sentence (input)
(Credit: Stanford CS231N) (Credit: Stanford CS231N)
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Attention in a nutshell

Assume source vectors s1,...,sy € R, and target vector ¢, to obtain selective
summary (e.g., weighted summation) of s1,...,sx € R"
N
Z w;s; where w; = similarity(s;,t)
j=1

Many possibilities:

— dot-product attention: w; = (s;,t) (Is it better to normalize this or
rescale it by the dimension factor? )

— multiplicative attention: w; = (s;, Wt)

— “additive attention”: w; = vTo (W1s; + Wat)

Afterward, pass the whole weight vector w1, ..., wn] through softmax to turn it
into a valid distribution
W, = exp (w;)
T exp (wi)

Attention is not only for Seq2Seq or RNNSs, it is to: calculate a weighted sum of
a bunch of (source) vectors, with the weights depedent on a target/query vector

35/ 44



Problems with RNNs

O(sequence length)

l I
i——- —r 000 +— -— 009
The chef who ... ate

(Credit: Stanford CS231N)

— linear interaction distance: challenging to encode long-range
dependencies, even within the same sequence

— resistance to parallelization: state generation is inherently
sequential—problematic for very long sequences
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Solution

<ped> <ped>
<S03> , <S03>
uoISsSnIsIp uoISSNISIp
siy1 s
u| u|
Buissiw buissiw
ale ale
am aM
1eyM 1eym
S S
siya Si3
3084102 1D8.10d
aq aq
pinoys pinoys
uopdaIIp uoalp
sy syl
g ng
1auad 19ad
oq < 2q
SEVE] < SEVCTY
(11m 1M

ojlels \ Qjels
ayL ayL

build connections between each other: each state vector depends on all the rest

— O(1) interaction distance

— two state vectors (query, key) to allow parallelization
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Self-attention: a closer look

ku Vo ko

k, vy ky

k, A k, v,
q Ky A q ky

kg Va Lk |V

ks Vs ks Vs

kg Ve kg

k; Vi ks

— Each word now encoded as (query, key, value) triple
— For an input «;, we have:
4= W)z, ki= Wz, vi= W)z,
— Calculate attention scores between query and all keys: e;; = (q;, k;)
— softmax normalization w;; = exp (es;) />, exp (€ix)

— output the weighted sum of values Zj wiv;j
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Self-attention in matrix notation

Assume X collects all input words, each one a row:

Compute queries, keys, and values

Q=xwW¢% K=xwf v=xwV

Calculate attention scores between query and all keys: E = QKT

softmax normalization to each row: A = softmax(FE)

— output the weighted sum of values AV

output = softmax(QKT)V
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Adding in nonlinearity

Equation for Feed Forward Layer

m; = MLP(output;)
= W, * ReLU(W, X output; + b,) + b,

Encoder

Feed Forward

i i ] ]
FF FF FF FF

Self-Attention

self-attention

i ] ] i

FF FF FF FF
[] 4 Input
‘ j

self-attention

ven
Inputs

Wy w2 w3 wr

The chef who food

First step toward the Transformer!
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Suggested reading
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Suggested reading

— Stanford CS224N
http://web.stanford.edu/class/cs224n/index.html#schedule

— Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

— A Guide to the Encoder-Decoder Model and the Attention Mechanism
https://medium.com/better-programming/

a-guide-on-the-encoder-decoder-model-and-the-attention-mechanism-

— Attention is all you need: Discovering the Transformer paper
https://towardsdatascience.com/

attention-is-all-you-need-discovering-the-transformer-paper-73e5f:
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