
Training DNNs: Tricks

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

March 5, 2020

1 / 33

Recap: last lecture

Training DNNs

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

This lecture: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

2 / 33

Recap: last lecture

Training DNNs

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

This lecture: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

2 / 33

Recap: last lecture

Training DNNs

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

This lecture: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

2 / 33

Recap: last lecture

Training DNNs

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

This lecture: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

2 / 33

Recap: last lecture

Training DNNs

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

– What methods? Mini-batch stochastic optimization due to large m

* SGD (with momentum), Adagrad, RMSprop, Adam

* diminishing LR (1/t, exp delay, staircase delay)

– Where to start?

* Xavier init., Kaiming init., orthogonal init.

– When to stop?

* early stopping: stop when validation error doesn’t improve

This lecture: additional tricks/heuristics that improve

– convergence speed

– task-specific (e.g., classification, regression, generation) performance

2 / 33

Outline

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

3 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude?

Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude?

Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Why scaling matters?

Consider a ML objective: minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi), e.g.,

– Least-squares (LS): minw
1
m

∑m
i=1 ‖yi −w

ᵀxi‖22
– Logistic regression: minw − 1

m

∑m
i=1

[
yiw

ᵀxi − log
(

1 + ew
ᵀxi

)]
– Shallow NN prediction: minw

1
m

∑m
i=1 ‖yi − σ (wᵀxi)‖22

Gradient: ∇wf = 1
m

∑m
i=1 `

′ (wᵀxi; yi)xi.

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Partial derivatives have different orders of magnitudes =⇒
slow convergence of vanilla GD (recall why adaptive grad methods)

Hessian: ∇2
wf = 1

m

∑m
i=1 `

′′ (wᵀxi; yi)xix
ᵀ
i .

– Suppose the off-diagonal elements of xix
ᵀ
i are relatively small (e.g., when

features are “independent”).

– What happens when coordinates (i.e., features) of xi have different orders

of magnitude? Conditioning of ∇2
wf is bad, i.e., f is elongated

4 / 33

Fix the scaling: first idea

Normalization: make each feature zero-mean and unit variance, i.e., make

each row of X = [x1, . . . ,xm] zero-mean and unit variance, i.e.

X ′ =
X − µ
σ

(µ—row means, σ—row std, broadcasting applies)

X = (X - X.mean(axis=1))/X.std(axis=1)

Credit: Stanford CS231N

NB: for data matrices, we often assume each column is a data point, and each

row is a feature. This convention is different from that assumed in Tensorflow

and PyTorch.

5 / 33

Fix the scaling: first idea

Normalization: make each feature zero-mean and unit variance, i.e., make

each row of X = [x1, . . . ,xm] zero-mean and unit variance, i.e.

X ′ =
X − µ
σ

(µ—row means, σ—row std, broadcasting applies)

X = (X - X.mean(axis=1))/X.std(axis=1)

Credit: Stanford CS231N

NB: for data matrices, we often assume each column is a data point, and each

row is a feature. This convention is different from that assumed in Tensorflow

and PyTorch.
5 / 33

Fix the scaling: first idea

For LS, works well when features are approximately independent

before vs. after the normalization

For LS, works not so well when features are highly dependent.

before vs. after the normalization

How to remove the feature dependency?

6 / 33

Fix the scaling: first idea

For LS, works well when features are approximately independent

before vs. after the normalization

For LS, works not so well when features are highly dependent.

before vs. after the normalization

How to remove the feature dependency?

6 / 33

Fix the scaling: first idea

For LS, works well when features are approximately independent

before vs. after the normalization

For LS, works not so well when features are highly dependent.

before vs. after the normalization

How to remove the feature dependency?
6 / 33

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=1) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = U.T@X #rotate/decorrelate the data

(math: X = USV ᵀ, then UᵀX = SV)

Whitening: PCA + normalize the coordinates by singular values

Xwhite =1/(S+eps)*Xrot # (math: Xwhite = V)

Credit: Stanford CS231N

7 / 33

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=1) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = U.T@X #rotate/decorrelate the data

(math: X = USV ᵀ, then UᵀX = SV)

Whitening: PCA + normalize the coordinates by singular values

Xwhite =1/(S+eps)*Xrot # (math: Xwhite = V)

Credit: Stanford CS231N

7 / 33

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=1) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = U.T@X #rotate/decorrelate the data

(math: X = USV ᵀ, then UᵀX = SV)

Whitening: PCA + normalize the coordinates by singular values

Xwhite =1/(S+eps)*Xrot # (math: Xwhite = V)

Credit: Stanford CS231N

7 / 33

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=1) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = U.T@X #rotate/decorrelate the data

(math: X = USV ᵀ, then UᵀX = SV)

Whitening: PCA + normalize the coordinates by singular values

Xwhite =1/(S+eps)*Xrot # (math: Xwhite = V)

Credit: Stanford CS231N

7 / 33

Fix the scaling: second idea

PCA and whitening

PCA, i.e., zero-center and rotate the data to align principal directions to

coordinate directions

X -= X.mean(axis=1) #centering

U, S, VT = np.linalg.svd(X, full matrices=False)

Xrot = U.T@X #rotate/decorrelate the data

(math: X = USV ᵀ, then UᵀX = SV)

Whitening: PCA + normalize the coordinates by singular values

Xwhite =1/(S+eps)*Xrot # (math: Xwhite = V)

Credit: Stanford CS231N 7 / 33

Fix the scaling: second idea

For LS, works well when features are approximately independent

before vs. after the whitening

For LS, also works well when features are highly dependent.

before vs. after the whitening

8 / 33

Fix the scaling: second idea

For LS, works well when features are approximately independent

before vs. after the whitening

For LS, also works well when features are highly dependent.

before vs. after the whitening

8 / 33

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes.

So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ` (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

9 / 33

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ` (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

9 / 33

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ` (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

9 / 33

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ` (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

9 / 33

In DNNs practice

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Preprocess the input data

* zero-center

* normalization

* PCA or whitening (less common)

– But recall our model objective minw f (w)
.
= 1

m

∑m
i=1 ` (wᵀxi; yi) vs.

DL objective

minW
1
m

∑m
i=1 ` (yi, σ (W kσ (W k−1 . . . σ (W 1xi)))) + Ω (W)

* DL objective is much more complex

* But σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Idea: also process the input data to some/all hidden layers

9 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization

Apply normalization to the input data to some/all hidden layers

– σ (W kσ (W k−1 . . . σ (W 1xi))) is a composite version of wᵀxi:

W 1xi, W 2σ (W 1xi), W 3σ (W 2σ (W 1xi)), . . .

– Apply normalization to the outputs of the colored parts based on the

statistics of a mini-batch of xi’s, e.g.,

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

– Let zi’s be generated from a mini-batch of xi’s and Z = [z1 . . .z|B|],

BN
(
zj
)

=
zj − µzj
σzj

for each row zj of Z.

Flexibity restored by optional scaling γj ’s and shifting βj ’s:

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj for each row zj of Z.

Here, γj ’s and β’s are trainable (optimization) variables!

10 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

11 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

11 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

11 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

11 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands

11 / 33

Batch normalization: implementation details

W 2 σ (W 1xi)︸ ︷︷ ︸
.
=zi

−→ W 2 BN (σ (W 1xi))︸ ︷︷ ︸
BN(zi)

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

Question: how to perform training after plugging in the BN operations?

minW
1
m

∑m
i=1 ` (yi, σ (W kBN (σ (W k−1 . . .BN (σ (W 1xi)))))) + Ω (W)

Answer: for all j, BNγj ,βj

(
zj
)

is nothing but a differentiable function of zj , γj ,

and βj — chain rule applies!

– µzj and σzj are differentiable functions of zj , and(
zj , γj , βj

)
7→ BNγj ,βj

(
zj
)

is a vector-to-vector mapping

– Any row zj depends on all xk’s in the current mini-batch B as

Z = [z1 . . .z|B|]←− [x1 . . .x|B|]

– Without BN:

∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) = 1

|B|
∑|B|
k=1∇W ` (W ;xk,yk), the

summands can be computed in parallel and then aggregated

With BN: ∇W 1
|B|
∑|B|
k=1 ` (W ;xk,yk) has to be computed altogether,

due to the inter-dependency across the summands
11 / 33

Batch normalization: implementation details

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

What about validation/test, where only a single sample is seen each time?

idea: use the average µzj ’s and σzj ’s over the training data (γj ’s and βj ’s

are learned)

In practice, collect the momentum-weighted running averages: e.g., for each

hidden node with BN,

µ = (1− η)µold + ηµnew

σ = (1− η)σold + ησnew

with e.g., η = 0.1. In PyTorch, torch.nn.BatchNorm1d,

torch.nn.BatchNorm2d, torch.nn.BatchNorm3d depending on the input

shapes

12 / 33

Batch normalization: implementation details

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

What about validation/test, where only a single sample is seen each time?

idea: use the average µzj ’s and σzj ’s over the training data (γj ’s and βj ’s

are learned)

In practice, collect the momentum-weighted running averages: e.g., for each

hidden node with BN,

µ = (1− η)µold + ηµnew

σ = (1− η)σold + ησnew

with e.g., η = 0.1. In PyTorch, torch.nn.BatchNorm1d,

torch.nn.BatchNorm2d, torch.nn.BatchNorm3d depending on the input

shapes

12 / 33

Batch normalization: implementation details

BNγj ,βj

(
zj
)

= γj
zj − µzj
σzj

+ βj ∀ j

What about validation/test, where only a single sample is seen each time?

idea: use the average µzj ’s and σzj ’s over the training data (γj ’s and βj ’s

are learned)

In practice, collect the momentum-weighted running averages: e.g., for each

hidden node with BN,

µ = (1− η)µold + ηµnew

σ = (1− η)σold + ησnew

with e.g., η = 0.1. In PyTorch, torch.nn.BatchNorm1d,

torch.nn.BatchNorm2d, torch.nn.BatchNorm3d depending on the input

shapes

12 / 33

Batch normalization: implementation details

Question: BN before or after the activation?

W 2σ (W 1xi) −→ W 2BN (σ (W 1xi)) (after)

W 2σ (W 1xi) −→ W 2 (σ (BN (W 1xi))) (before)

– The original paper [Ioffe and Szegedy, 2015] proposed the “before” version

(most of the original intuition has since proved wrong)

– But the “after” version is more intuitive as we have seen

– Both are used in practice and debatable which one is more effective

* https://www.reddit.com/r/MachineLearning/comments/

67gonq/d_batch_normalization_before_or_after_relu/

* https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/

* https://github.com/gcr/torch-residual-networks/issues/5

* [Chen et al., 2019]

13 / 33

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://github.com/gcr/torch-residual-networks/issues/5

Batch normalization: implementation details

Question: BN before or after the activation?

W 2σ (W 1xi) −→ W 2BN (σ (W 1xi)) (after)

W 2σ (W 1xi) −→ W 2 (σ (BN (W 1xi))) (before)

– The original paper [Ioffe and Szegedy, 2015] proposed the “before” version

(most of the original intuition has since proved wrong)

– But the “after” version is more intuitive as we have seen

– Both are used in practice and debatable which one is more effective

* https://www.reddit.com/r/MachineLearning/comments/

67gonq/d_batch_normalization_before_or_after_relu/

* https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/

* https://github.com/gcr/torch-residual-networks/issues/5

* [Chen et al., 2019]

13 / 33

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://github.com/gcr/torch-residual-networks/issues/5

Batch normalization: implementation details

Question: BN before or after the activation?

W 2σ (W 1xi) −→ W 2BN (σ (W 1xi)) (after)

W 2σ (W 1xi) −→ W 2 (σ (BN (W 1xi))) (before)

– The original paper [Ioffe and Szegedy, 2015] proposed the “before” version

(most of the original intuition has since proved wrong)

– But the “after” version is more intuitive as we have seen

– Both are used in practice and debatable which one is more effective

* https://www.reddit.com/r/MachineLearning/comments/

67gonq/d_batch_normalization_before_or_after_relu/

* https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/

* https://github.com/gcr/torch-residual-networks/issues/5

* [Chen et al., 2019]

13 / 33

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://github.com/gcr/torch-residual-networks/issues/5

Batch normalization: implementation details

Question: BN before or after the activation?

W 2σ (W 1xi) −→ W 2BN (σ (W 1xi)) (after)

W 2σ (W 1xi) −→ W 2 (σ (BN (W 1xi))) (before)

– The original paper [Ioffe and Szegedy, 2015] proposed the “before” version

(most of the original intuition has since proved wrong)

– But the “after” version is more intuitive as we have seen

– Both are used in practice and debatable which one is more effective

* https://www.reddit.com/r/MachineLearning/comments/

67gonq/d_batch_normalization_before_or_after_relu/

* https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/

* https://github.com/gcr/torch-residual-networks/issues/5

* [Chen et al., 2019]

13 / 33

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://github.com/gcr/torch-residual-networks/issues/5

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

14 / 33

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

14 / 33

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

14 / 33

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

14 / 33

Why BN works?

Short answer: we don’t know yet

Long answer:

– Originally proposed to deal with internal covariate shift

[Ioffe and Szegedy, 2015]

– The original intuition later proved wrong and BN is shown to make the

optimization problem “nicer” (or “smoother”)

[Santurkar et al., 2018, Lipton and Steinhardt, 2019]

– Yet another explanation from optimization perspective [Kohler et al., 2019]

– A good research topic

14 / 33

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening? Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

15 / 33

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening? Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

15 / 33

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening?

Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

15 / 33

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening? Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

15 / 33

Batch PCA/whitening?

fixing the feature scaling makes the landscape “nicer”—derivatives and

curvatures in all directions are roughly even in magnitudes. So for DNNs,

– Add (pre-)processing to input data

* zero-center

* normalization

* PCA or whitening (less common)

– Add batch-processing steps to some/all hidden layers

* Batch normalization

* Batch PCA or whitening? Doable but requires a lot of

work [Huangi et al., 2018, Huang et al., 2019, Wang et al., 2019]

normalization is most popular due to the simplicity

15 / 33

Zoo of normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

weight normalization: decompose the weight as magnitude and direction

w = g v
‖v‖2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

Check out PyTorch normalization layers

https://pytorch.org/docs/stable/nn.html#normalization-layers

16 / 33

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://pytorch.org/docs/stable/nn.html#normalization-layers

Zoo of normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

weight normalization: decompose the weight as magnitude and direction

w = g v
‖v‖2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

Check out PyTorch normalization layers

https://pytorch.org/docs/stable/nn.html#normalization-layers

16 / 33

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://pytorch.org/docs/stable/nn.html#normalization-layers

Zoo of normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

weight normalization: decompose the weight as magnitude and direction

w = g v
‖v‖2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

Check out PyTorch normalization layers

https://pytorch.org/docs/stable/nn.html#normalization-layers 16 / 33

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://pytorch.org/docs/stable/nn.html#normalization-layers

Outline

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

17 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Regularization to avoid overfitting

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with explicit

regularization Ω. But which Ω?

– Ω (W) =
∑
k ‖W k‖2F where k indexes the layers — penalizes large values

in W and hence avoids steep changes (set weight decay as λ in

torch.optim.xxxx)

– Ω (W) =
∑
k ‖W k‖1 — promotes sparse W k’s (i.e., many entries in

W k’s to be near zero; good for feature selection)

l1 reg = torch.zeros(1)

for W in model.parameters():

l1 reg += W.norm(1)

– Ω (W) = ‖JDNNW (x)‖2F — promotes smoothness of the function

represented by DNNW

[Varga et al., 2017, Hoffman et al., 2019, Chan et al., 2019]

– Constraints, δC (W)
.
=

0 W ∈ C
∞ W /∈ C

, e.g., binary, norm bound

– many others!

18 / 33

Implicit regularization

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with

implicit regularization — operation that is not built into the objective

but avoids overfitting

– early stopping

– batch normalization

– dropout

– ...

19 / 33

Implicit regularization

Training DNNs minW
1
m

∑m
i=1 ` (yi,DNNW (xi)) + λΩ (W) with

implicit regularization — operation that is not built into the objective

but avoids overfitting

– early stopping

– batch normalization

– dropout

– ...

19 / 33

Early stopping

A practical/pragmatic stopping strategy: early stopping

... periodically check the validation error and stop when it doesn’t improve

Intuition: avoid the model to be too specialized/perfect for the training data

More concrete math examples: [Bishop, 1995, Sjöberg and Ljung, 1995]

20 / 33

Early stopping

A practical/pragmatic stopping strategy: early stopping

... periodically check the validation error and stop when it doesn’t improve

Intuition: avoid the model to be too specialized/perfect for the training data

More concrete math examples: [Bishop, 1995, Sjöberg and Ljung, 1995]

20 / 33

Batch/general normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

weight normalization: decompose the weight as magnitude and direction

w = g v
‖v‖2

and perform optimization in (g,v) space

An Overview of Normalization Methods in Deep Learning

https://mlexplained.com/2018/11/30/

an-overview-of-normalization-methods-in-deep-learning/

21 / 33

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Dropout

Credit: [Srivastava et al., 2014]

Idea: kill each non-output neuron with probability 1− p, called Dropout

– perform Dropout independently for each training sample and each iteration

– for each neuron, if the original output is x, then the expected output with

Dropout: px. So rescale the actual output by 1/p

– no Dropout at test time!

22 / 33

Dropout

Credit: [Srivastava et al., 2014]

Idea: kill each non-output neuron with probability 1− p, called Dropout

– perform Dropout independently for each training sample and each iteration

– for each neuron, if the original output is x, then the expected output with

Dropout: px. So rescale the actual output by 1/p

– no Dropout at test time!

22 / 33

Dropout

Credit: [Srivastava et al., 2014]

Idea: kill each non-output neuron with probability 1− p, called Dropout

– perform Dropout independently for each training sample and each iteration

– for each neuron, if the original output is x, then the expected output with

Dropout: px. So rescale the actual output by 1/p

– no Dropout at test time!

22 / 33

Dropout

Credit: [Srivastava et al., 2014]

Idea: kill each non-output neuron with probability 1− p, called Dropout

– perform Dropout independently for each training sample and each iteration

– for each neuron, if the original output is x, then the expected output with

Dropout: px. So rescale the actual output by 1/p

– no Dropout at test time!

22 / 33

Dropout: implementation details

Credit: Stanford CS231N

What about derivatives? Back-propagation for each sample and then aggregate

PyTorch: torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d

23 / 33

Dropout: implementation details

Credit: Stanford CS231N

What about derivatives?

Back-propagation for each sample and then aggregate

PyTorch: torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d

23 / 33

Dropout: implementation details

Credit: Stanford CS231N

What about derivatives? Back-propagation for each sample and then aggregate

PyTorch: torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d

23 / 33

Dropout: implementation details

Credit: Stanford CS231N

What about derivatives? Back-propagation for each sample and then aggregate

PyTorch: torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d

23 / 33

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting

Credit: [Srivastava et al., 2014]

For an n-node network, 2n possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

` (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

24 / 33

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting Credit: [Srivastava et al., 2014]

For an n-node network, 2n possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

` (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

24 / 33

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting Credit: [Srivastava et al., 2014]

For an n-node network, 2n possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

` (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

24 / 33

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting Credit: [Srivastava et al., 2014]

For an n-node network, 2n possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

` (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

24 / 33

Why Dropout?

Credit: Wikipedia

bagging can avoid overfitting Credit: [Srivastava et al., 2014]

For an n-node network, 2n possible sub-networks.

Consider the average/ensemble prediction ESN [SN (x)] over 2n of sub-networks

and the new objective

F (W)
.
=

1

m

m∑
i=1

` (yi,ESN [SNW (xi)])

Mini-batch SGD with Dropout samples data point and model simultaneously

(stochastic composite optimization [Wang et al., 2016, Wang et al., 2017])

24 / 33

Outline

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

25 / 33

Hyperparameter search

...tunable parameters (vs. learnable parameters, or optimization variables)

– Network architecture (depth, width, activation, loss, etc)

– Optimization methods

– Initialization schemes

– Initial LR and LR schedule/parameters

– regularization methods and parameters

– etc

https://cs231n.github.io/neural-networks-3/#hyper

Credit: [Bergstra and Bengio, 2012]

26 / 33

https://cs231n.github.io/neural-networks-3/#hyper

Hyperparameter search

...tunable parameters (vs. learnable parameters, or optimization variables)

– Network architecture (depth, width, activation, loss, etc)

– Optimization methods

– Initialization schemes

– Initial LR and LR schedule/parameters

– regularization methods and parameters

– etc

https://cs231n.github.io/neural-networks-3/#hyper

Credit: [Bergstra and Bengio, 2012]

26 / 33

https://cs231n.github.io/neural-networks-3/#hyper

Hyperparameter search

...tunable parameters (vs. learnable parameters, or optimization variables)

– Network architecture (depth, width, activation, loss, etc)

– Optimization methods

– Initialization schemes

– Initial LR and LR schedule/parameters

– regularization methods and parameters

– etc

https://cs231n.github.io/neural-networks-3/#hyper

Credit: [Bergstra and Bengio, 2012] 26 / 33

https://cs231n.github.io/neural-networks-3/#hyper

Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

27 / 33

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

27 / 33

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
27 / 33

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Outline

Data Normalization

Regularization

Hyperparameter search, data augmentation

Suggested reading

28 / 33

Suggested reading

– Chap 7, Deep Learning (Goodfellow et al)

– Stanford CS231n course notes: Neural Networks Part 2: Setting up the

Data and the Loss https://cs231n.github.io/neural-networks-2/

– Stanford CS231n course notes: Neural Networks Part 3: Learning and

Evaluation https://cs231n.github.io/neural-networks-3/

– http://neuralnetworksanddeeplearning.com/chap3.html

29 / 33

https://cs231n.github.io/neural-networks-2/
https://cs231n.github.io/neural-networks-3/
http://neuralnetworksanddeeplearning.com/chap3.html

References i

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for

hyper-parameter optimization. Journal of machine learning research,

13(Feb):281–305.

[Bishop, 1995] Bishop, C. M. (1995). Regularization and complexity control in

feed-forward networks. In International Conference on Artificial Neural Networks

ICANN.

[Chan et al., 2019] Chan, A., Tay, Y., Ong, Y. S., and Fu, J. (2019). Jacobian

adversarially regularized networks for robustness. arXiv:1912.10185.

[Chen et al., 2019] Chen, G., Chen, P., Shi, Y., Hsieh, C.-Y., Liao, B., and Zhang, S.

(2019). Rethinking the usage of batch normalization and dropout in the training

of deep neural networks. arXiv:1905.05928.

[Hoffman et al., 2019] Hoffman, J., Roberts, D. A., and Yaida, S. (2019). Robust

learning with jacobian regularization. arXiv:1908.02729.

[Huang et al., 2019] Huang, L., Zhou, Y., Zhu, F., Liu, L., and Shao, L. (2019).

Iterative normalization: Beyond standardization towards efficient whitening.

pages 4869–4878. IEEE.

30 / 33

References ii

[Huangi et al., 2018] Huangi, L., Huangi, L., Yang, D., Lang, B., and Deng, J.

(2018). Decorrelated batch normalization. pages 791–800. IEEE.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate shift. In The

32nd International Conference on Machine Learning.

[Kohler et al., 2019] Kohler, J. M., Daneshmand, H., Lucchi, A., Hofmann, T., Zhou,

M., and Neymeyr, K. (2019). Exponential convergence rates for batch

normalization: The power of length-direction decoupling in non-convex

optimization. In The 22nd International Conference on Artificial Intelligence and

Statistics.

[Lipton and Steinhardt, 2019] Lipton, Z. C. and Steinhardt, J. (2019). Troubling

trends in machine learning scholarship. ACM Queue, 17(1):80.

[Santurkar et al., 2018] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018).

How does batch normalization help optimization? In Advances in Neural

Information Processing Systems, pages 2483–2493.

31 / 33

References iii

[Sjöberg and Ljung, 1995] Sjöberg, J. and Ljung, L. (1995). Overtraining,

regularization and searching for a minimum, with application to neural networks.

International Journal of Control, 62(6):1391–1407.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–1958.

[Varga et al., 2017] Varga, D., Csiszárik, A., and Zombori, Z. (2017). Gradient

regularization improves accuracy of discriminative models. arXiv:1712.09936.

[Wang et al., 2016] Wang, M., Fang, E. X., and Liu, H. (2016). Stochastic

compositional gradient descent: algorithms for minimizing compositions of

expected-value functions. Mathematical Programming, 161(1-2):419–449.

[Wang et al., 2017] Wang, M., Liu, J., and Fang, E. X. (2017). Accelerating

stochastic composition optimization. The Journal of Machine Learning Research,

18(1):3721–3743.

[Wang et al., 2019] Wang, W., Dang, Z., Hu, Y., Fua, P., and Salzmann, M. (2019).

Backpropagation-friendly eigendecomposition. In Advances in Neural Information

Processing Systems, pages 3156–3164.

32 / 33

References iv

[Wu and He, 2018] Wu, Y. and He, K. (2018). Group normalization. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 3–19.

33 / 33

	Data Normalization
	Regularization
	Hyperparameter search, data augmentation
	Suggested reading

