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Supervised learning as function approximation

– Underlying true function: f0

– Training data: {xi,yi} with yi ≈ f0 (xi)

– Choose a family of functions H, so that

∃f ∈ H and f and f0 are close

– Find f , i.e., optimization

min
f∈H

∑
i

` (yi, f (xi)) + Ω (f)

– Approximation capacity: Univeral approximation theorems (UAT)

=⇒ replace H by DNNW , i.e., a deep neural network with weights W

– Optimization:

min
W

∑
i

` (yi,DNNW (xi)) + Ω (W )

– Generalization: how to avoid over-complicated DNNW in view of UAT

2 / 50



Basics of numerical optimization

– 1st and 2nd optimality conditions

– iterative methods

Credit: aria42.com

– gradient descent

– Newton’s method

– momentum methods

– quasi-Newton methods

– coordinate descent

– conjugate gradient methods

– trust-region methods

– etc
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Computing derivatives

Credit: [Baydin et al., 2017]

– Analytic differentiation (by hand or by software)

– Finite difference approximation

– Automatic/Algorithmic differentiation (AD)
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Ready to optimize DNNs!
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Set up the problem

DNN activation function

Credit: Stanford CS231N

min
W

∑
i

` (yi,DNNW (xi)) + Ω (W )

– Which activation at the hidden nodes?

– Which activation at the output node?

– Which `?
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Which activation at the hidden nodes?

Is the sign (·) activation good for derivative-based optimization?

∇w` (sign (wᵀx) , y) = `′ (sign (wᵀx) , y) sign′ (wᵀx)x = 0

almost everywhere (But why the classic Perceptron algorithm converges?)

Desiderata:

– Differentiable or almost everywhere differentiable

– Nonzero derivatives (almost) everywhere

– Cheap to compute
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Sigmoid and hypertangent

σ (x) = 1
1+e−x

– Differentiable? Yes!

– Nonzero derivatives? Yes and No! What happens

for large positive and negative inputs?

– Cheap? exp (·) is relatively expensive

What about tanh?
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ReLU and friends

σ (x) = max (0, x)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes and No! What happens

for x < 0?

– Cheap? Yes!

σ (x) = max (αx, x) (e.g., α = 0.01)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes! (almost everywhere)

– Cheap? Yes!
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ReLU and friends

– ReLU and Leaky ReLU are the most popular

– tanh less preferred but okay; sigmoid should be avoided

– Question: what do you think of |·| as activation?
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Which activation at output node?

DNN

depending on the desired output

– unbounded scalar/vector output (e.g. , regression): identity activation

– binary classification with 0 or 1 output: e.g., sigmoid σ (x) = 1
1+e−x

– multiclass classification: labels into vectors via one-hot encoding

Lk =⇒ [0, . . . , 0,︸ ︷︷ ︸
k−1 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k 0′s

]ᵀ

Softmax activation:

z 7→
[

ez1∑
j e

zj , . . . ,
ezp∑
j e

zj

]ᵀ
.

– discrete probability distribution: softmax

– etc . 11 / 50



Which loss?

Which ` to choose? Make it differentiable, or almost so

– regression: ‖·‖22 (common, torch.nn.MSELoss), ‖·‖1 (for robustness,

torch.nn.L1Loss), etc

– binary classification: encoder the classes as {0, 1}, ‖·‖22 or cross-entropy:

` (y, ŷ) = y log ŷ − (1− y) log(1− ŷ) (min at ŷ = y,

torch.nn.BCELoss)

– multiclass classification based on one-hot encoding and softmax

activation: ‖·‖22 or cross-entropy: ` (y, ŷ) = −
∑
i yi log ŷi (min at

y = ŷ, torch.nn.CrossEntropyLoss)

– multiclass classification label smoothing, assuming m classes: one-hot

encoding makes n− 1 entropies in y 0’s. When yi = 0, the derivative of

yi log ŷi is 0 =⇒ no update due to yi. Remedy: relax ... change

[0, . . . , 0,︸ ︷︷ ︸
k−1 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k 0′s

]ᵀ into [ε, . . . , ε,︸ ︷︷ ︸
k−1 ε′s

, 1− (m− 1)ε, ε, . . . , ε︸ ︷︷ ︸
n−k ε′s

]ᵀ for a small ε

– difference between distributions: Kullback-Leibler divergence loss

(torch.nn.KLDivLoss) or Wasserstein metric
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Framework of line-search methods

A generic line search algorithm

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: choose a direction dk

3: decide a step size tk

4: make a step: xk = xk−1 + tkdk

5: update counter: k = k + 1

6: end while

Four questions:

– How to choose direction dk?

– How to choose step size tk?

– Where to initialize?

– When to stop?
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From deterministic to stochastic optimization

Recall our optimization problem:

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W )

What happens when m is large, i.e., in the “big data” regime?

Blessing: assume (xi,yi)’s are iid, then

1
m

∑m
i=1 ` (yi,DNNW (xi))→ Ex,y` (y,DNNW (x))

by the law of large numbers. Large m ≈ good generalization!

Curse: storage and computation

– storage: the dataset {(xi,y)} typically stored on GPU/TPU for

parallel computing—loading whole datasets into GPU often infeasible

– computation: each iteration costs at least O(mn), where n is

#(opt variables)—both can be large for training DNNs! 16 / 50



From deterministic to stochastic optimization

How to get around the storage and computation bottleneck when m is large?

stochastic optimization (stochastic = random)

Idea: use a small batch of data samples to approximate quantities of interest

– gradient: 1
m

∑m
i=1∇W ` (yi,DNNW (xi))→ Ex,y∇W ` (y,DNNW (x))

approximated by stochastic gradient:

1
|J|
∑
j∈J ∇W `

(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | � m

– Hessian: 1
m

∑m
i=1∇

2
W ` (yi,DNNW (xi))→ Ex,y∇2

W ` (y,DNNW (x))

approximated by stochastic Hessian:

1
|J|
∑
j∈J ∇

2
W `

(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | � m

... justified by the law of large numbers
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Stochastic gradient descent (SGD)

In general (i.e., not only for DNNs), suppose we want to solve

min
w

F (w)
.
=

1

m

m∑
i=1

f (w; ξi) ξi’s are data samples

idea: replace gradient with a stochastic gradient in each step of GD

Stochastic gradient descent (SGD)

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: sample a random subset Jk ⊂ {0, . . . ,m− 1}
3: calculate the stochastic gradient ĝk

.
= 1
|Jk|

∑
j∈Jk

∇wf (w; ξi)

4: decide a step size tk

5: make a step: xk = xk−1 − tkĝk
6: update counter: k = k + 1

7: end while

– Jk is redrawn in each iteration

– Traditional SGD: |Jk| = 1. The version presented is also called mini-batch

gradient descent 18 / 50



What’s an epoch?

– Canonical SGD: sample a random subset Jk ⊂ {1, . . . ,m} each

iteration—sampling with replacement

– Practical SGD: shuffle the training set, and take a consecutive batch of

size B (called batch size) each iteration—sampling without replacement

one pass of the shuffled training set is called one epoch.

Practical stochastic gradient descent (SGD)

Input: init. x0, SC, batch size B, iteration counter k = 1, epoch counter ` = 1

1: while SC not satisfied do

2: permute the index set {0, · · · ,m} and divide it into batches of size B

3: for i ∈ {1, . . . ,#batches} do

4: calculate the stochastic gradient ĝk based on the ith batch

5: decide a step size tk

6: make a step: xk = xk−1 − tkĝk
7: update iteration counter: k = k + 1

8: end for

9: update epoch counter: ` = `+ 1

10: end while 19 / 50



GD vs. SGD

Consider minw ‖y −Xw‖22, where X ∈ R10000×500, y ∈ R10000, w ∈ R500

– By iteration: GD is faster

– By iter(GD)/epoch(SGD): SGD is faster

– Remember, cost of one epoch of SGD ≈ cost of one iteration of GD!

Overall, SGD could be quicker to find a medium-accuracy solution with lower

cost, which suffices for most purposes in machine

learning [Bottou and Bousquet, 2008].
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Step size (learning rate) for SGD

Recall the recommended step size rule for GD: back-tracking line search

key idea: F (x− t∇F (x))− F (x) ≈ −ct ‖∇F (x)‖2 for a certain c ∈ (0, 1)

Shall we do it for SGD? No, but why?

– SGD tries to avoid the m factor in computing the full gradient

∇wF (w) = 1
m

∑m
i=1∇wf (w; ξi), i.e., reducing m to B (batch size)

– But computing F (w) = 1
m

∑m
i=1 f (w; ξi) or

F (w − tĝ) = 1
m

∑m
i=1 f (w − tĝ; ξi) brings back the m factor; similarly

for ∇F

– What about computing approximations to the objective values based on

small batches also? Approximation errors for F and ∇F may ruin the

stability of the Taylor criterion

21 / 50



Step size (learning rate, or LR) for SGD

Classical theory for SGD on convex problems requires∑
k

tk =∞,
∑
k

t2k <∞.

Practical implementation: diminishing step size/LR, e.g.,

– 1/t delay: tk = α/(1 + βk), α, β: tunable parameters, k: iteration index

– exponential delay: tk = αe−βk, α, β: tunable parameters, k: iteration

index

– staircase delay: start from t0, divide it by a factor (e.g., 5 or 10) every L

(say, 10) epochs—popular in practice. Some heuristic variants:

– watch the validation error and decrease the LR when it stagnates

– watch the objective and decrease the LR when it stagnates

check out torch.optim.lr scheduler in PyTorch! https:

//pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
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Beyond the vanilla SGD

– Momentum/acceleration methods

– SGD with adaptive learning rates

– Stochastic 2nd order methods
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Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence? Answer: using historic

information
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Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change

velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 25 / 50



Nesterov’s accelerated gradient methods

due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

SGD with momentum/acceleration: replace the gradient term ∇f by the

stochastic gradient ĝ based on small batches

check out torch.optim.SGD at (their convention slightly differs from here)

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD 26 / 50
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Why SGD with adaptive learning rate?

Recall the struggle of GD on elongated functions, e.g., f (x1, x2) = x21 + 4x22

– (Quasi-)Newton’s method: take the full curvature info, but expensive

– Momentum methods: use historic direction(s) to cancel out wiggles

Another heuristic remedy: balance out movements in all coordinate directions.

Suppose g is the (stochastic) gradient, for all i,

divide gi by historic gradient magnitudes in the ith coordinate

Benefit: coordinate directions always with small (large) derivatives get sped up

(slowed down). Think of the above f (x1, x2) example!
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Method 1: Adagrad

divide gi by historic gradient magnitudes in the ith coordinate

At the (k + 1)th iteration, for all i,

xi,k+1 = xi,k − tk
gi,k√∑k

j=1 g
2
i,j + ε

or in elementwise notation

xk+1 = xk − tk
gk√∑k

j=1 g
2
j + ε

Write sk
.
=
∑k
j=1 g

2
j . Note that sk = sk−1 + g2k. So only need to incrementally

update the sk sequence, which is cheap

In PyTorch, torch.optim.Adagrad

https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad
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Method 2: RMSprop

Adagrad:

xk+1 = xk − tk
gk√
sk + ε

with sk
.
=

k∑
j=1

g2j .

update equation for sk : sk = sk−1 + g2k

Problems:

– Magnitudes in sk becomes larger when k grows, and hence movements

tk
gk√
sk+ε

become small when k is large.

– Remote history may not be relevant

Solution: RMSprop—gradually phase out the history. For some β ∈ (0, 1)

sk = βsk−1 + (1− β) g2k ⇐⇒ sk = (1− β)
(
g2k + βg2k−1 + β2g2k−2 + . . .

)
Typical values for β: 0.9, 0.99. In PyTorch, torch.optim.RMSprop

https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop
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Method 3: Adam

Combine RMSprop with momentum methods

mk = β1mk−1 + (1− β1) gk (combine momentum and stochastic gradient)

sk = β2sk−1 + (1− β2) g2k (scaling factor update as in RMSprop)

xk+1 = xk − tk
mk√
sk + ε

– Typical parameters: β1 = 0.9, β2 = 0.999, ε= 1e-8.

– Recommended method to use!

– In PyTorch, torch.optim.Adam

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

– Several recent variants: torch.optim.AdamW, torch.optim.SparseAdam,

torch.optim.Adamax
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Thoughts on adaptive LR methods

– adapting the LR or adapting the (stochastic) gradient? Two views of the

same thing (� denotes elementwise product)

xk+1 = xk −
tk√
sk + ε

� gk vs. xk+1 = xk − tk
gk√
sk + ε

– adapting the gradient, familiar? What happens in Newton’s method?

xk+1 = xk − tk diag

(
1√
sk + ε

)
gk vs. xk+1 = xk − tkH−1

k gk.

... approximate the Hessian (inverse) with a diagonal matrix. So adaptive

methods are approximate 2nd order methods, and more faithful

approximation possible.

– Learning rate tk: similar to that for the vanilla SGD, but less sensitive and

can be large
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Diagnosis of LR

Credit: Stanford CS231N

– Low LR always leads to convergence, but takes forever

– Premature flattening is a sign of large LR; premature sloping is a sign of

early stopping—increase the number of epochs!

– Remember the starecase LR schedule!
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Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

Derivatives for early layers tend to be order of magnitude smaller than those for

late layers, i.e., the gradient vanishing/exploring phenomenon

We’ll explore more of this in HW3! See discussion in

http://neuralnetworksanddeeplearning.com/chap5.html
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Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Hypothesis: F has many saddle points and escaping saddle points causes

the difficulty of training [Choromanska et al., 2015, Pascanu et al., 2014,

Dauphin et al., 2014]

– Adaptive methods can escape saddle points efficiently; see, e.g.,

[Staib et al., 2020]

visualization comparison https://imgur.com/a/Hqolp
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Stochastic 2nd order methods

Recall scalable 2nd order methods

– Quasi-Newton methods, esp. L-BFGS

– Trust-region methods

When #samples is large, we also want to use only mini batches to estimate any

quantities of interest

– stochastic quasi-Newton methods: e.g., [Martens and Grosse, 2015]

[Byrd et al., 2016] [Anil et al., 2020]

[Roosta-Khorasani and Mahoney, 2018]

– stochastic trust-region methods: e.g., [Curtis and Shi, 2019],

[Chauhan et al., 2018]

still active area of research. Hardware seems to be the main limiting factor
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Where to initialize? the general picture

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

37 / 50

https://sunju.org/research/nonconvex/


Where to initialize for DNNs?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Are there bad initializations? Consider a simple case

F (W 1,W 2) =
1

m

m∑
i=1

‖yi −W 2σ (W 1xi)‖22

∇W 1F (W 1,W 2) = − 2

m

m∑
i=1

[
W ᵀ

2 (yi −W 2σ (W 1xi))� σ′ (W 1xi)
]
xᵀ
i

* What about W = 0? ∇W 1F = 0—no movement on W 1

* What about very large (small) W ? Large (small) value &

gradient—the problem becomes significant when there are more

layers

– Are there principled ways of initialization?

* random initialization with proper scaling

* orthogonal initialization
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Random initialization

Idea: make all entries in W iid random, and also W i’s and W ᵀ
i ’s “well

behaved”

A reasonable goal: if all entries in v ∈ Rd are independent and have zero

mean, unit variance, the output σ (wᵀv) ∈ R (i.e., output of a single

neuron) has a unit variance.

To seek a specific setting for w ∈ Rd, suppose w is iid with zero mean and σ is

identity. Then:

Var (wᵀv) = Var

(∑
i

wivi

)
=
∑
i

Var (wivi) =
∑
i

Var (wi) Var (vi) = dVar(wi).

To make Var (wᵀv) = 1, we will set Var (wi) = 1/d.

For W i with d inputs, set W i iid zero-mean and 1/d variance
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Random initialization

For W i with din inputs, set W i iid zero-mean and 1/din variance

A similar consideration of W ᵀ
i (due to its role in the gradient) also suggests that

For W i with dout outputs, set W i iid zero-mean and 1/dout-variance

Xavier Initialization: set W i ∈ Rdout×din iid zero-mean and
2

din+dout
-variance. For example:

– W i ∼iid N
(

0, 2
din+dout

)
torch.nn.init.xavier normal

– W i ∼iid uniform
(
−
√

6
din+dout

,
√

6
din+dout

)
torch.nn.init.xavier uniform
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Random initialization

Recall our derivation assumed σ is identity, which may not be accurate.

For ReLU, based on the same assumptions on v and w as before:

E [ReLU (wᵀv)] = 0,

Var (ReLU (wᵀv)) = E
[
ReLU2 (wᵀv)

]
=

1

2
E
[
(wᵀv)2

]
=

1

2
Var (wᵀv) =

1

2
dVar (wi) .

Kaiming Initialization (for ReLU): set W i ∈ Rdout×din iid zero-mean and

2
din

-variance. For example:

– W i ∼iid N
(

0, 2
din

)
torch.nn.init.kaiming normal

– W i ∼iid uniform
(
−
√

6
din
,
√

6
din

)
torch.nn.init.kaiming uniform

But it only accounts for din or dout; a proposed modification: set the variance to

c√
dindout

for some constant c [Defazio and Bottou, 2019]
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Orthogonal initialization

Making all W i’s orthonormal is empirically shown to lead to competitive

performance with fewer tricks (covered next lectures). See Sec 4.2

of [Sun, 2019] torch.nn.init.orthogonal

There is a body of research proposing contraining/regularizing W i’s to be

orthonormal, e.g., [Arjovsky et al., 2016, Bansal et al., 2018,

Lezcano-Casado and Mart́ınez-Rubio, 2019, Li et al., 2020]

See also the modified PyTorch package that allows manifold constraints

https://github.com/mctorch/mctorch
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When to stop in training DNNs?

Recall that a natural stopping criterion for general GD is ‖∇f (w)‖ ≤ ε for a

small ε. Is this good when training DNNs?

– Computing ∇f (w) each iterate is expensive (recall why we moved from

GD to SGD)

– Stochastic gradient is inherently noisy—the norm at a true critical point

may be large

A practical/pragmatic stopping strategy: early stopping

... periodically check the validation error and stop when it doesn’t improve

test test
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Suggested reading

– Sun, Ruoyu. “Optimization for deep learning: theory and

algorithms.” arXiv preprint arXiv:1912.08957 (2019).

– UIUC IE598-ODL Optimization Theory for Deep Learning

https://wiki.illinois.edu/wiki/display/IE598ODLSP19/

IE598-ODL++Optimization+Theory+for+Deep+Learning

– Stanford CS231n course notes: Neural Networks Part 1: Setting up

the Architecture

https://cs231n.github.io/neural-networks-1/

– Stanford CS231n course notes: Neural Networks Part 2: Setting up

the Data and the Loss

https://cs231n.github.io/neural-networks-2/

– Stanford CS231n course notes: Neural Networks Part 3: Learning and

Evaluation https://cs231n.github.io/neural-networks-3/
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