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Derivatives for numerical optimization

Credit: aria42.com

— gradient descent
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Derivatives for numerical optimization

Credit: aria42.com

gradient descent

Newton's method
momentum methods
quasi-Newton methods
coordinate descent
conjugate gradient methods
trust-region methods

etc

— Almost all methods require low-order derivatives, i.e., gradient and/or

Hessian, to proceed.

— Numerical derivatives (i.e., numbers), rather than analytic derivatives (i.e.,

math expressions), are needed

This lecture: how to compute the numerical derivatives
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Four kinds of computing techniques

F(x) = 1282(1 — 2)(~8 + 162)(1 — 2)2(1 —
82+ 822) +64(1 — ) (1 — 22)2(1 — 82+ 82?)2 —
Manual { 64x(1 —22)%(1 — 8z + 8 2562(1 —z)(1 —
Differentiation { 21)(1— 8z +82%)*

L=
Lot = 4lu(1 = 1)

f(x) = ls = 64a(1—2)(1—22)*(1 -8z +8x

Coding Coding
v
£ £ 00
v=x return 128%x*(1 - x)*(-8 + 16*x)
fori=1to3 *((1 - 2%x) "2) % (1 - 8xx + B*x*x)
v = arve(l-v) + 645 (1~ 0)*((1 - 240)"2) % ((1
return v - 8y + Baxx)"2) - (B4xxx(1 -
— — 2%x) "2)* (1 - 8*x + B*x*x)"2 -
or, in closed-form, Symbolic 256%x% (1 ~ 0)*(1 - 26x) % (1 - B4x
Differentiation P e,
£00: of the Closed-form
Teturn 4%k (1) * ((1-2#1)"2) £ (x0) = ['(x0)
*(1-8*x+8*x*x) "2 Exact

Automatic

Differentiation ifferentiation

v
£2(x):
(v,dv) = (x,1) £2(x):
fori=1to3 h = 0.000001
(v,dv) = (4xv*(1-v), 4xdv-8*vxdv) return (f(x+h) - £(x)) /h

return (v,dv)

Credit: [Baydin et al., 2017] 3 / 36



Analytic differentiation
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Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution
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Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by hand:

— Chain rule (vector version) method
Let f:R™ — R™ and h: R™ — R*, and f is differentiable at & and
y = f(x) and h is differentiable at 3. Then, ho f: R™ — R* is
differentiable at @, and
Jinog) (®) = In (f () T (z) .
When k£ =1,
Vho fl(x) = J; () Vh(f ().
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Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution
To derive the analytic derivatives by hand:

— Chain rule (vector version) method
Let f:R™ — R™ and h: R™ — R*, and f is differentiable at & and
y = f(x) and h is differentiable at 3. Then, ho f: R™ — R* is
differentiable at @, and
Jinog) (®) = In (f () T (z) .
When k£ =1,

Viho fl(x)=J; () Vh(f ().
— Taylor expansion method

Expand the perturbed function f (z + d) and then match it against Taylor
expansions to read off the gradient and/or Hessian:

f@®+6)~[(x)+ (V[(x).d

, R L
fle+d)~f(x)+ (Vf(x),d +§‘0AV f(x)d 5 /36



Derive chain rule by Taylor expansion (optional)

Start with h (f (& + d)), where J is always sufficiently small as we want
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Derive chain rule by Taylor expansion (optional)

Start with h (f (& + d)), where J is always sufficiently small as we want

h(f(x+8))=h (f () +J;y (93)5+0(52))

perturbation
=h(f (@) +Jn(f (@) [Tf () +o([6]l,)] +
o(Jy(x)d+0(]d]5))
o(l13ll)
=h(f (@) +Jn(f (@) I s (2)d+0(]|d]3),

linear term
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Derive chain rule by Taylor expansion (optional)

Start with h (f (& + d)), where J is always sufficiently small as we want

h(f(x+8))=h (f () +J;y (93)5+0(52))

perturbation
=h(f (@) +Jn(f (@) [Tf () +o([6]l,)] +
o(Jy(x)d+0(]d]5))
o(l13ll)
=h(f (@) +Jn(f (@) I s (2)d+0(]|d]3),

linear term

So,

Jhof(m) =Jy (f (CB)) Jf (w) :
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Taylor expansion method, again

Derive gradient of a three-layer linear neural network

min _ f (W1, Wa, Ws) = |ly, - WsWoWiai||%

Wi, Wo, W3
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We can derive the partial gradients wrt W;'s separately. ( )
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Taylor expansion method, again

Derive gradient of a three-layer linear neural network

min - f (W1, W2, W3) =) |ly, - WsWo Wi}

Wi, Wy, Wy

We can derive the partial gradients wrt W;'s separately. (\Why?)

For example, for Wy,
f (VVH7 Wy + A Wg)
= ZHZJZ Wi (W + A) Waia|3,

= Z [(y; = WsWoWizi) - W3AW ||},
= > llyi = WaWoWiai||7 - 2(y, - WaWo Wiz, W AW z:) + O(| A7)
=S W

—23 (Wi (y; = WeWa W) (Waz)T, &) + 0 (A7)
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Taylor expansion method, again

Derive gradient of a three-layer linear neural network

. B ) .
o F (WL W, W) =3y, — WeWe W

We can derive the partial gradients wrt W;'s separately. (\Why?)

For example, for Wy,
f (VVH7 Wy + A Wg)
= ZHZJZ Wi (W + A) Waia|3,

_ Z I(y; — WsW2Wiz:) - W AW ai]|%
_ Z ly; — W3W2W1mi”§ —2(y; — W3sWWix;, W3 AW x;) + O(HA||2F)
- Z ly; — WsWoW i[5

~ P Z (WI(y, — WsW.Wiz,) (Wiz:)",A) + O (|Al7)

SOI szf = -2 Z[ W;; (yz — W;;Wnga:i) (Wlmi)T. 7/36



Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

Differentiate Function
Find the derivative of the function sin (x"2)
syms £(x)

£(x) = sin(x"2);
df = diff(f,x)

Find the value of the derivative at x = 2. Convert the value to double.

df2 = df(2)

8/36



Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

Differentiate Function

Find the derivative of the function six (x"2)

£(x) = sin(x"2);
df = diff(f,x)

Find the value of the derivative at x = 2. Convert the value to double.
df2 = df(2)

af2 =

4¥cos (4)

— Matlab (Symbolic Math Toolbox, diff)
— Python (SymPy, diff)

— Mathmatica (D)
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Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

Differentiate Function

Find the derivative of the function six (x"2)
syms £ (x)
£(x) = sin(x"2);

df = diff(f,x)

Find the value of the derivative at x = 2. Convert the value to double.
df2 = df(2)

af2 =

4¥cos (4)

— Matlab (Symbolic Math Toolbox, diff)
— Python (SymPy, diff)

— Mathmatica (D)

Effective for functions with few variables only
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Finite-difference approximation
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Limitation of analytic differentiation

input layer
hidden layer 1 hidden layer 2
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Limitation of analytic differentiation

input layer
hidden layer 1 hidden layer 2

What is the gradient and/or Hessian of
W)= llyi =0 (Wio (Wi_ro... (Waiz:)) |37
i

Applying the chain rule is boring and -prone. Performing Taylor
expansion is also tedious
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Limitation of analytic differentiation

input layer
hidden layer 1 hidden layer 2

What is the gradient and/or Hessian of
W)= llyi =0 (Wio (Wi_ro... (Waiz:)) |37
i

Applying the chain rule is boring and -prone. Performing Taylor
expansion is also tedious

Lesson we learn from technology history: leave boring jobs to
computers
10/36



Approximate the gradient

oo Backward differencing approximation
e—e Forward differencing approximation
oo Central differencing approximation

(Credit: numex-blog.com)

f' (x) = lims_o 7f<z+6§7f(1>
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Approximate the gradient

6 For f(z) : R" — R,
- of _ [(x+dei) - f(x)
s / oz, 5 (forward)
’ f Of . [(x)~f(x—de:)
' T O 5 (backward)
F x Xih 8f ~ f (2B + 661) — f (m — 66,) (Central)
(Credit: numex-blog.com) ax’i 20

J' () = Timg o LEED=1)
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Approximate the gradient

For f(x) : R" — R,
of _ f(z+dei) — f(x)

2, pra 5 (forward)
2 of  f(@) —f(z—de)
' : : ; 0z, 5 (backward)
= : h ﬁ ~ f(x+de;) — f(x—de;) (central)
(Credit: numex-blog.com) ax’i 20
F' (@) = lims L LF0)=1@)
Similarly, to approximate the Jacobian for f () : R™ — R™:
% ~ fi(@+de) = f; (@) (one element each time)
oz; 1)
oF ~ f(@+de) = /(@) (one column each time)
Ox; )
Jp~ [+ 51;) — /(@) (directional)
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Approximate the gradient

For f(x) : R" — R,
of . [(z+dei)—[(=z)

2, pra 5 (forward)
2 of  f(@) —f(z—de)
' : : ; 0z, 5 (backward)
= : h ﬁ ~ f(x+de;) — f(x—de;) (central)
(Credit: numex-blog.com) ax’i 20
F' (@) = lims L LF0)=1@)
Similarly, to approximate the Jacobian for f () : R™ — R™:
% ~ fi(@+de) = f; (@) (one element each time)
oz; 1)
oF ~ f(@+de) = /(@) (one column each time)
Ox; )
Jp~ [+ 51;) — /(@) (directional)

central themes can also be derived 11/36



Why central?

Stronger form of Taylor’'s theorems

— 1st order: If f(x): R" — R is twice continuously differentiable,
fl®+6)=f(2)+(Vf(x),8)+

— 2nd order: If f(x): R™ — R is three-times continuously differentiable,
f@+06)=f(x)+(Vf(z),8)+3(8Vf(x)d)+
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Why central?

Stronger form of Taylor’'s theorems

— 1st order: If f(x): R" — R is twice continuously differentiable,
fl@+0)=f(x)+(Vf(x),8)+0 ()

— 2nd order: If f(x): R™ — R is three-times continuously differentiable,
F@+08)=f(z)+(Vf(2),8)+5(8Vf(x)8)+0(|d])

Why the central theme is better?

— Forward: by lst-order Taylor expansion
L(f (@+de) = f (@) = (624 +0(6%)) = 2L + 0(9)
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Why central?

Stronger form of Taylor’'s theorems

— 1st order: If f(x): R" — R is twice continuously differentiable,
fl@+0)=f(x)+(Vf(x),8)+0 ()

— 2nd order: If f(x): R™ — R is three-times continuously differentiable,
F@+08)=f(z)+(Vf(2),8)+5(8Vf(x)8)+0(|d])

Why the central theme is better?

— Forward: by lst-order Taylor expansion

L(f @+ de) — [ (@) =} (525 +0(69) = &£ +00)

— Central: by 2nd- order Taylor expan5|on 1 (f( dei) — f (x —de;)) =
O

3 +
)) =2L +0(5”)

1 aof 1 28 Bf 1 25
25 (62 + 30 o8l - 18204
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Approximate the Hessian

— Recall that for f (z) : R™ — R that is 2nd-order differentiable,

2L (x) :R" - R. So

af? 9 [of N (%) (z +de;) — (aagfi) (2)
az,01; -~ Bz, (Br) (@) ~ 5
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https://www.manopt.org/

Approximate the Hessian

— Recall that for f (z) : R™ — R that is 2nd-order differentiable,

2L (x) :R" - R. So

az,01; -~ Bz, (Br) (@) ~ 5

— We can also compute one row of Hessian each time by

8 (of (8 (@ +0ey) - (52) (=)
dz; (@) () ~ =2 5 ” )

obtaining H, which might not be symmetric. Return % <ﬁ + f—I\T> instead

- Most times (e.g., in TRM, Newton-CG), only V*f (x) v for certain v's
needed: (see, e.g., Manopt https://www.manopt.org/)

13/36


https://www.manopt.org/

— Can be used for sanity check for correctness of analytic gradient
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https://www.manopt.org/tutorial.html#costdescription

— Can be used for sanity check for correctness of analytic gradient

— Finite-difference approximation of higher (i.e., > 2)-order derivatives
combined with high-order iterative methods can be very efficient
(e.g., Manopt
https://www.manopt.org/tutorial .html#costdescription)
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https://www.manopt.org/tutorial.html#costdescription

— Can be used for sanity check for correctness of analytic gradient

— Finite-difference approximation of higher (i.e., > 2)-order derivatives
combined with high-order iterative methods can be very efficient
(e.g., Manopt
https://www.manopt.org/tutorial .html#costdescription)

— Numerical stability can be an issue: truncation and round off s (finite
d; accurate evaluation of the nominators)
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https://www.manopt.org/tutorial.html#costdescription

Automatic differentiation
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Four kinds of computing techniques

= 1282(1 — z)(=8 + 16z)(1 — 22)*(1 —

L=z
Lt = 41y (1= 1) 82+822) +64(1 - z) (1 - 22)2(1 — 8z +82%)% —
Manual { 64x(1 —2)2(1 — 8z +822)% — 2562(1 —x)(1 —
f(@) = s = 6z(1-2)(1 Differentiation 22)(1 - 8z + 82%)2
Coding Coding
£(x) £2(x):
ve=x return 128xxx (1 - )# (-8 + 16+x)
fori=1to3 *((1 - 2%x)"2)*(1 - 8#x + 8*x*x)
v = arux(1-v) +62x(1 - 0)*((1 - 2400 °2)# (A
return v - 8xx + Brxxx)"2) - (B4xxx (1 -
— 2%x)"2)*(1 - 8*x + 8+x*x)"2 -
or, in closed-form, Symbalic 2564k (1 - 0)* (1 - 260 % (1 - Brx
Differentiation + Baxrx) 2
£60: of the Closed-form|
return 64*x* (1-x)*((1-2%x)"2)
*(1-8#x+8%x*x) "2
Automatic Numerical
Differentiation Diffex
£ 00
h =0.000001
(v,dv) = (4xvx(1-v) , Axdv-8vxdv) return (£(x +h) - £(x)) /b
return (v,dv)
E: . ppr te

Credit: [Baydin et al., 2017]
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ur kinds of computing techniques

[ () = 1282(1

lapr = 4lu(1 = 1) ( 8z+82%)+64(1
Manual 64z (1 —22)(1

fla) = ls = 642(1 - 2) (1~ 20)*(1 - 8z +82%)* Differentiation 27)(1 — 8z + 82%)?

Coding Coding
£ G
ve=x return 128xxx (1 - )# (-8 + 16+x)
fori=1to3 *((1 - 2%x)"2)*(1 - 8#x + 8*x*x)
v = arux(1-v) +62x(1 - 0)*((1 - 2400 °2)# (A
return v - 8xx + Brxxx)"2) - (B4xxx (1 -

2%x)"2)* (1 - Bxx + Brxax) "2 -
256%0k (1 - x)* (1 - 2#x) * (1 - 8xx
+8axxx) "2

Symbolic
Differentiation
of the Closed-form|

or, in closed-form,

£00:
return 64kcx (1-x) *((1-2+x)"2)
*(1-BHx+Brx0kx) "2 Exac

Automatic

Differentiation
£
h = 0.000001
(v,dv) = (4%v*(1-v), 4xdv-8avedv) return (£(x +h) - £(x)) /h

return (v,dv)

Credit: [Baydin et al., 2017]

Misnomer: should be automatic numerical differentiation
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Forward mode in 1D

Consider a univariate function fro fr—10---0 fao f1 (z) : R — R. Write yo = z,
1= f1(x), y2=f2(y1), ..., ys = f (yx—1), or in computational graph form:

. J1 . J2 . I3
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Forward mode in 1D

Consider a univariate function fro fy_10---0 fa0 f1 (z) : R — R. Write yo = =z,
yi=f1(x), y2=f2(1), ..., yr = f (yx—1), or in computational graph form:

== =)
. ) ﬁiﬁi dyk dyk,1 @ dﬂ
Chain rule: dr ~ dyo (dykq (dykfz < (dyl (d%)))))
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Forward mode in 1D

Consider a univariate function fro fy_10---0 fa0 f1 (z) : R — R. Write yo = =z,
yi=f1(x), y2=f2(1), ..., yr = f (yx—1), or in computational graph form:

== =)
. oodf df dyr dyk—1 dys [ din
Chain rule: dr  dy (dykq (dykfz < (dT/l (%)))))

Compute %‘1 in one pass, from inner to outer most parenthesis:
0
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Forward mode in 1D

Consider a univariate function fi o fy_10---0 fao fi (z) : R — R. Write yo = ,
y1=f1(z), y2=f2(¥1), .-, Y& = [ (Yyr—1), or in computational graph form:

cwain e 57 = 2= (2 (et (- (e (3)))))

Compute Z—f‘ in one pass, from inner to outer most parenthesis:
T |z

T . d
Input: (), initialization d?/() ’ =1
Y0 |z
fori =1,...,kdo
compute y; = f; (yi—1)
dy, dy; dy; 1 ’ dvi—1
compute -t = Ty ) =fi(wi-1) =3
Y0 lzq Vi1, LI PN Y0 lag
end for
Output: Yk
PUE Ty (4
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Reverse mode in 1D

Consider a univariate function fro fr—10---0 fao f1 (z) : R — R. Write yo = z,
1= f1(x), y2=f2(y1), ..., ys = f (yx—1), or in computational graph form:

S J2 fs Ik
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Reverse mode in 1D

Consider a univariate function fro fr—10---0 fao f1 (z) : R — R. Write yo = z,
yi=fi(x), y2=f2(y1), ..., y» = f (yx—1), or in computational graph form:

=== =)
rule: YA dy '\ dyr—1 dys\ dys
Chain rule: dz ~ dyo (<(((dyk71) dyk%) ) dzn) dy0>
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Reverse mode in 1D

Consider a univariate function fro fr—10---0 fao f1 (z) : R — R. Write yo = z,
yi=fi(x), y2=f2(y1), ..., y» = f (yx—1), or in computational graph form:

=== =)
rule: YA dy '\ dyr—1 dys\ dys
Chain rule: dz ~ dyo (<(((dyk71) dyk%) ) dzn) dy0>

Compute

1 : : .
%’zo in two passes, from inner to outer most parenthesis for the 2nd:
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Reverse mode in 1D

Consider a univariate function fyo fr_10---0 foo fi (z) : R — R. Write yo = =,
1= f1(x), y2=f2(y1), ..., ys = f (yx—1), or in computational graph form:

=== =)
rule: YA dy '\ dyr—1 dys\ dys
Chain rule: dz ~ dyo (<(((dyk71) dyk%) ) dzn) dy0>

i . . .
Compute %’TO in two passes, from inner to outer most parenthesis for the 2nd:
Input: xq, % =1

for i = 1,,.'.,kdo

compute y; = f; (y7,—l)
end for // forward pass

fori=k—1,k—2,...,0do
Ay Ay dyi41 e Ay
compute ay; v, = Tyiga © dy, = f7j+1 (vi) m
Yi Yit1 Y Yit1
end for // backward pass
Output: ZA
Y0 lag

18/36



‘I' J1 ill' I2 ‘I,idﬁ ""gﬁqtlb
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Forward vs reverse modes

. J1 . I2 . fs fk.

— forward mode AD: one forward pass, compute the intermediate variable
and derivative values together

— reverse mode AD: one forward pass to compute the intermediate variable
values, one backward pass to compute the intermediate derivatives
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. J1 . I2 . fs fk.

— forward mode AD: one forward pass, compute the intermediate variable
and derivative values together

— reverse mode AD: one forward pass to compute the intermediate variable
values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

£ (R (2 @)
dr ~ dyo dyr—1 \dyk—2 \' "\ dy1 \ dyo

dyo  dy dy2 dyp
dyo dyo dyo dyo

£ () %)) %) )
dr  dyo dys—1) dyx—2) ") dy1 ) dyo
dyk dyk _ dyk e dyk

dyr  dyk—1  dyk-—o dyo
...mixed forward and reverse modes are indeed possible!

i.e., starting from the root:

i.e., starting from the leaf:




. J1 . I2 . fs fk.

— forward mode AD: one forward pass, compute the intermediate variable
and derivative values together

— reverse mode AD: one forward pass to compute the intermediate variable
values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

£ (R (2 @)
dr ~ dyo dyr—1 \dyk—2 \' "\ dy1 \ dyo

dyo  dy dy2 dyp
dyo dyo dyo dyo

£-£-((@)E)) D))
dr  dyo dyp—1 ) dyk—2) ") dy1 ) dyo

dyr dy . dys, H...dek
dyr  dyr—1 dyg—2 dyo

i.e., starting from the root:

i.e., starting from the leaf:
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. J1 . I2 . fs fk.

— forward mode AD: one forward pass, compute the intermediate variable
and derivative values together

— reverse mode AD: one forward pass to compute the intermediate variable
values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

£ (R (2 @)
dr ~ dyo dyr—1 \dyk—2 \' "\ dy1 \ dyo

dyo  dy dy2 dyp
dyo dyo dyo dyo

£ () %)) %) )
dr  dyo dys—1) dyx—2) ") dy1 ) dyo
dyk dyk _ dyk e dyk

dyr  dyk—1  dyk-—o dyo
...mixed forward and reverse modes are indeed possible!

i.e., starting from the root:

i.e., starting from the leaf:
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Chain rule in computational graphs

Chain rule  Let f:R™ — R™ and h: R™ — R*, and f is differentiable at x
and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

Ties) (@) = T (f (@) T (@), or 22 = Zayi o, Vi
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Chain rule in computational graphs

Chain rule  Let f:R™ — R™ and h: R™ — R*, and f is differentiable at x
and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

m

_ 0z _ N~ 02 0ye ), o
J[hof] (:E) - J}L (f (:E)) Jf (m)' or 8$L - Z Byg 0$L V’L,j

=1
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Chain rule in computational graphs

Chain rule  Let f:R™ — R™ and h: R™ — R*, and f is differentiable at x
and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

_ 0zj _N~02 0y, .
J[hof] (:E) - J}L (f (:E)) Jf (m)' or 80@ - iz::l 6yé 0$L v %,

— Each node is a variable, as a function of
all incoming variables

NB: this is a computational graph, not a NN
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Chain rule in computational graphs

Chain rule  Let f:R™ — R™ and h: R™ — R*, and f is differentiable at x
and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

_ 025 _ 0% Oye i
J[hof] (:E) - J}L (f (:E)) Jf (m)' or 80@ - Z 6yé 0$L V’L,j

=1

— Each node is a variable, as a function of
all incoming variables

— If node B a descent of node A, %2 is the
rate of change in B wrt change in A

NB: this is a computational graph, not a NN
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Chain rule in computational graphs

Chain rule  Let f:R™ — R™ and h: R™ — R*, and f is differentiable at x
and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

_ 025 _ 0% Oye i
J[hof] (:E) - J}L (.f (:E)) Jf (m)* or 8$L - ; 8yz (‘?an v %,

— Each node is a variable, as a function of
all incoming variables

— If node B a descent of node A, g—i is the
rate of change in B wrt change in A

— Traveling along a path, rates of changes
should be multiplied

NB: this is a computational graph, not a NN
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and y = f (x) and h is differentiable at y. Then, ho f : R™ — R" is
differentiable at @, and (write z = h (y))

_ 025 _ 0% Oye i
J[hof] (:E) - J}L (.f (:E)) Jf (m)* or 8$L - ; 8yz (‘?an v %,

— Each node is a variable, as a function of
all incoming variables

— If node B a descent of node A, g—i

rate of change in B wrt change in A

is the

— Traveling along a path, rates of changes
should be multiplied

— Chain rule: summing up rates over all
connecting paths! (e.g., z2 to z; as

shown)

NB: this is a computational graph, not a NN
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A multivariate example — forward mode

y = | sin I N T e = o — 15000
T2 T2 2 v = a2 = 0.5000

v = w_i/uo = 1.5000/0.5000 = 3.0000

vy = sin(vy) = sin(3.0000) = 0.1411

vs = oxpleo) = exp(0.5000) = 1.6487

v = wi—wv; = 3.0000-1.6487 = 1.3513

vs = vadws = 0.1411+13513 = 1.4924

ve = wsxuy = 14924%13513 = 20167
v = w6 = 2.0167
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A multivariate example — forward mode

T T ) (T1 4
y=|(sin—+ — —e — —e€ vy = m — 15000
T2 T2 T2 w = —~ 0.5000
o = o_i/us = 15000/05000 = 3.0000

vy = sin(vy) = sin(3.0000) = 0.1411
.9 % vs = oxp(to) = oxp(05000) = 1.6487
vy = w1 —wvz = 3.0000-1.6487 = 1.3513
/ \ vs = watu = 01411+1.3513 = 1.4924
g = wsxvy = 14924%1.3513 = 2.0167
O T = = 50167

— interested in 52—; for each variable
= 15000 E3
1.0000 Vi, Write 7_)7 =
= 0.5000 1
0.0000
= 1.5000/0.5000 = 3.0000
i = (01 — vy % 99)/ve = 1.0000/0.5000 = 2.0000
vy = sin(vy) = sin(3.0000) = 01411
By = cos(vi) * B = —0.9900 * 2.0000 = —1.9800
exp(vo) p(0.5000) = 1.6487

1.6487 + 0.0000 = 0.0000

vg * Vg

3.0000 — 1.6487 = 13513
2.0000 — 0.0000 = 2.0000
=0.1411 + 1.3513 = 14924
= —1.9800 + 2.0000 = 0.0200
1.4924 % 1. = 20167

=05 %vg +vs %01 = 0.0200* 1.3513 + 1.4924 % 2.0000 =  3.0118
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A multivariate example — forward mode

y:

X1 X1
sin = + ~= — "2
T2 T2

/'i e

O

vy Y = 1.5000
vy = T2 = 0.5000
o = o_i/us = 15000/05000 = 3.0000
vy = sin(vr) = sin(3.0000) = 0.1411
vy = oxplug) = exp(0.5000) = 1.6487
vy = wvi—wvy = 3.0000—1.6487 = 1.3513
vs = we+uvy = 01411413513 = 1.4924
ve = vs*vy = 14924%1.3513 = 2.0167
T = = 20167

= 1.5000
1.0000
= 0.5000

0.0000

v2
)

= 1.5000/0.5000

= (01 — vy % ¥0) /vo = 1.0000/0.5000

= sin(v1) = 5in(3.0000)

= cos(v1) * i1 = —0.9900 * 2.0000
exp(vo) p(0.5000)

1.6487 + 0.0000
3.0000 — 1.6487
2.0000 — 0.0000
=0.1411 + 1.3513
= —1.9800 + 2.0000
1.4924 % 1.
= 0.0200 * 1.1

vg * Vg

= U5 % Vg + U5 * Uy 513 + 1.4924 % 2.0000

3.0000
2.0000
0.1411

—1.9800

1.6487
0.0000
1.3513
2.0000
1.4924
0.0200
2.0167
3.0118

_9_- for each variable

ox
Ny

v;, Write v; = Rrs

interested in

for each node, sum up partials
over all incoming edges, e.g.,

vy vy
vy U1+ Ovs

V4 = V3
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T2 T2

/'i e

O

vy Y = 1.5000
vy = T2 = 0.5000
o = o_i/us = 15000/05000 = 3.0000
vy = sin(vr) = sin(3.0000) = 0.1411
vy = oxplug) = exp(0.5000) = 1.6487
vy = wvi—wvy = 3.0000—1.6487 = 1.3513
vs = we+uvy = 01411413513 = 1.4924
ve = vs*vy = 14924%1.3513 = 2.0167
T = = 20167

= 1.5000
1.0000
= 0.5000

0.0000

v2
)

= 1.5000/0.5000

= (01 — vy % ¥0) /vo = 1.0000/0.5000

= sin(v1) = 5in(3.0000)

= cos(v1) * i1 = —0.9900 * 2.0000
exp(vo) p(0.5000)

1.6487 + 0.0000
3.0000 — 1.6487
2.0000 — 0.0000
=0.1411 + 1.3513
= —1.9800 + 2.0000
1.4924 % 1.
= 0.0200 * 1.1

vg * Vg

= U5 % Vg + U5 * Uy 513 + 1.4924 % 2.0000

3.0000
2.0000
0.1411

—1.9800

1.6487
0.0000
1.3513
2.0000
1.4924
0.0200
2.0167
3.0118

_9_- for each variable

ox
Ny

v;, Write v; = Rrs

interested in

for each node, sum up partials
over all incoming edges, e.g.,

. duy - )
V4 = 82‘1‘ 01 + 024 3
complexity:
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y:

X1 X1
sin = + ~= — "2
T2 T2

/'i e

O

vy Y = 1.5000
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)
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= sin(v1) = 5in(3.0000)

= cos(v1) * i1 = —0.9900 * 2.0000
exp(vo) p(0.5000)

1.6487 + 0.0000
3.0000 — 1.6487
2.0000 — 0.0000
=0.1411 + 1.3513
= —1.9800 + 2.0000
1.4924 % 1.
= 0.0200 * 1.1

vg * Vg

= U5 % Vg + U5 * Uy 513 + 1.4924 % 2.0000

3.0000
2.0000
0.1411

—1.9800

1.6487
0.0000
1.3513
2.0000
1.4924
0.0200
2.0167
3.0118

_9_- for each variable

ox
Ny

v;, Write v; = Rrs

interested in

for each node, sum up partials
over all incoming edges, e.g.,

. duy - )
V4 = 82‘1‘ 01 + 024 3
complexity:

O (#edges + #nodes)
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A multivariate example — forward mode

. T
sin — +
T2

y:

Tl T ;
e"? e”?

T2 X2

@

/

\

v_q Y 1.5000
vo = 13 0.5000
= o i/ 1.5000,/0.5000 3.0000
vy = sin(vy) sin(3.0000) 0.1411
vs = oxplug) exp(0.5000) 1.6487
vy = v —U3 3.0000 — 1.6487 1.3513
U5 = va+us 0.1411 4+ 1.3513 1.4924
g = U5 xUy 1.4924 % 1.3513 2.0167
T = = 50167

= 1.5000
= 1.0000
= 0.5000
= 0.0000

v = U1/

o = (01 — w1 x09)/v0
vy = sin(vy)

i = cos(v1) * b

=us*uy
Vg + U5 * Uy

=1.5000/0.5000 =
= 1.0000/0.5000 -
= 5in(3.0000) =
= —0.9900 * 2.0000 -
= exp(0.5000) =
= 1.6487 % 0.0000 =
=3.0000 — 1.6487 =
= 2.0000 — 0.0000
=0.1411 + 1.3513
= —1.9800 + 2.0000 =
= 14924 1.3513 =
= 0.0200 % 1.3513 + 1.4924 % 2,0000 =

3.0000
2.0000
0.1411
—1.9800
1.6487
0.0000
1.3513
2.0000
1.4924
0.0200
2.0167
3.0118

= 2.0100
=3.0110

interested in 3%; for each variable
v, Write U; = ﬁ

for each node, sum up partials
over all incoming edges, e.g.,

vy vy
vy U1+ Ovs Us

1.)4 =
complexity:
O (#edges + #nodes)

for f : R™ — R™, make n forward
passes: O (n (#edges + #nodes))
2
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A multivariate example — reverse mode

TR

5000
E 0.5000
vy = v_1 /vy = 1.5000/0.5000 = 3.0000
vy = sin(vy) = sin(3.0000) = 0.1411
vg = exp(vg) = exp(0.5000) = 1.6487
vy = v1 — w3 = 3.0000 — 1.6487 = 1.3513

v_y =

Yo

23513 % (—0.9900) = 1.5059

o — U1 %V ./“, = 74 6884 — 1.5059 * 3.000/0.5000 = —13.7239
1 = 1 /vo = 1.5059/0.5000 = 3.0118

Ty =0 = —13.7239

3.0118 22 /36




A multivariate example — reverse mode

Ve

v_y =

Yo

5000
E 0.5000
vy = v_1 /vy = 1.5000/0.5000 = 3.0000
vy = sin(vy) = sin(3.0000) = 0.1411
vg = exp(vg) = exp(0.5000) = 1.6487
vy = v1 — w3 = 3.0000 — 1.6487 = 1.3513
=0.1411 + 1.351 1.4924

o = Uy * vg = —2.8437 * 1.6487
By = By + 0y % cos(v) = 2.8437 + 1.3513 % (—0.9900) = 1.5059

Ty — By % vy /vy = —4.6884 — 1.5059 % 3.000/0.5000 = —13.7239
7y /v = 1.5059/0.5000 = 3.0118
o = —13.7239
3.0118

— interested in

%y; for each variable

v;, Write U; = 6—7 (called adjoint
‘

variable)

o
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s

N

4
N

v_y =21 = 1.5000
= 0.5000
vy =v_1/vg =1

vy = sin(vy)

Yo

vy = 1.4924
2.0167
1.0000

1.4924

Uy = Ug + U5 = 1.4924 + 1.3513 = 2.8437

Uy = U5

U1 + Ug * COS
To — U1 * v1 /v

Vo = —13.7239
3.0118

513

5059

4.6884 — 1.5059 * 3.000/0.5000 = —13.7239

1/v0 = 1.5059/0.5000 = 3.0118

— interested in %y for each variable
) ite 7, = 9¥ 1ol
v, write U; = S (called adjoint
variable)

— for each node, sum up partials
over all outgoing edges, e.g.,

— __ Ovus— Ovg =
Vg = Ovy Us + Ovy Ve
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A multivariate example —

OO
NNV

v_y =21 = 1.5000

= 0.5000

v =v_1/vg =1
vy = sin(vy)

Yo

vy = 1.4924
2.0167
1.0000

vy = 1.0000 % 1.3513 = 1.3513
1.4924

Uy = Ug + U5 = 1.4924 + 1.3513 = 2.8437
Uy = T3 3513

U1 + Ug * COS 4 5059

g — Uy * v1 /v 4.6884 — 1.5059 * 3.000/0.5000 = —13.7239
1/vo = 1.5059/0.5000 = 3.0118

0o = —13.7239

3.0118

— interested in %y for each variable
) ite 7, = 9¥ 1ol
v, write U; = S (called adjoint
variable)
— for each node, sum up partials

over all outgoing edges, e.g.,

— __ Ovus— Ovg =
U4 = Ovy Us + Ovy U6
— complexity:
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A multivariate example — reverse mode

/ \ t — interested in %y for each variable
N v;, write U; = (%’ (called adjoint
Ui v v ] B
0 \j/ \_4/ variable)

— for each node, sum up partials

5000
; ).5000 1
over all outgoing edges, e.g.
vy = v_y /vy = 1.5000/0.5000 = 3.0000 ! going edges, €.g.,
vy = sin(vy) = sin(3.0000) = 0.1411 Ty = g“S Ts + g7~'6 Tg
exp(vg) = exp(0.5000) = 1.6487 V4 vy
v 1.3513 _ .
L o2s complexity:
v vy = 1.4924 + 1.3513 = 2.0167 O (#edges + #nodes)

2.0167

vs = 1.0000 * 1.4924 = 1.4924
By = g + U5 = 1.4924 + 1.3513 = 2.8437
vy = 5 = 1.3513

—0y = —2.8437

7 1.6487 = —4.6884
1) = 2.8437 + 1.3513 % (—0.9900) = 1.5059

0 = B0 — 1 % vy /g = —4.6884 — 1.5059 * 3.000/0.5000 = —13.7239
7y /v = 1.5059/0.5000 = 3.0118

~13.7239

22/36



A multivariate example — reverse m

AN,

vy =y = 1.5000
= 0.5000
1/vo = 1.5000/0.5000 = 3.0000

vy = sin(vy) = sin(3.0000) = 0.1411
exp(0.5000) = 1.6487
3.0000 — 1.6487 = 1.3513

v = exp(vo)

B = § = 1.0000

¥ * vy = 1.0000 % 1.3513 = 1.3513
r1 = g * v5 = 1.0000 % 1.4924 = 1.
5 = 1.4924 + 1.3513 = 2.8437

37
8437 % 1.6487 = —4.6884

= 2.8437 + 1.3513 % (—0.9900) = 1.5059

0 = —4.6884 — 1.5059 * 3.000/0.5000 = —13.7239

— interested in 73’ for each variable
) e 7. = Oy
v, write U; = S (called adjoint

variable)

— for each node, sum up partials
over all outgoing edges, e.g.,

- dvr,— ovg —
Vg = dv4 5+ Ovy Ve
— complexity:

O (#edges + #nodes)
— for f:R"
passes:

O (m (#edges + #nodes))

example from Ch 1
of [Griewank and Walther, 2008]

— R™, make n forward

22/36



Forward vs. reverse modes

For general function f : R™ — R™, suppose there is no loop in the
computational graph, i.e., acyclic graph.

Define E: set of edges ; V: set of nodes
»@»@»@{

Vo 1 3
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Forward vs. reverse modes

For general function f : R™ — R™, suppose there is no loop in the

computational graph, i.e., acyclic graph.

Define E: set of edges ; V: set of nodes

»@%@%@%

Vo 1 3

forward mode

reverse mode

start from roots leaves

end with leaves roots

invariants | ; = %2" (z—root of interest) | v; = 8y (y—leaf of interest)
rule sum over incoming edges sum over outgoing edges

complexity O(n|E|+n|V]) O(m|E|+m|V]|)

better when

m>n

n>=>m
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Directional derivatives

Consider f () : R™ — R™. Let v,’s be the variables in its computational graph.
Particularly, vpn—1 = Z1,Vn—2 = Z2,...,00 = Tn. Dp (-) means directional
derivative wrt p. In practical implementations,
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forward mode: compute Jp, i.e., Jacobian-vector product
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Consider f () : R™ — R™. Let v,’s be the variables in its computational graph.
Particularly, vpn—1 = Z1,Vn—2 = Z2,...,00 = Tn. Dp (-) means directional

derivative wrt p. In practical implementations,

forward mode: compute Jp, i.e., Jacobian-vector product

— Why? (1) Columns of J; can be obtained by setting p = e1,...,e,. (2)
When J; has special structures (e.g., sparsity), save computation by
judicious choices of p’s (3) Problem may only need J;p for a specific p,
not J itself—save computation again
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derivative wrt p. In practical implementations,
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When J; has special structures (e.g., sparsity), save computation by
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Directional derivatives

Consider f () : R™ — R™. Let v,’s be the variables in its computational graph.
Particularly, vpn—1 = Z1,Vn—2 = Z2,...,00 = Tn. Dp (-) means directional

derivative wrt p. In practical implementations,

forward mode: compute Jp, i.e., Jacobian-vector product

— Why? (1) Columns of J; can be obtained by setting p = e1,...,e,. (2)
When J; has special structures (e.g., sparsity), save computation by
judicious choices of p’s (3) Problem may only need J;p for a specific p,
not J itself—save computation again

— How? (1) initialize Dpvp—1 = p1, ..., Dpvo = pn. (2) apply chain rule:
ov; ov;
Vv = Z aiv;vwvj = Dpvi = - . aiv;Dpvj
J:incoming J:incoming

reverse mode: compute J}q =V (fTq), i.e., Jacobian-trans-vector product
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Directional derivatives

Consider f () : R™ — R™. Let v,’s be the variables in its computational graph.
Particularly, vpn—1 = Z1,Vn—2 = Z2,...,00 = Tn. Dp (-) means directional

derivative wrt p. In practical implementations,

forward mode: compute Jp, i.e., Jacobian-vector product

— Why? (1) Columns of J; can be obtained by setting p = e1,...,e,. (2)
When J; has special structures (e.g., sparsity), save computation by
judicious choices of p’s (3) Problem may only need J;p for a specific p,
not J itself—save computation again

— How? (1) initialize Dpvp—1 = p1, ..., Dpvo = pn. (2) apply chain rule:
ov; ov;
vmvi B j'irgﬂng 61; vw’UJ - Dva - j:incoming aiv;Dpvj

reverse mode: compute qu =V (fTq), i.e., Jacobian-trans-vector product

— Why? Similar to the above
— How? TraCk (fT ) dvg (qu) = Zk:outgoing g?: dvy, (fT )
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Tensor abstraction

Tensors: multi-dimensional arrays

freet

ector Matrix Tensor
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Tensor abstraction

Tensors: multi-dimensional arrays

Y

Vector Matrix Tensor

Each node in the computational graph can be a tensor (scalar, vector, matrix,
3-D tensor, ...)
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Tensor abstraction

Tensors: multi-dimensional arrays

Vector Matrix Tensor

Each node in the computational graph can be a tensor (scalar, vector, matrix,
3-D tensor, ...)

input layer
hidden layer 1  hidden layer 2

Fw) = |
Y — o0 (Wio (Wi_10...(W.1X)))|%
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Tensor abstraction

Tensors: multi-dimensional arrays

Vector Matrix Tensor

Each node in the computational graph can be a tensor (scalar, vector, matrix,
3-D tensor, ...)

computational graph for DNN

input layer
hidden layer 1  hidden layer 2

(W)=
Y — o0 (Wio (Wi_10...(W.1X)))|%
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Tensor abstraction

@_‘7 2
® @ o "

— Abstract out low-level details; operations are often simple e.g., *, o so
partials are simple

26 /36


https://github.com/google/jax
http://www.autodiff.org/

Tensor abstraction

@—’7 15
o o &

— Abstract out low-level details; operations are often simple e.g., *, o so

partials are simple
— Tensor (i.e., vector) chain rules apply, often via tensor-free computation
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Tensor abstraction
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— Abstract out low-level details; operations are often simple e.g., *, o so
partials are simple

— Tensor (i.e., vector) chain rules apply, often via tensor-free computation

— Basis of implementation for: Tensorflow, Pytorch, Jax, etc
Jax: https://github.com/google/jax
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— Tensor (i.e., vector) chain rules apply, often via tensor-free computation
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Good to know:

— In practice, graphs are built automatically by software
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— Tensor (i.e., vector) chain rules apply, often via tensor-free computation

— Basis of implementation for: Tensorflow, Pytorch, Jax, etc
Jax: https://github.com/google/jax

Good to know:

— In practice, graphs are built automatically by software

— Higher-order derivatives can also be done, particularly Hessian-vector
product V2 f (x) v (Check out Jax!)
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— Auto-diff in Tensorflow and Pytorch are specialized to DNNs and focus on
1st order, Jax (in Python) is full fledged and also supports GPU
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Tensor abstraction

@—’7 15
o o &0

— Abstract out low-level details; operations are often simple e.g., *, o so
partials are simple

— Tensor (i.e., vector) chain rules apply, often via tensor-free computation

— Basis of implementation for: Tensorflow, Pytorch, Jax, etc
Jax: https://github.com/google/jax

Good to know:

— In practice, graphs are built automatically by software

— Higher-order derivatives can also be done, particularly Hessian-vector
product V2 f (x) v (Check out Jax!)

— Auto-diff in Tensorflow and Pytorch are specialized to DNNs and focus on
1st order, Jax (in Python) is full fledged and also supports GPU

— General resources for autodiff: http://www.autodiff.org/,
[Griewank and Walther, 2008] 26 /36


https://github.com/google/jax
http://www.autodiff.org/

Autodiff in Pytorch

Solve least squares f (z) = 3 [ly — Az||; with Vf (z

import torch
import matplotlib.pyplot as plt

dtype = torch. float
device = torch.device("cpu")

n, p =560, 100

A = torch.randn(n, p, device=device, dtype=dtype)
y = torch.randn(n, device=device, dtype=dtype)

x = torch.randn(p, device=device, dtype=dtype, requires_grad=True)
—~————
step_size = le-4

num_step = 500
loss_vec = torch.zeros(500, device=device, dtype=dtype)
for t in range(500):

pre orch.matmul(A, x)
loss = torch.pow(torch.norn(y - pred), 2)

loss _vec[t] = loss.item()

# one line for computing the gradient
Loss.backward ()
—_——

# updates
with torch.no_grad():
X -= step_size*x.grad

# zero the gradient after updating
x.grad.zero_()

plt.plot (loss_vec.numpy())
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Autodiff in Pytorch

Solve least squares f (z) = 3 [ly — Az||; with Vf (z

import torch
import matplotlib.pyplot as plt

dtype = torch. float
device = torch.device("cpu")

n, p =560, 100

loss vs. iterate

A = torch.randn(n, p, device=device, dtype=dtype)
y = torch.randn(n, device=device, dtype=dtype)

x = torch.randn(p, device=device, dtype=dtype, requires_grad=True) 50000
—~————
step_size = le-4
40000
num_step = 500
loss_vec = torch.zeros(500, device=device, dtype=dtype)
. 30000
for t in range(500):
pre orch.matmul(A, x)
loss = torch.pow(torch.norm(y - pred), 2) 20000
loss_vec[t] = loss.item()
# one line for computing the gradient 10000

loss.backward()
—_—

# updates 0
with torch.no_grad():
X -= step_size*x.grad

# zero the gradient after updating
x.grad.zero_()

plt.plot (loss_vec.numpy())
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Autodiff in Pytorch

Train a shallow neural network

f(W)= Z |ly; — Wao (Wizs)||3

where ¢(z) = max (z,0), i.e., ReLU
https://pytorch.org/tutorials/beginner/pytorch_with_

examples.html

— torch.mm
— torch.clamp

— torch.no_grad()

Back propagation is reverse mode auto-differentiation!
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Differentiable programming
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Example: image enhancement

sharpen
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— Each stage applies a parameterized function to the image, i.e.,
Gy, © O Nawy O Gus © fuw, (X) (X is the camera raw)

— The parameterized functions may or may not be DNNs
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Example: image enhancement
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parameters output |

— Each stage applies a parameterized function to the image, i.e.,
Gy, © O Nawy O Gus © fuw, (X) (X is the camera raw)

— The parameterized functions may or may not be DNNs

— Each function may be analytic, or simply a chunk of codes dependent on

the parameters
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Example: image enhancement

camera raw demosaic

_’*_’ o

white balance denoise l

tone map sharpen

e

Sl

desired
parameters output |

— Each stage applies a parameterized function to the image, i.e.,

Gy, © O Nawy O Gus © fuw, (X) (X is the camera raw)

— The parameterized functions may or may not be DNNs

Each function may be analytic, or simply a chunk of codes dependent on
the parameters

— aw;'s are the trainable parameters

Credit: https://people.csail.mit.edu/tzumao/gradient_halide/
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Example: image enhancement

=

-
<

camera raw demosaic white balance denoise
// tone map sharpen
desired
parameters output |

— the trainable parameters are learned by gradient descent based on
auto-differentiation

— This is generalization of training DNNs with the classic feedforward
structure to training general parameterized functions, using
derivative-based methods

Credit: https://people.csail.mit.edu/tzumao/gradient_halide/

31/36


https://people.csail.mit.edu/tzumao/gradient_halide/

Example: control a trebuchet

Target and environment Control Parameters Loss
variables /\
\ Neural Network ODE Solver /
wind = -10m/s < " angle = 25° ) (target_distance —
target = 50m o weight = 200kg actual_distancef

A

Backpropagation

https://fluxml.ai/2019/03/05/dp-vs-rl.html
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Example: control a trebuchet

Target and environment Control Parameters Loss
variables /\
\ Neural Network ODE Solver /
wind = -10m/s ~ " angle = 25° ) (target_distance —
target = 50m . weight = 200kg actual_distancef

A

Backpropagation

https://fluxml.ai/2019/03/05/dp-vs-rl.html

— Given wind speed and target distance, the DNN predicts the angle of
release and mass of counterweight

— Given the angle of release and mass of counterweight as initial conditions,
the ODE solver calculates the actual distance by iterative methods

— We perform auto-differentiation through the iterative ODE solver and the
DNN
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Differential programming

Interesting resources

— Notable implementations: Swift for Tensorflow
https://www.tensorflow.org/swift, and Zygote in Julia
https://github.com/FluxML/Zygote.jl

— Flux: machine learning package based on Zygote
https://fluxml.ai/

— Taichi: differentiable programming language tailored to 3D
computer graphics
https://github.com/taichi-dev/taichi
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Suggested reading
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Autodiff in DNNs
— http:
//neuralnetworksanddeeplearning.com/chap2.html

— https://colah.github.io/posts/2015-08-Backprop/
Differentiable programming

— https://en.wikipedia.org/wiki/Differentiable_
programming
— https://fluxml.ai/2019/02/07/

what-is-differentiable-programming.html

— https://fluxml.ai/2019/03/05/dp-vs-rl.html
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