
Training DNNs: Basic Methods

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

March 3, 2020

1 / 50

Supervised learning as function approximation

– Underlying true function: f0

– Training data: {xi,yi} with yi ≈ f0 (xi)

– Choose a family of functions H, so that

∃f ∈ H and f and f0 are close

– Find f , i.e., optimization

min
f∈H

∑
i

` (yi, f (xi)) + Ω (f)

– Approximation capacity: Univeral approximation theorems (UAT)

=⇒ replace H by DNNW , i.e., a deep neural network with weights W

– Optimization:

min
W

∑
i

` (yi,DNNW (xi)) + Ω (W)

– Generalization: how to avoid over-complicated DNNW in view of UAT

2 / 50

Basics of numerical optimization

– 1st and 2nd optimality conditions

– iterative methods

Credit: aria42.com

– gradient descent

– Newton’s method

– momentum methods

– quasi-Newton methods

– coordinate descent

– conjugate gradient methods

– trust-region methods

– etc

3 / 50

Computing derivatives

Credit: [Baydin et al., 2017]

– Analytic differentiation (by hand or by software)

– Finite difference approximation

– Automatic/Algorithmic differentiation (AD)
4 / 50

Ready to optimize DNNs!

4 / 50

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

5 / 50

Set up the problem

DNN activation function

Credit: Stanford CS231N

min
W

∑
i

` (yi,DNNW (xi)) + Ω (W)

– Which activation at the hidden nodes?

– Which activation at the output node?

– Which `?

6 / 50

Which activation at the hidden nodes?

Is the sign (·) activation good for derivative-based optimization?

∇w` (sign (wᵀx) , y) = `′ (sign (wᵀx) , y) sign′ (wᵀx)x = 0

almost everywhere (But why the classic Perceptron algorithm converges?)

Desiderata:

– Differentiable or almost everywhere differentiable

– Nonzero derivatives (almost) everywhere

– Cheap to compute
7 / 50

Sigmoid and hypertangent

σ (x) = 1
1+e−x

– Differentiable? Yes!

– Nonzero derivatives? Yes and No! What happens

for large positive and negative inputs?

– Cheap? exp (·) is relatively expensive

What about tanh?

8 / 50

ReLU and friends

σ (x) = max (0, x)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes and No! What happens

for x < 0?

– Cheap? Yes!

σ (x) = max (αx, x) (e.g., α = 0.01)

– Differentiable? Yes! (almost everywhere)

– Nonzero derivatives? Yes! (almost everywhere)

– Cheap? Yes!

9 / 50

ReLU and friends

– ReLU and Leaky ReLU are the most popular

– tanh less preferred but okay; sigmoid should be avoided

– Question: what do you think of |·| as activation?

10 / 50

Which activation at output node?

DNN

depending on the desired output

– unbounded scalar/vector output (e.g. , regression): identity activation

– binary classification with 0 or 1 output: e.g., sigmoid σ (x) = 1
1+e−x

– multiclass classification: labels into vectors via one-hot encoding

Lk =⇒ [0, . . . , 0,︸ ︷︷ ︸
k−1 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k 0′s

]ᵀ

Softmax activation:

z 7→
[

ez1∑
j e

zj , . . . ,
ezp∑
j e

zj

]ᵀ
.

– discrete probability distribution: softmax

– etc . 11 / 50

Which loss?

Which ` to choose? Make it differentiable, or almost so

– regression: ‖·‖22 (common, torch.nn.MSELoss), ‖·‖1 (for robustness,

torch.nn.L1Loss), etc

– binary classification: encoder the classes as {0, 1}, ‖·‖22 or cross-entropy:

` (y, ŷ) = y log ŷ − (1− y) log(1− ŷ) (min at ŷ = y,

torch.nn.BCELoss)

– multiclass classification based on one-hot encoding and softmax

activation: ‖·‖22 or cross-entropy: ` (y, ŷ) = −
∑
i yi log ŷi (min at

y = ŷ, torch.nn.CrossEntropyLoss)

– multiclass classification label smoothing, assuming m classes: one-hot

encoding makes n− 1 entropies in y 0’s. When yi = 0, the derivative of

yi log ŷi is 0 =⇒ no update due to yi. Remedy: relax ... change

[0, . . . , 0,︸ ︷︷ ︸
k−1 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k 0′s

]ᵀ into [ε, . . . , ε,︸ ︷︷ ︸
k−1 ε′s

, 1− (m− 1)ε, ε, . . . , ε︸ ︷︷ ︸
n−k ε′s

]ᵀ for a small ε

– difference between distributions: Kullback-Leibler divergence loss

(torch.nn.KLDivLoss) or Wasserstein metric

12 / 50

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

13 / 50

Framework of line-search methods

A generic line search algorithm

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: choose a direction dk

3: decide a step size tk

4: make a step: xk = xk−1 + tkdk

5: update counter: k = k + 1

6: end while

Four questions:

– How to choose direction dk?

– How to choose step size tk?

– Where to initialize?

– When to stop?
14 / 50

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

15 / 50

From deterministic to stochastic optimization

Recall our optimization problem:

min
W

1

m

m∑
i=1

` (yi,DNNW (xi)) + Ω (W)

What happens when m is large, i.e., in the “big data” regime?

Blessing: assume (xi,yi)’s are iid, then

1
m

∑m
i=1 ` (yi,DNNW (xi))→ Ex,y` (y,DNNW (x))

by the law of large numbers. Large m ≈ good generalization!

Curse: storage and computation

– storage: the dataset {(xi,y)} typically stored on GPU/TPU for

parallel computing—loading whole datasets into GPU often infeasible

– computation: each iteration costs at least O(mn), where n is

#(opt variables)—both can be large for training DNNs! 16 / 50

From deterministic to stochastic optimization

How to get around the storage and computation bottleneck when m is large?

stochastic optimization (stochastic = random)

Idea: use a small batch of data samples to approximate quantities of interest

– gradient: 1
m

∑m
i=1∇W ` (yi,DNNW (xi))→ Ex,y∇W ` (y,DNNW (x))

approximated by stochastic gradient:

1
|J|
∑
j∈J ∇W `

(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | � m

– Hessian: 1
m

∑m
i=1∇

2
W ` (yi,DNNW (xi))→ Ex,y∇2

W ` (y,DNNW (x))

approximated by stochastic Hessian:

1
|J|
∑
j∈J ∇

2
W `

(
yj ,DNNW (xj)

)
for a random subset J ⊂ {1, . . . ,m}, where |J | � m

... justified by the law of large numbers

17 / 50

Stochastic gradient descent (SGD)

In general (i.e., not only for DNNs), suppose we want to solve

min
w

F (w)
.
=

1

m

m∑
i=1

f (w; ξi) ξi’s are data samples

idea: replace gradient with a stochastic gradient in each step of GD

Stochastic gradient descent (SGD)

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: sample a random subset Jk ⊂ {0, . . . ,m− 1}
3: calculate the stochastic gradient ĝk

.
= 1
|Jk|

∑
j∈Jk

∇wf (w; ξi)

4: decide a step size tk

5: make a step: xk = xk−1 − tkĝk
6: update counter: k = k + 1

7: end while

– Jk is redrawn in each iteration

– Traditional SGD: |Jk| = 1. The version presented is also called mini-batch

gradient descent 18 / 50

What’s an epoch?

– Canonical SGD: sample a random subset Jk ⊂ {1, . . . ,m} each

iteration—sampling with replacement

– Practical SGD: shuffle the training set, and take a consecutive batch of

size B (called batch size) each iteration—sampling without replacement

one pass of the shuffled training set is called one epoch.

Practical stochastic gradient descent (SGD)

Input: init. x0, SC, batch size B, iteration counter k = 1, epoch counter ` = 1

1: while SC not satisfied do

2: permute the index set {0, · · · ,m} and divide it into batches of size B

3: for i ∈ {1, . . . ,#batches} do

4: calculate the stochastic gradient ĝk based on the ith batch

5: decide a step size tk

6: make a step: xk = xk−1 − tkĝk
7: update iteration counter: k = k + 1

8: end for

9: update epoch counter: ` = `+ 1

10: end while 19 / 50

GD vs. SGD

Consider minw ‖y −Xw‖22, where X ∈ R10000×500, y ∈ R10000, w ∈ R500

– By iteration: GD is faster

– By iter(GD)/epoch(SGD): SGD is faster

– Remember, cost of one epoch of SGD ≈ cost of one iteration of GD!

Overall, SGD could be quicker to find a medium-accuracy solution with lower

cost, which suffices for most purposes in machine

learning [Bottou and Bousquet, 2008].
20 / 50

Step size (learning rate) for SGD

Recall the recommended step size rule for GD: back-tracking line search

key idea: F (x− t∇F (x))− F (x) ≈ −ct ‖∇F (x)‖2 for a certain c ∈ (0, 1)

Shall we do it for SGD? No, but why?

– SGD tries to avoid the m factor in computing the full gradient

∇wF (w) = 1
m

∑m
i=1∇wf (w; ξi), i.e., reducing m to B (batch size)

– But computing F (w) = 1
m

∑m
i=1 f (w; ξi) or

F (w − tĝ) = 1
m

∑m
i=1 f (w − tĝ; ξi) brings back the m factor; similarly

for ∇F

– What about computing approximations to the objective values based on

small batches also? Approximation errors for F and ∇F may ruin the

stability of the Taylor criterion

21 / 50

Step size (learning rate, or LR) for SGD

Classical theory for SGD on convex problems requires∑
k

tk =∞,
∑
k

t2k <∞.

Practical implementation: diminishing step size/LR, e.g.,

– 1/t delay: tk = α/(1 + βk), α, β: tunable parameters, k: iteration index

– exponential delay: tk = αe−βk, α, β: tunable parameters, k: iteration

index

– staircase delay: start from t0, divide it by a factor (e.g., 5 or 10) every L

(say, 10) epochs—popular in practice. Some heuristic variants:

– watch the validation error and decrease the LR when it stagnates

– watch the objective and decrease the LR when it stagnates

check out torch.optim.lr scheduler in PyTorch! https:

//pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

22 / 50

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

Beyond the vanilla SGD

– Momentum/acceleration methods

– SGD with adaptive learning rates

– Stochastic 2nd order methods

23 / 50

Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

24 / 50

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change

velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 25 / 50

Nesterov’s accelerated gradient methods

due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

SGD with momentum/acceleration: replace the gradient term ∇f by the

stochastic gradient ĝ based on small batches

check out torch.optim.SGD at (their convention slightly differs from here)

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD 26 / 50

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD

Why SGD with adaptive learning rate?

Recall the struggle of GD on elongated functions, e.g., f (x1, x2) = x21 + 4x22

– (Quasi-)Newton’s method: take the full curvature info, but expensive

– Momentum methods: use historic direction(s) to cancel out wiggles

Another heuristic remedy: balance out movements in all coordinate directions.

Suppose g is the (stochastic) gradient, for all i,

divide gi by historic gradient magnitudes in the ith coordinate

Benefit: coordinate directions always with small (large) derivatives get sped up

(slowed down). Think of the above f (x1, x2) example!

27 / 50

Method 1: Adagrad

divide gi by historic gradient magnitudes in the ith coordinate

At the (k + 1)th iteration, for all i,

xi,k+1 = xi,k − tk
gi,k√∑k

j=1 g
2
i,j + ε

or in elementwise notation

xk+1 = xk − tk
gk√∑k

j=1 g
2
j + ε

Write sk
.
=
∑k
j=1 g

2
j . Note that sk = sk−1 + g2k. So only need to incrementally

update the sk sequence, which is cheap

In PyTorch, torch.optim.Adagrad

https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad

28 / 50

https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad

Method 2: RMSprop

Adagrad:

xk+1 = xk − tk
gk√
sk + ε

with sk
.
=

k∑
j=1

g2j .

update equation for sk : sk = sk−1 + g2k

Problems:

– Magnitudes in sk becomes larger when k grows, and hence movements

tk
gk√
sk+ε

become small when k is large.

– Remote history may not be relevant

Solution: RMSprop—gradually phase out the history. For some β ∈ (0, 1)

sk = βsk−1 + (1− β) g2k ⇐⇒ sk = (1− β)
(
g2k + βg2k−1 + β2g2k−2 + . . .

)
Typical values for β: 0.9, 0.99. In PyTorch, torch.optim.RMSprop

https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop

29 / 50

https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop

Method 3: Adam

Combine RMSprop with momentum methods

mk = β1mk−1 + (1− β1) gk (combine momentum and stochastic gradient)

sk = β2sk−1 + (1− β2) g2k (scaling factor update as in RMSprop)

xk+1 = xk − tk
mk√
sk + ε

– Typical parameters: β1 = 0.9, β2 = 0.999, ε= 1e-8.

– Recommended method to use!

– In PyTorch, torch.optim.Adam

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

– Several recent variants: torch.optim.AdamW, torch.optim.SparseAdam,

torch.optim.Adamax

30 / 50

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Thoughts on adaptive LR methods

– adapting the LR or adapting the (stochastic) gradient? Two views of the

same thing (� denotes elementwise product)

xk+1 = xk −
tk√
sk + ε

� gk vs. xk+1 = xk − tk
gk√
sk + ε

– adapting the gradient, familiar? What happens in Newton’s method?

xk+1 = xk − tk diag

(
1√
sk + ε

)
gk vs. xk+1 = xk − tkH−1

k gk.

... approximate the Hessian (inverse) with a diagonal matrix. So adaptive

methods are approximate 2nd order methods, and more faithful

approximation possible.

– Learning rate tk: similar to that for the vanilla SGD, but less sensitive and

can be large

31 / 50

Diagnosis of LR

Credit: Stanford CS231N

– Low LR always leads to convergence, but takes forever

– Premature flattening is a sign of large LR; premature sloping is a sign of

early stopping—increase the number of epochs!

– Remember the starecase LR schedule!

32 / 50

Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

Derivatives for early layers tend to be order of magnitude smaller than those for

late layers, i.e., the gradient vanishing/exploring phenomenon

We’ll explore more of this in HW3! See discussion in

http://neuralnetworksanddeeplearning.com/chap5.html
33 / 50

http://neuralnetworksanddeeplearning.com/chap5.html

Why adaptive methods relevant for DL?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Hypothesis: F has many saddle points and escaping saddle points causes

the difficulty of training [Choromanska et al., 2015, Pascanu et al., 2014,

Dauphin et al., 2014]

– Adaptive methods can escape saddle points efficiently; see, e.g.,

[Staib et al., 2020]

visualization comparison https://imgur.com/a/Hqolp

34 / 50

https://imgur.com/a/Hqolp

Stochastic 2nd order methods

Recall scalable 2nd order methods

– Quasi-Newton methods, esp. L-BFGS

– Trust-region methods

When #samples is large, we also want to use only mini batches to estimate any

quantities of interest

– stochastic quasi-Newton methods: e.g., [Martens and Grosse, 2015]

[Byrd et al., 2016] [Anil et al., 2020]

[Roosta-Khorasani and Mahoney, 2018]

– stochastic trust-region methods: e.g., [Curtis and Shi, 2019],

[Chauhan et al., 2018]

still active area of research. Hardware seems to be the main limiting factor

35 / 50

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

36 / 50

Where to initialize? the general picture

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

37 / 50

https://sunju.org/research/nonconvex/

Where to initialize for DNNs?

F (W 1, . . . ,W k) = 1
m

∑m
i=1 ` (yi, σ (W kσ(W k−1 . . . (W 1xi))))

– Are there bad initializations? Consider a simple case

F (W 1,W 2) =
1

m

m∑
i=1

‖yi −W 2σ (W 1xi)‖22

∇W 1F (W 1,W 2) = − 2

m

m∑
i=1

[
W ᵀ

2 (yi −W 2σ (W 1xi))� σ′ (W 1xi)
]
xᵀ
i

* What about W = 0? ∇W 1F = 0—no movement on W 1

* What about very large (small) W ? Large (small) value &

gradient—the problem becomes significant when there are more

layers

– Are there principled ways of initialization?

* random initialization with proper scaling

* orthogonal initialization

38 / 50

Random initialization

Idea: make all entries in W iid random, and also W i’s and W ᵀ
i ’s “well

behaved”

A reasonable goal: if all entries in v ∈ Rd are independent and have zero

mean, unit variance, the output σ (wᵀv) ∈ R (i.e., output of a single

neuron) has a unit variance.

To seek a specific setting for w ∈ Rd, suppose w is iid with zero mean and σ is

identity. Then:

Var (wᵀv) = Var

(∑
i

wivi

)
=
∑
i

Var (wivi) =
∑
i

Var (wi) Var (vi) = dVar(wi).

To make Var (wᵀv) = 1, we will set Var (wi) = 1/d.

For W i with d inputs, set W i iid zero-mean and 1/d variance

39 / 50

Random initialization

For W i with din inputs, set W i iid zero-mean and 1/din variance

A similar consideration of W ᵀ
i (due to its role in the gradient) also suggests that

For W i with dout outputs, set W i iid zero-mean and 1/dout-variance

Xavier Initialization: set W i ∈ Rdout×din iid zero-mean and
2

din+dout
-variance. For example:

– W i ∼iid N
(

0, 2
din+dout

)
torch.nn.init.xavier normal

– W i ∼iid uniform
(
−
√

6
din+dout

,
√

6
din+dout

)
torch.nn.init.xavier uniform

40 / 50

Random initialization

Recall our derivation assumed σ is identity, which may not be accurate.

For ReLU, based on the same assumptions on v and w as before:

E [ReLU (wᵀv)] = 0,

Var (ReLU (wᵀv)) = E
[
ReLU2 (wᵀv)

]
=

1

2
E
[
(wᵀv)2

]
=

1

2
Var (wᵀv) =

1

2
dVar (wi) .

Kaiming Initialization (for ReLU): set W i ∈ Rdout×din iid zero-mean and

2
din

-variance. For example:

– W i ∼iid N
(

0, 2
din

)
torch.nn.init.kaiming normal

– W i ∼iid uniform
(
−
√

6
din
,
√

6
din

)
torch.nn.init.kaiming uniform

But it only accounts for din or dout; a proposed modification: set the variance to

c√
dindout

for some constant c [Defazio and Bottou, 2019]

41 / 50

Orthogonal initialization

Making all W i’s orthonormal is empirically shown to lead to competitive

performance with fewer tricks (covered next lectures). See Sec 4.2

of [Sun, 2019] torch.nn.init.orthogonal

There is a body of research proposing contraining/regularizing W i’s to be

orthonormal, e.g., [Arjovsky et al., 2016, Bansal et al., 2018,

Lezcano-Casado and Mart́ınez-Rubio, 2019, Li et al., 2020]

See also the modified PyTorch package that allows manifold constraints

https://github.com/mctorch/mctorch

42 / 50

https://github.com/mctorch/mctorch

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

43 / 50

When to stop in training DNNs?

Recall that a natural stopping criterion for general GD is ‖∇f (w)‖ ≤ ε for a

small ε. Is this good when training DNNs?

– Computing ∇f (w) each iterate is expensive (recall why we moved from

GD to SGD)

– Stochastic gradient is inherently noisy—the norm at a true critical point

may be large

A practical/pragmatic stopping strategy: early stopping

... periodically check the validation error and stop when it doesn’t improve

test test
44 / 50

Outline

Three design choices

Training algorithms

Which method

Where to start

When to stop

Suggested reading

45 / 50

Suggested reading

– Sun, Ruoyu. “Optimization for deep learning: theory and

algorithms.” arXiv preprint arXiv:1912.08957 (2019).

– UIUC IE598-ODL Optimization Theory for Deep Learning

https://wiki.illinois.edu/wiki/display/IE598ODLSP19/

IE598-ODL++Optimization+Theory+for+Deep+Learning

– Stanford CS231n course notes: Neural Networks Part 1: Setting up

the Architecture

https://cs231n.github.io/neural-networks-1/

– Stanford CS231n course notes: Neural Networks Part 2: Setting up

the Data and the Loss

https://cs231n.github.io/neural-networks-2/

– Stanford CS231n course notes: Neural Networks Part 3: Learning and

Evaluation https://cs231n.github.io/neural-networks-3/

46 / 50

https://wiki.illinois.edu/wiki/display/IE598ODLSP19/IE598-ODL++Optimization+Theory+for+Deep+Learning
https://wiki.illinois.edu/wiki/display/IE598ODLSP19/IE598-ODL++Optimization+Theory+for+Deep+Learning
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-2/
https://cs231n.github.io/neural-networks-3/

References i

[Anil et al., 2020] Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y. (2020).

Second order optimization made practical. arXiv:2002.09018.

[Arjovsky et al., 2016] Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary

evolution recurrent neural networks. In International Conference on Machine

Learning, pages 1120–1128.

[Bansal et al., 2018] Bansal, N., Chen, X., and Wang, Z. (2018). Can we gain more

from orthogonality regularizations in training deep cnns? In Proceedings of the

32nd International Conference on Neural Information Processing Systems, pages

4266–4276. Curran Associates Inc.

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,

J. M. (2017). Automatic differentiation in machine learning: a survey. The

Journal of Machine Learning Research, 18(1):5595–5637.

[Bottou and Bousquet, 2008] Bottou, L. and Bousquet, O. (2008). The tradeoffs of

large scale learning. In Advances in neural information processing systems, pages

161–168.

47 / 50

References ii

[Byrd et al., 2016] Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. (2016). A

stochastic quasi-newton method for large-scale optimization. SIAM Journal on

Optimization, 26(2):1008–1031.

[Chauhan et al., 2018] Chauhan, V. K., Sharma, A., and Dahiya, K. (2018).

Stochastic trust region inexact newton method for large-scale machine learning.

arXiv:1812.10426.

[Choromanska et al., 2015] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,

and LeCun, Y. (2015). The loss surfaces of multilayer networks. In Artificial

intelligence and statistics, pages 192–204.

[Curtis and Shi, 2019] Curtis, F. E. and Shi, R. (2019). A fully stochastic

second-order trust region method. arXiv:1911.06920.

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli,

S., and Bengio, Y. (2014). Identifying and attacking the saddle point problem in

high-dimensional non-convex optimization. In Advances in neural information

processing systems, pages 2933–2941.

48 / 50

References iii

[Defazio and Bottou, 2019] Defazio, A. and Bottou, L. (2019). Scaling laws for the

principled design, initialization and preconditioning of relu networks.

arXiv:1906.04267.

[Lezcano-Casado and Mart́ınez-Rubio, 2019] Lezcano-Casado, M. and

Mart́ınez-Rubio, D. (2019). Cheap orthogonal constraints in neural networks: A

simple parametrization of the orthogonal and unitary group. arXiv1901.08428.

[Li et al., 2020] Li, J., Fuxin, L., and Todorovic, S. (2020). Efficient riemannian

optimization on the stiefel manifold via the cayley transform. arXiv:2002.01113.

[Martens and Grosse, 2015] Martens, J. and Grosse, R. (2015). Optimizing neural

networks with kronecker-factored approximate curvature. In International

conference on machine learning, pages 2408–2417.

[Pascanu et al., 2014] Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y.

(2014). On the saddle point problem for non-convex optimization. arXiv preprint

arXiv:1405.4604.

[Roosta-Khorasani and Mahoney, 2018] Roosta-Khorasani, F. and Mahoney, M. W.

(2018). Sub-sampled newton methods. Mathematical Programming,

174(1-2):293–326.

49 / 50

References iv

[Staib et al., 2020] Staib, M., Reddi, S. J., Kale, S., Kumar, S., and Sra, S. (2020).

Escaping saddle points with adaptive gradient methods. arXiv:1901.09149.

[Sun, 2019] Sun, R. (2019). Optimization for deep learning: theory and algorithms.

arXiv:1912.08957.

50 / 50

	Three design choices
	Training algorithms
	Which method
	Where to start
	When to stop

	Suggested reading

