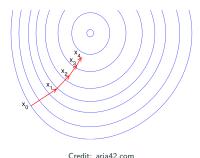
Basics of Numerical Optimization: Computing Derivatives

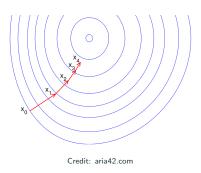
Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

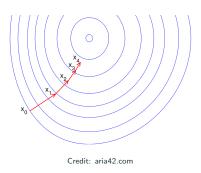
February 25, 2020



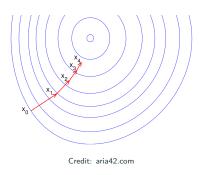
- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- etc



- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- etc
- Almost all methods require low-order derivatives, i.e., gradient and/or Hessian, to proceed.



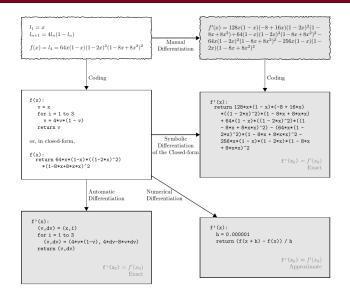
- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- etc
- Almost all methods require low-order derivatives, i.e., gradient and/or Hessian, to proceed.
- Numerical derivatives (i.e., numbers), rather than analytic derivatives (i.e., math expressions), are needed



- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- etc
- Almost all methods require low-order derivatives, i.e., gradient and/or Hessian, to proceed.
- Numerical derivatives (i.e., numbers), rather than analytic derivatives (i.e., math expressions), are needed

This lecture: how to compute the numerical derivatives

Four kinds of computing techniques



Credit: [Baydin et al., 2017]

Outline

Analytic differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution

Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by hand:

- Chain rule (vector version) method

Let $f:\mathbb{R}^m \to \mathbb{R}^n$ and $h:\mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{y}=f\left(\boldsymbol{x}\right)$ and h is differentiable at \boldsymbol{y} . Then, $h\circ f:\mathbb{R}^n \to \mathbb{R}^k$ is differentiable at \boldsymbol{x} , and

$$\boldsymbol{J}_{\left[h\circ f\right]}\left(\boldsymbol{x}\right)=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right).$$

When k=1,

$$\nabla \left[h \circ f\right](\boldsymbol{x}) = \boldsymbol{J}_f^{\top}\left(\boldsymbol{x}\right) \nabla h\left(f\left(\boldsymbol{x}\right)\right).$$

Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by hand:

- Chain rule (vector version) method

Let $f:\mathbb{R}^m \to \mathbb{R}^n$ and $h:\mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{y} = f\left(\boldsymbol{x}\right)$ and h is differentiable at \boldsymbol{y} . Then, $h \circ f:\mathbb{R}^n \to \mathbb{R}^k$ is differentiable at \boldsymbol{x} , and

$$\boldsymbol{J}_{\left[h\circ f\right]}\left(\boldsymbol{x}\right)=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right).$$

When k=1,

$$\nabla \left[h \circ f\right]\left(\boldsymbol{x}\right) = \boldsymbol{J}_f^\top\left(\boldsymbol{x}\right) \nabla h\left(f\left(\boldsymbol{x}\right)\right).$$

- Taylor expansion method

Expand the perturbed function $f\left(x+\delta\right)$ and then match it against Taylor expansions to read off the gradient and/or Hessian:

$$f(x + \delta) \approx f(x) + \langle \nabla f(x), \delta \rangle$$

$$f\left(\boldsymbol{x}+\boldsymbol{\delta}\right) \approx f\left(\boldsymbol{x}\right) + \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{\delta} \right\rangle + \frac{1}{2} \left\langle \boldsymbol{\delta}, \nabla^{2} f\left(\boldsymbol{x}\right) \boldsymbol{\delta} \right\rangle$$

Derive chain rule by Taylor expansion (optional)

Start with $h\left(f\left(x+\delta\right)\right)$, where $\pmb{\delta}$ is always sufficiently small as we want

Derive chain rule by Taylor expansion (optional)

Start with $h\left(f\left(x+\delta\right)\right)$, where δ is always sufficiently small as we want

$$\begin{split} h\left(f\left(\boldsymbol{x}+\boldsymbol{\delta}\right)\right) &= h\left(f\left(\boldsymbol{x}\right) + \underbrace{\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{\delta} + o\left(\|\boldsymbol{\delta}\|_{2}\right)}_{\text{perturbation}}\right) \\ &= h\left(f\left(\boldsymbol{x}\right)\right) + \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\left[\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{\delta} + o\left(\|\boldsymbol{\delta}\|_{2}\right)\right] + \\ &\underbrace{o\left(\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{\delta} + o\left(\|\boldsymbol{\delta}\|_{2}\right)\right)}_{o\left(\|\boldsymbol{\delta}\|_{2}\right)} \\ &= h\left(f\left(\boldsymbol{x}\right)\right) + \underbrace{\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{\delta}}_{\text{linear term}} + o\left(\|\boldsymbol{\delta}\|_{2}\right), \end{split}$$

Derive chain rule by Taylor expansion (optional)

Start with $h\left(f\left(x+\pmb{\delta}\right)\right)$, where $\pmb{\delta}$ is always sufficiently small as we want

$$\begin{split} h\left(f\left(x+\delta\right)\right) &= h\left(f\left(x\right) + \underbrace{J_f\left(x\right)\delta + o\left(\|\delta\|_2\right)}_{\text{perturbation}}\right) \\ &= h\left(f\left(x\right)\right) + J_h\left(f\left(x\right)\right)\left[J_f\left(x\right)\delta + o\left(\|\delta\|_2\right)\right] + \\ &\underbrace{o\left(J_f\left(x\right)\delta + o\left(\|\delta\|_2\right)\right)}_{o\left(\|\delta\|_2\right)} \\ &= h\left(f\left(x\right)\right) + \underbrace{J_h\left(f\left(x\right)\right)J_f\left(x\right)\delta}_{\text{linear term}} + o\left(\|\delta\|_2\right), \end{split}$$

So,

$$\boldsymbol{J}_{h\circ f\left(\boldsymbol{x}\right)}=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right).$$

Derive gradient of a three-layer linear neural network

$$\min_{\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}} f\left(\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}\right) \doteq \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right\|_{F}^{2}$$

Derive gradient of a three-layer linear neural network

$$\min_{\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}} f\left(\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}\right) \doteq \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right\|_{F}^{2}$$

We can derive the partial gradients wrt $oldsymbol{W}_i$'s separately. (Why?)

Derive gradient of a three-layer linear neural network

$$\min_{\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}} f\left(\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}\right) \doteq \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right\|_{F}^{2}$$

We can derive the partial gradients wrt W_i 's separately. (Why?)

For example, for
$$oldsymbol{W}_2$$
,

$$\begin{split} &f\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2} + \boldsymbol{\Delta}, \boldsymbol{W}_{3}\right) \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\left(\boldsymbol{W}_{2} + \boldsymbol{\Delta}\right) \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &= \sum_{i} \left\|\left(\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right) - \boldsymbol{W}_{3} \boldsymbol{\Delta} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} - 2 \left\langle \boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}, \boldsymbol{W}_{3} \boldsymbol{\Delta} \boldsymbol{W}_{1} \boldsymbol{x}_{i} \right\rangle + O(\left\|\boldsymbol{\Delta}\right\|_{F}^{2}) \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &- 2 \sum_{i} \left\langle \boldsymbol{W}_{3}^{\mathsf{T}} \left(\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right) \left(\boldsymbol{W}_{1} \boldsymbol{x}_{i}\right)^{\mathsf{T}}, \boldsymbol{\Delta} \right\rangle + O\left(\left\|\boldsymbol{\Delta}\right\|_{F}^{2}\right) \end{split}$$

Derive gradient of a three-layer linear neural network

$$\min_{\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}} f\left(\boldsymbol{W}_{1},\boldsymbol{W}_{2},\boldsymbol{W}_{3}\right) \doteq \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right\|_{F}^{2}$$

We can derive the partial gradients wrt W_i 's separately. (Why?)

So: $\nabla_{W_2} f = -2 \sum_i W_2^{\mathsf{T}} (y_i - W_3 W_2 W_1 x_i) (W_1 x_i)^{\mathsf{T}}$.

For example, for W_2 ,

$$\begin{split} &f\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2} + \boldsymbol{\Delta}, \boldsymbol{W}_{3}\right) \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3}\left(\boldsymbol{W}_{2} + \boldsymbol{\Delta}\right) \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &= \sum_{i} \left\|\left(\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right) - \boldsymbol{W}_{3} \boldsymbol{\Delta} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} - 2 \left\langle \boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}, \boldsymbol{W}_{3} \boldsymbol{\Delta} \boldsymbol{W}_{1} \boldsymbol{x}_{i} \right\rangle + O(\left\|\boldsymbol{\Delta}\right\|_{F}^{2}) \\ &= \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right\|_{F}^{2} \\ &- 2 \sum_{i} \left\langle \boldsymbol{W}_{3}^{\mathsf{T}} \left(\boldsymbol{y}_{i} - \boldsymbol{W}_{3} \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\right) \left(\boldsymbol{W}_{1} \boldsymbol{x}_{i}\right)^{\mathsf{T}}, \boldsymbol{\Delta} \right\rangle + O\left(\left\|\boldsymbol{\Delta}\right\|_{F}^{2}\right) \end{split}$$

7/36

Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

$\label{eq:Differentiate} \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$
$\begin{array}{l} \text{syms } f(x) \\ f(x) = \sin(x^2); \\ \text{df} = \text{diff}(f,x) \end{array}$
$df(x) = 2*x*cos(x^2)$ Find the value of the derivative at $x=2$. Convert the value to double.
df2 = df(2)
df2 = 4*cos(4)

- Matlab (Symbolic Math Toolbox, diff)
- Python (SymPy, diff)
- Mathmatica (D)

Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

- Matlab (Symbolic Math Toolbox, diff)
- Python (SymPy, diff)
- Mathmatica (D)

Effective for functions with few variables only

Outline

Analytic differentiation

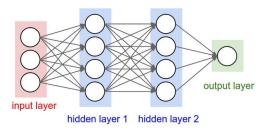
Finite-difference approximation

Automatic differentiation

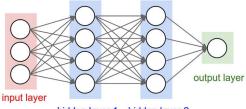
Differentiable programming

Suggested reading

Limitation of analytic differentiation



Limitation of analytic differentiation



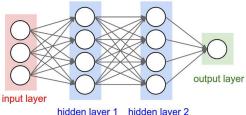
hidden layer 1 hidden layer 2

What is the gradient and/or Hessian of

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \sigma(\boldsymbol{W}_{k}\sigma(\boldsymbol{W}_{k-1}\sigma\dots(\boldsymbol{W}_{1}\boldsymbol{x}_{i})))\|_{F}^{2}?$$

Applying the chain rule is boring and -prone. Performing Taylor expansion is also tedious

Limitation of analytic differentiation

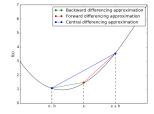


What is the gradient and/or Hessian of

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \sigma(\boldsymbol{W}_{k}\sigma(\boldsymbol{W}_{k-1}\sigma\dots(\boldsymbol{W}_{1}\boldsymbol{x}_{i})))\|_{F}^{2}?$$

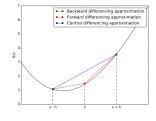
Applying the chain rule is boring and -prone. Performing Taylor expansion is also tedious

Lesson we learn from technology history: leave boring jobs to computers



(Credit: numex-blog.com)

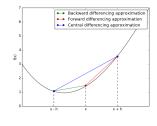
$$f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$



(Credit: numex-blog.com)

$$f'(\boldsymbol{x}) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

$$\begin{split} & \text{For } f\left(\boldsymbol{x}\right): \mathbb{R}^{n} \to \mathbb{R}, \\ & \frac{\partial f}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x} + \delta\boldsymbol{e}_{i}\right) - f\left(\boldsymbol{x}\right)}{\delta} \quad \text{(forward)} \\ & \frac{\partial f}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x}\right) - f\left(\boldsymbol{x} - \delta\boldsymbol{e}_{i}\right)}{\delta} \quad \text{(backward)} \\ & \frac{\partial f}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x} + \delta\boldsymbol{e}_{i}\right) - f\left(\boldsymbol{x} - \delta\boldsymbol{e}_{i}\right)}{2\delta} \quad \text{(central)} \end{split}$$



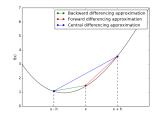
(Credit: numex-blog.com)

$$\begin{split} & \text{For } f\left(\boldsymbol{x}\right): \mathbb{R}^n \to \mathbb{R}, \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x}\right)}{\delta} \quad \text{(forward)} \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x}\right) - f\left(\boldsymbol{x} - \delta \boldsymbol{e}_i\right)}{\delta} \quad \text{(backward)} \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x} - \delta \boldsymbol{e}_i\right)}{2\delta} \quad \text{(central)} \end{split}$$

$$f'(\boldsymbol{x}) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

Similarly, to approximate the Jacobian for $f(x): \mathbb{R}^n \to \mathbb{R}^m$:

$$\begin{split} \frac{\partial f_{j}}{\partial x_{i}} &\approx \frac{f_{j}\left(x + \delta \boldsymbol{e}_{i}\right) - f_{j}\left(x\right)}{\delta} & \text{(one element each time)} \\ \frac{\partial f}{\partial x_{i}} &\approx \frac{f\left(x + \delta \boldsymbol{e}_{i}\right) - f\left(x\right)}{\delta} & \text{(one column each time)} \\ \boldsymbol{J}\boldsymbol{p} &\approx \frac{f\left(x + \delta \boldsymbol{p}\right) - f\left(x\right)}{\delta} & \text{(directional)} \end{split}$$



(Credit: numex-blog.com)

$$\begin{split} & \text{For } f\left(\boldsymbol{x}\right): \mathbb{R}^n \to \mathbb{R}, \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x}\right)}{\delta} \quad \text{(forward)} \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x}\right) - f\left(\boldsymbol{x} - \delta \boldsymbol{e}_i\right)}{\delta} \quad \text{(backward)} \\ & \frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x} - \delta \boldsymbol{e}_i\right)}{2\delta} \quad \text{(central)} \end{split}$$

$$f'(\boldsymbol{x}) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

Similarly, to approximate the Jacobian for $f(x): \mathbb{R}^n \to \mathbb{R}^m$:

$$\begin{split} \frac{\partial f_j}{\partial x_i} &\approx \frac{f_j\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f_j\left(\boldsymbol{x}\right)}{\delta} & \text{(one element each time)} \\ \frac{\partial f}{\partial x_i} &\approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x}\right)}{\delta} & \text{(one column each time)} \\ \boldsymbol{J}\boldsymbol{p} &\approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{p}\right) - f\left(\boldsymbol{x}\right)}{\delta} & \text{(directional)} \end{split}$$

central themes can also be derived

Why central?

Stronger form of Taylor's theorems

- **1st order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{O(\|\delta\|_2^2)}{2}$
- **2nd order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is three-times continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{1}{2} \langle \delta, \nabla^2 f(x) \delta \rangle + O\left(\|\delta\|_2^3\right)$

Why central?

Stronger form of Taylor's theorems

- **1st order**: If $f(x) : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{O(\|\delta\|_2^2)}{2}$
- **2nd order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is three-times continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{1}{2} \langle \delta, \nabla^2 f(x) \delta \rangle + \frac{O(\|\delta\|_2^3)}{2}$

Why the central theme is better?

- Forward: by 1st-order Taylor expansion $\frac{1}{\delta}\left(f\left(\boldsymbol{x}+\delta\boldsymbol{e}_{i}\right)-f\left(\boldsymbol{x}\right)\right)=\frac{1}{\delta}\left(\delta\frac{\partial f}{\partial x_{i}}+O\left(\delta^{2}\right)\right)=\frac{\partial f}{\partial x_{i}}+\frac{O(\delta)}{O(\delta)}$

Why central?

Stronger form of Taylor's theorems

- **1st order**: If $f(x) : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{O(\|\delta\|_2^2)}{2}$
- **2nd order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is three-times continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{1}{2} \langle \delta, \nabla^2 f(x) \delta \rangle + \frac{O(\|\delta\|_2^3)}{2}$

Why the central theme is better?

- Forward: by 1st-order Taylor expansion $\frac{1}{\delta} \left(f\left(\boldsymbol{x} + \delta \boldsymbol{e}_{i} \right) f\left(\boldsymbol{x} \right) \right) = \frac{1}{\delta} \left(\delta \frac{\partial f}{\partial x_{i}} + O\left(\delta^{2} \right) \right) = \frac{\partial f}{\partial x_{i}} + \frac{O(\delta)}{\delta x_{i}}$
- Central: by 2nd-order Taylor expansion $\frac{1}{\delta} \left(f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i \right) f\left(\boldsymbol{x} \delta \boldsymbol{e}_i \right) \right) = \frac{1}{2\delta} \left(\delta \frac{\partial f}{\partial x_i} + \frac{1}{2} \delta^2 \frac{\partial^2 f}{\partial x^2} + \delta \frac{\partial f}{\partial x_i} \frac{1}{2} \delta^2 \frac{\partial^2 h}{\partial x^2} + O\left(\delta^3 \right) \right) = \frac{\partial f}{\partial x_i} + \frac{O(\delta^2)}{\delta x_i}$

Approximate the Hessian

- Recall that for $f(x): \mathbb{R}^n \to \mathbb{R}$ that is 2nd-order differentiable, $\frac{\partial f}{\partial x_i}(x): \mathbb{R}^n \to \mathbb{R}$. So

$$\frac{\partial f^2}{\partial x_j \partial x_i}(\boldsymbol{x}) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(\boldsymbol{x}) \approx \frac{\left(\frac{\partial f}{\partial x_i}\right)(\boldsymbol{x} + \delta \boldsymbol{e}_j) - \left(\frac{\partial f}{\partial x_i}\right)(\boldsymbol{x})}{\delta}$$

Approximate the Hessian

- Recall that for $f(x): \mathbb{R}^n \to \mathbb{R}$ that is 2nd-order differentiable, $\frac{\partial f}{\partial x_i}(x): \mathbb{R}^n \to \mathbb{R}$. So

$$rac{\partial f^2}{\partial x_j \partial x_i} \left(oldsymbol{x}
ight) = rac{\partial}{\partial x_j} \left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x}
ight) pprox rac{\left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x} + \delta oldsymbol{e}_j
ight) - \left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x}
ight)}{\delta}$$

- We can also compute one row of Hessian each time by

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x}) \approx \frac{\left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x} + \delta \boldsymbol{e}_j) - \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x})}{\delta},$$

obtaining \widehat{H} , which might not be symmetric. Return $\frac{1}{2}\left(\widehat{m{H}}+\widehat{m{H}}^{\mathsf{T}}\right)$ instead

- Most times (e.g., in TRM, Newton-CG), only $\nabla^2 f(x) v$ for certain v's needed: (see, e.g., Manopt https://www.manopt.org/)

$$\nabla^{2} f(x) v \approx \frac{\nabla f(x + \delta v) - f(x)}{\delta}$$
 (1)

A few words

- Can be used for sanity check for correctness of analytic gradient

A few words

- Can be used for sanity check for correctness of analytic gradient
- Finite-difference approximation of higher (i.e., ≥ 2)-order derivatives combined with high-order iterative methods can be very efficient (e.g., Manopt

https://www.manopt.org/tutorial.html#costdescription)

A few words

- Can be used for sanity check for correctness of analytic gradient
- Finite-difference approximation of higher (i.e., ≥ 2)-order derivatives combined with high-order iterative methods can be very efficient (e.g., Manopt
 - https://www.manopt.org/tutorial.html#costdescription)
- Numerical stability can be an issue: truncation and round off s (finite δ ; accurate evaluation of the nominators)

Outline

Analytic differentiation

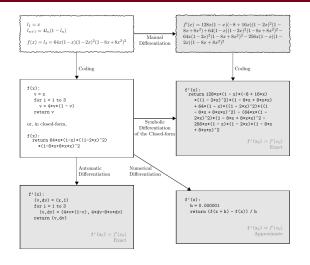
Finite-difference approximation

Automatic differentiation

Differentiable programming

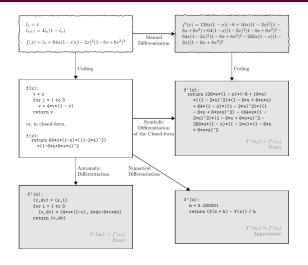
Suggested reading

Four kinds of computing techniques



Credit: [Baydin et al., 2017]

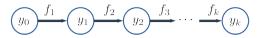
Four kinds of computing techniques



Credit: [Baydin et al., 2017]

Misnomer: should be automatic numerical differentiation

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:



Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 f_2 f_3 \cdots f_k f_k

Chain rule:
$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right)$$

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

Chain rule:
$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right)$$

Compute $\frac{df}{dx}\Big|_{x_0}$ in one pass, from inner to outer most parenthesis:

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

Chain rule:
$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right)$$

Compute $\left. \frac{df}{dx} \right|_{x_0}$ in one pass, from inner to outer most parenthesis:

$$\begin{split} & \boxed{ \text{Input: } x_0, \text{ initialization } \left. \frac{dy_0}{dy_0} \right|_{x_0} = 1 } \\ & \text{for } i = 1, \dots, k \text{ do} \\ & \text{compute } y_i = f_i \left(y_{i-1} \right) \\ & \text{compute } \left. \frac{dy_i}{dy_0} \right|_{x_0} = \left. \frac{dy_i}{dy_{i-1}} \right|_{y_{i-1}} \cdot \left. \frac{dy_{i-1}}{dy_0} \right|_{x_0} = f_i' \left(y_{i-1} \right) \left. \frac{dy_{i-1}}{dy_0} \right|_{x_0} \\ & \text{end for } \\ & \text{Output: } \left. \frac{dy_k}{dy_0} \right|_{x_0} \end{split}$$

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

Chain rule:
$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\left(\left(\left(\left(\frac{dy_k}{dy_{k-1}} \right) \frac{dy_{k-1}}{dy_{k-2}} \right) \dots \right) \frac{dy_2}{dy_1} \right) \frac{dy_1}{dy_0} \right)$$

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

$$\text{Chain rule:} \quad \frac{df}{dx} = \frac{df}{dy_0} = \left(\left(\left(\left(\left(\frac{dy_k}{dy_{k-1}} \right) \frac{dy_{k-1}}{dy_{k-2}} \right) \ldots \right) \frac{dy_2}{dy_1} \right) \frac{dy_1}{dy_0} \right)$$

Compute $\frac{df}{dx}\Big|_{x_0}$ in two passes, from inner to outer most parenthesis for the 2nd:

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

$$\text{Chain rule:} \quad \frac{df}{dx} = \frac{df}{dy_0} = \left(\left(\left(\left(\left(\left(\frac{dy_k}{dy_{k-1}} \right) \frac{dy_{k-1}}{dy_{k-2}} \right) \dots \right) \frac{dy_2}{dy_1} \right) \frac{dy_1}{dy_0} \right)$$

Compute $\left.\frac{df}{dx}\right|_{x_0}$ in two passes, from inner to outer most parenthesis for the 2nd:

```
Input: x_0, \frac{dy_k}{dy_k} = 1 for i = 1, \ldots, k do  \operatorname{compute} y_i = f_i \left( y_{i-1} \right)  end for // forward pass for i = k-1, k-2, \ldots, 0 do  \operatorname{compute} \left. \frac{dy_k}{dy_i} \right|_{y_i} = \left. \frac{dy_k}{dy_{i+1}} \right|_{y_{i+1}} \cdot \left. \frac{dy_{i+1}}{dy_i} \right|_{y_i} = f'_{i+1} \left( y_i \right) \left. \frac{dy_k}{dy_{i+1}} \right|_{y_{i+1}}  end for // backward pass Output: \left. \frac{dy_k}{dy_0} \right|_{x_0}
```


- forward mode AD: one forward pass, compute the intermediate variable and derivative values together
- reverse mode AD: one forward pass to compute the intermediate variable values, one backward pass to compute the intermediate derivatives

- forward mode AD: one forward pass, compute the intermediate variable and derivative values together
- reverse mode AD: one forward pass to compute the intermediate variable values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

$$\begin{split} \frac{df}{dx} &= \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right) \\ \text{i.e., starting from the root:} & \frac{dy_0}{dy_0} \mapsto \frac{dy_1}{dy_0} \mapsto \frac{dy_2}{dy_0} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \\ \frac{df}{dx} &= \frac{df}{dy_0} = \left(\left(\left(\left(\frac{dy_k}{dy_{k-1}}\right)\frac{dy_{k-1}}{dy_{k-2}}\right)\dots\right)\frac{dy_2}{dy_1}\right)\frac{dy_1}{dy_0} \\ \text{i.e., starting from the leaf:} & \frac{dy_k}{dy_k} \mapsto \frac{dy_k}{dy_{k-1}} \mapsto \frac{dy_k}{dy_{k-2}} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \end{split}$$

...mixed forward and reverse modes are indeed possible!

- forward mode AD: one forward pass, compute the intermediate variable and derivative values together
- reverse mode AD: one forward pass to compute the intermediate variable values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

$$\begin{split} \frac{df}{dx} &= \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right) \\ \text{i.e., starting from the root:} & \frac{dy_0}{dy_0} \mapsto \frac{dy_1}{dy_0} \mapsto \frac{dy_2}{dy_0} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \\ \frac{df}{dx} &= \frac{df}{dy_0} = \left(\left(\left(\left(\frac{dy_k}{dy_{k-1}}\right)\frac{dy_{k-1}}{dy_{k-2}}\right)\dots\right)\frac{dy_2}{dy_1}\right)\frac{dy_1}{dy_0} \\ \text{i.e., starting from the leaf:} & \frac{dy_k}{dy_k} \mapsto \frac{dy_k}{dy_{k-1}} \mapsto \frac{dy_k}{dy_{k-2}} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \end{split}$$

- forward mode AD: one forward pass, compute the intermediate variable and derivative values together
- reverse mode AD: one forward pass to compute the intermediate variable values, one backward pass to compute the intermediate derivatives

Effectively, two different ways of grouping the multiplicative differential terms:

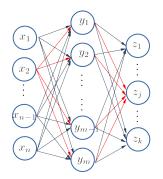
$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right)$$
i.e., starting from the root:
$$\frac{dy_0}{dy_0} \mapsto \frac{dy_1}{dy_0} \mapsto \frac{dy_2}{dy_0} \mapsto \dots \mapsto \frac{dy_k}{dy_0}$$

$$\frac{df}{dx} = \frac{df}{dy_0} = \left(\left(\left(\left(\frac{dy_k}{dy_{k-1}}\right)\frac{dy_{k-1}}{dy_{k-2}}\right)\dots\right)\frac{dy_2}{dy_1}\right)\frac{dy_1}{dy_0}$$
i.e., starting from the leaf:
$$\frac{dy_k}{dy_k} \mapsto \frac{dy_k}{dy_{k-1}} \mapsto \frac{dy_k}{dy_{k-2}} \mapsto \dots \mapsto \frac{dy_k}{dy_0}$$

...mixed forward and reverse modes are indeed possible!

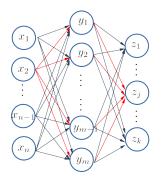
$$\boldsymbol{J}_{[h \circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right) \boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \quad \text{or } \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{m} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i, j$$

$$\boldsymbol{J}_{\left[h\circ f\right]}\left(\boldsymbol{x}\right)=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right),\quad\text{or }\frac{\partial z_{j}}{\partial x_{i}}=\sum_{\ell=1}^{m}\frac{\partial z_{j}}{\partial y_{\ell}}\frac{\partial y_{\ell}}{\partial x_{i}}\;\forall\;i,j$$



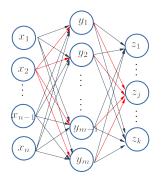
Chain rule Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at x and y = f(x) and h is differentiable at y. Then, $h \circ f: \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at x, and (write z = h(y))

$$\boldsymbol{J}_{[h \circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right) \boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \quad \text{or } \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{m} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i, j$$



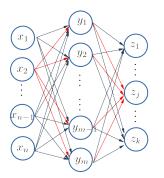
 Each node is a variable, as a function of all incoming variables

$$\boldsymbol{J}_{[h\circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \quad \text{or } \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{m} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i,j$$



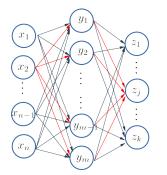
- Each node is a variable, as a function of all incoming variables
- If node B a descent of node A, $\frac{\partial B}{\partial A}$ is the rate of change in B wrt change in A

$$\boldsymbol{J}_{[h\circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \quad \text{or } \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{m} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i,j$$



- Each node is a variable, as a function of all incoming variables
- If node B a descent of node A, $\frac{\partial B}{\partial A}$ is the rate of change in B wrt change in A
- Traveling along a path, rates of changes should be multiplied

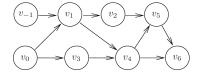
$$\boldsymbol{J}_{[h \circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right) \boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \quad \text{or } \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{m} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i, j$$



NB: this is a computational graph, not a NN

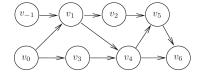
- Each node is a variable, as a function of all incoming variables
- If node B a descent of node A, $\frac{\partial B}{\partial A}$ is the rate of change in B wrt change in A
- Traveling along a path, rates of changes should be multiplied
- Chain rule: summing up rates over all connecting paths! (e.g., x_2 to z_j as shown)

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$



v_{-1}	=	x_1	=	1.5000		
v_0	=	x_2	=	0.5000		
v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
y	=	v_6	=	2.0167		

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$

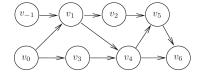


$v_{-1} = x_1$	= 1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/\iota$	$v_0 = 1.0000/0.5000$	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	= 3.0000 - 1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
$v_5 = v_2 + v_4$	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
$v_6 = v_5 * v_4$	= 1.4924 * 1.3513	=	2.0167
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200*1.3513+1.4924*2.000	= 0	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		

v_{-1}	=	x_1	=	1.5000		
v_0	=	x_2	=	0.5000		
v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
y	=	v_6	=	2.0167		

– interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$

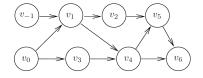


$v_{-1} = x_1$	=1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v_0$	=1.0000/0.5000	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	= 3.0000 - 1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
	= 1.4924 * 1.3513		2.0167
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924 * 2.0000) =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		

Г	v_{-1}	=	x_1	=	1.5000		
	v_0	=	x_2	=	0.5000		
	v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
	v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
	v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
	v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
	v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
	v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
	y	=	v_6	=	2.0167		

- interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_4 = \frac{\partial v_4}{\partial v_1} \dot{v}_1 + \frac{\partial v_4}{\partial v_2} \dot{v}_3$

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$

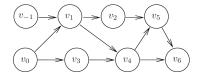


$v_{-1} = x_1$	=1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	=1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v_0$	$_{0} = 1.0000/0.5000$	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	= 3.0000 - 1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
$v_5 = v_2 + v_4$	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
	= 1.4924 * 1.3513	=	2.0167
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924 * 2.0000) =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_{6}$	= 3.0110		

Г	v_{-1}	=	x_1	=	1.5000		
	v_0	=	x_2	=	0.5000		
	v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
	v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
	v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
	v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
	v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
	v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
	y	=	v_6	=	2.0167		

- interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_4 = \frac{\partial v_4}{\partial v_1} \dot{v}_1 + \frac{\partial v_4}{\partial v_2} \dot{v}_3$
- complexity:

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$



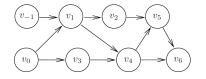
$v_{-1} = x_1$	= 1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v_0$	$_0 = 1.0000/0.5000$	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	=3.0000-1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
$v_5 = v_2 + v_4$	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
$v_6 = v_5 * v_4$	= 1.4924 * 1.3513	=	2.0167
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924 * 2.0000) =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		

v_{-1}	=	x_1	=	1.5000		
v_0	=	x_2	=	0.5000		
v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
y	=	v_6	=	2.0167		

- interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_4 = \frac{\partial v_4}{\partial v_1} \dot{v}_1 + \frac{\partial v_4}{\partial v_2} \dot{v}_3$
- complexity:

$$O(\#edges + \#nodes)$$

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$



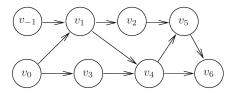
$v_{-1} = x_1$	=1.5000		
$\dot{v}_{-1} = \dot{x}_1$	= 1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v_0$	$_{0} = 1.0000/0.5000$	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
	= 3.0000 - 1.6487	=	1.3513
	= 2.0000 - 0.0000	=	2.0000
$v_5 = v_2 + v_4$	= 0.1411 + 1.3513	=	1.4924
	= -1.9800 + 2.0000	=	0.0200
	= 1.4924 * 1.3513		
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924 * 2.0000) =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		

v_{-1}	. =	x_1	=	1.5000		
v_0	=	x_2	=	0.5000		
v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
y	=	v_6	=	2.0167		

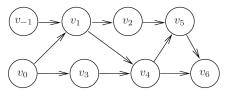
- interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_4 = \frac{\partial v_4}{\partial v_1} \dot{v}_1 + \frac{\partial v_4}{\partial v_2} \dot{v}_3$
- complexity:

O(#edges + #nodes)

- for $f: \mathbb{R}^n \to \mathbb{R}^m$, make n forward passes: $O\left(n\left(\#\text{edges} + \#\text{nodes}\right)\right)$



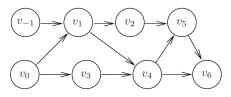
```
v_{-1} = x_1 = 1.5000
      v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
                v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                       v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                            y = v_6 = 2.0167
                            \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                       \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                       \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
                \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
      \bar{x}_2 = \bar{v}_0 = -13.7239
\bar{x}_1 = \bar{v}_{-1} = 3.0118
```



```
v_{-1} = x_1 = 1.5000
      v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
                v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                           y = v_6 = 2.0167
                            \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
                \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
             \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
      \bar{x}_2 = \bar{v}_0 = -13.7239
```

 $\bar{x}_1 = \bar{v}_{-1} = 3.0118$

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)

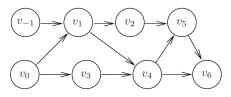


```
v_{-1} = x_1 = 1.5000
     v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
               v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                           u = v_6 = 2.0167
                           \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
               \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
     \bar{x}_2 = \bar{v}_0 = -13.7239
```

 $\bar{x}_1 = \bar{v}_{-1} = 3.0118$

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)
- for each node, sum up partials over all outgoing edges, e.g.,

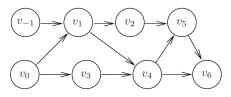
$$\overline{v}_4 = \frac{\partial v_5}{\partial v_4} \overline{v}_5 + \frac{\partial v_6}{\partial v_4} \overline{v}_6$$



```
v_{-1} = x_1 = 1.5000
     v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
               v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                           u = v_6 = 2.0167
                           \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
               \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
     \bar{x}_2 = \bar{v}_0 = -13.7239
```

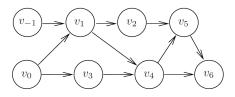
 $\bar{x}_1 = \bar{v}_{-1} = 3.0118$

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)
- for each node, sum up partials over all outgoing edges, e.g., $\overline{v}_4 = \frac{\partial v_5}{\partial v_4} \overline{v}_5 + \frac{\partial v_6}{\partial v_4} \overline{v}_6$
- complexity:



```
v_{-1} = x_1 = 1.5000
     v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
                v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                            u = v_6 = 2.0167
                            \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
                \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
     \bar{x}_2 = \bar{v}_0 = -13.7239
\bar{x}_1 = \bar{v}_{-1} = 3.0118
```

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)
- for each node, sum up partials over all outgoing edges, e.g., $\overline{v}_4 = \frac{\partial v_5}{\partial v_4} \overline{v}_5 + \frac{\partial v_6}{\partial v_4} \overline{v}_6$
 - complexity:
 - $O\left(\#\mathsf{edges} + \#\mathsf{nodes}\right)$



```
v_{-1} = x_1 = 1.5000
     v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
               v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                           u = v_6 = 2.0167
                           \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
               \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
     \bar{x}_2 = \bar{v}_0 = -13.7239
```

 $\bar{x}_1 = \bar{v}_{-1} = 3.0118$

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)
- for each node, sum up partials over all outgoing edges, e.g., $\overline{v}_4 = \frac{\partial v_5}{\partial m} \overline{v}_5 + \frac{\partial v_6}{\partial m} \overline{v}_6$
 - complexity:

$$O\left(\#\mathsf{edges} + \#\mathsf{nodes}\right)$$

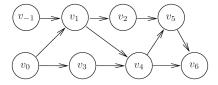
– for $f:\mathbb{R}^n \to \mathbb{R}^m$, make n forward passes:

$$O\left(m\left(\#\mathsf{edges} + \#\mathsf{nodes}\right)\right)$$

example from Ch 1 of [Griewank and Walther, 2008]

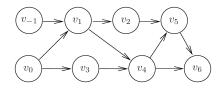
For general function $f: \mathbb{R}^n \to \mathbb{R}^m$, suppose there is no loop in the computational graph, i.e., **acyclic graph**.

Define E: set of edges ; V: set of nodes



For general function $f: \mathbb{R}^n \to \mathbb{R}^m$, suppose there is no loop in the computational graph, i.e., **acyclic graph**.

Define E: set of edges ; V: set of nodes



	forward mode	reverse mode	
start from	roots	leaves	
end with	end with leaves roots		
invariants	$\dot{v}_i \doteq \frac{\partial v_i}{\partial x}$ (x—root of interest)	$\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (y—leaf of interest)	
rule	sum over incoming edges	sum over outgoing edges	
complexity	O(n E +n V)	O(m E +m V)	
better when	$m \gg n$	$n\gg m$	

Consider $f(x): \mathbb{R}^n \to \mathbb{R}^m$. Let v_s 's be the variables in its computational graph. Particularly, $v_{n-1} = x_1, v_{n-2} = x_2, \dots, v_0 = x_n$. $D_p(\cdot)$ means directional derivative wrt p. In practical implementations,

Consider $f(x): \mathbb{R}^n \to \mathbb{R}^m$. Let v_s 's be the variables in its computational graph. Particularly, $v_{n-1} = x_1, v_{n-2} = x_2, \dots, v_0 = x_n$. $D_p(\cdot)$ means directional derivative wrt p. In practical implementations,

forward mode: compute $J_f p$, i.e., Jacobian-vector product

Consider $f\left(x\right):\mathbb{R}^{n}\to\mathbb{R}^{m}$. Let v_{s} 's be the variables in its computational graph. Particularly, $v_{n-1}=x_{1},v_{n-2}=x_{2},\ldots,v_{0}=x_{n}.$ $D_{p}\left(\cdot\right)$ means directional derivative wrt p. In practical implementations,

forward mode: compute $J_f p$, i.e., Jacobian-vector product

- Why? (1) Columns of J_f can be obtained by setting $p=e_1,\ldots,e_n$. (2) When J_f has special structures (e.g., sparsity), save computation by judicious choices of p's (3) Problem may only need $J_f p$ for a specific p, not J_f itself—save computation again

Consider $f\left(x\right):\mathbb{R}^{n}\to\mathbb{R}^{m}$. Let v_{s} 's be the variables in its computational graph. Particularly, $v_{n-1}=x_{1},v_{n-2}=x_{2},\ldots,v_{0}=x_{n}.$ $D_{p}\left(\cdot\right)$ means directional derivative wrt p. In practical implementations,

forward mode: compute ${m J}_f{m p}$, i.e., Jacobian-vector product

- Why? (1) Columns of J_f can be obtained by setting $p=e_1,\ldots,e_n$. (2) When J_f has special structures (e.g., sparsity), save computation by judicious choices of p's (3) Problem may only need $J_f p$ for a specific p, not J_f itself—save computation again
- How? (1) initialize $D_p v_{n-1} = p_1, \ldots, D_p v_0 = p_n$. (2) apply chain rule:

$$\nabla_{\boldsymbol{x}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} \nabla_{\boldsymbol{x}} v_j \Longrightarrow D_{\boldsymbol{p}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} D_{\boldsymbol{p}} v_j$$

Consider $f(x): \mathbb{R}^n \to \mathbb{R}^m$. Let v_s 's be the variables in its computational graph. Particularly, $v_{n-1} = x_1, v_{n-2} = x_2, \dots, v_0 = x_n$. $D_p(\cdot)$ means directional derivative wrt p. In practical implementations,

forward mode: compute $J_f p$, i.e., Jacobian-vector product

- Why? (1) Columns of J_f can be obtained by setting $p=e_1,\ldots,e_n$. (2) When J_f has special structures (e.g., sparsity), save computation by judicious choices of p's (3) Problem may only need $J_f p$ for a specific p, not J_f itself—save computation again
- How? (1) initialize $D_{p}v_{n-1}=p_1,\ldots,D_{p}v_0=p_n$. (2) apply chain rule:

$$\nabla_{\boldsymbol{x}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} \nabla_{\boldsymbol{x}} v_j \Longrightarrow D_{\boldsymbol{p}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} D_{\boldsymbol{p}} v_j$$

reverse mode: compute $m{J}_f^{\rm T} q =
abla_x \, (f^{\rm T} q)$, i.e., Jacobian-trans-vector product

Consider $f(x): \mathbb{R}^n \to \mathbb{R}^m$. Let v_s 's be the variables in its computational graph. Particularly, $v_{n-1} = x_1, v_{n-2} = x_2, \dots, v_0 = x_n$. $D_p(\cdot)$ means directional derivative wrt p. In practical implementations,

forward mode: compute $J_f p$, i.e., Jacobian-vector product

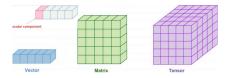
- Why? (1) Columns of J_f can be obtained by setting $p=e_1,\ldots,e_n$. (2) When J_f has special structures (e.g., sparsity), save computation by judicious choices of p's (3) Problem may only need $J_f p$ for a specific p, not J_f itself—save computation again
- How? (1) initialize $D_{p}v_{n-1}=p_1,\ldots,D_{p}v_0=p_n$. (2) apply chain rule:

$$\nabla_{\boldsymbol{x}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} \nabla_{\boldsymbol{x}} v_j \Longrightarrow D_{\boldsymbol{p}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} D_{\boldsymbol{p}} v_j$$

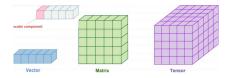
reverse mode: compute $m{J}_f^{\mathsf{T}} q =
abla_{m{x}} \left(f^{\mathsf{T}} q \right)$, i.e., Jacobian-trans-vector product

- Why? Similar to the above
- How? Track $\frac{d}{dv_i}\left(f^\intercal q\right)$: $\frac{d}{dv_i}\left(f^\intercal q\right) = \sum_{k: \mathrm{outgoing}} \frac{\partial v_k}{\partial v_i} \frac{d}{dv_k}\left(f^\intercal q\right)$

Tensors: multi-dimensional arrays

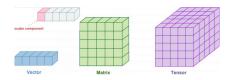


Tensors: multi-dimensional arrays

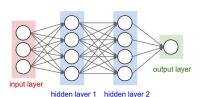


Each node in the computational graph can be a tensor (scalar, vector, matrix, 3-D tensor, ...)

Tensors: multi-dimensional arrays

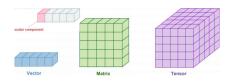


Each node in the computational graph can be a tensor (scalar, vector, matrix, 3-D tensor, ...)

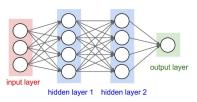


$$\begin{split} f\left(\boldsymbol{W}\right) &= \\ \left\|\boldsymbol{Y} - \sigma\left(\boldsymbol{W}_{k}\sigma\left(\boldsymbol{W}_{k-1}\sigma\ldots\left(\boldsymbol{W}_{1}\boldsymbol{X}\right)\right)\right)\right\|_{F}^{2} \end{split}$$

Tensors: multi-dimensional arrays



Each node in the computational graph can be a tensor (scalar, vector, matrix, 3-D tensor, ...)



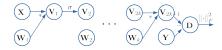
$$f(\boldsymbol{W}) = \|\boldsymbol{Y} - \sigma(\boldsymbol{W}_{k}\sigma(\boldsymbol{W}_{k-1}\sigma\dots(\boldsymbol{W}_{1}\boldsymbol{X})))\|_{F}^{2}$$

computational graph for DNN

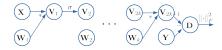
– Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple



- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation



- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation
- Basis of implementation for: Tensorflow, Pytorch, Jax, etc
 Jax: https://github.com/google/jax



- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation
- Basis of implementation for: Tensorflow, Pytorch, Jax, etc Jax: https://github.com/google/jax

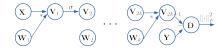
Good to know:

- In practice, graphs are built automatically by software

- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation
- Basis of implementation for: Tensorflow, Pytorch, Jax, etc Jax: https://github.com/google/jax

Good to know:

- In practice, graphs are built automatically by software
- Higher-order derivatives can also be done, particularly Hessian-vector product $\nabla^2 f(x) v$ (Check out Jax!)



- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation
- Basis of implementation for: Tensorflow, Pytorch, Jax, etc
 Jax: https://github.com/google/jax

Good to know:

- In practice, graphs are built automatically by software
- Higher-order derivatives can also be done, particularly Hessian-vector product $\nabla^2 f(x) v$ (Check out Jax!)
- Auto-diff in Tensorflow and Pytorch are specialized to DNNs and focus on 1st order, Jax (in Python) is full fledged and also supports GPU

- Abstract out low-level details; operations are often simple $e.g.,*,\sigma$ so partials are simple
- Tensor (i.e., vector) chain rules apply, often via tensor-free computation
- Basis of implementation for: Tensorflow, Pytorch, Jax, etc Jax: https://github.com/google/jax

Good to know:

- In practice, graphs are built automatically by software
- Higher-order derivatives can also be done, particularly Hessian-vector product $\nabla^2 f(x) v$ (Check out Jax!)
- Auto-diff in Tensorflow and Pytorch are specialized to DNNs and focus on 1st order, Jax (in Python) is full fledged and also supports GPU
- General resources for autodiff: http://www.autodiff.org/,
 [Griewank and Walther, 2008]

Autodiff in Pytorch

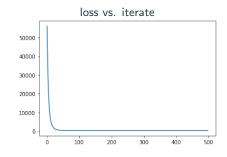
Solve least squares $f\left(x\right)=\frac{1}{2}\left\|y-Ax\right\|_{2}^{2}$ with $\nabla f\left(x\right)=-A^{\intercal}\left(y-Ax\right)$

```
import torch
import matplotlib.pyplot as plt
dtype = torch.float
device = torch.device("cpu")
n. p = 500. 100
A = torch.randn(n, p, device=device, dtype=dtype)
y = torch.randn(n, device=device, dtype=dtype)
x = torch.randn(p, device=device, dtvpe=dtvpe, requires grad=True)
step size = 1e-4
num step = 500
loss vec = torch.zeros(500, device=device, dtype=dtype)
for t in range(500):
 pred = torch.matmul(A, x)
 loss = torch.pow(torch.norm(y - pred), 2)
 loss vec[t] = loss.item()
  # one line for computing the gradient
  loss.backward()
  # updates
 with torch.no grad():
   x -= step size*x.grad
    # zero the gradient after updating
    x.grad.zero ()
plt.plot(loss vec.numpy())
```

Autodiff in Pytorch

Solve least squares $f\left(m{x}\right) = \frac{1}{2}\left\|m{y} - m{A}m{x}\right\|_2^2$ with $\nabla f\left(m{x}\right) = -m{A}^{\intercal}\left(m{y} - m{A}m{x}\right)$

```
import torch
import matplotlib.pyplot as plt
dtype = torch.float
device = torch.device("cpu")
n. p = 500. 100
A = torch.randn(n, p, device=device, dtype=dtype)
v = torch.randn(n, device=device, dtvpe=dtvpe)
x = torch.randn(p, device=device, dtype=dtype, requires_grad=True)
step size = 1e-4
num step = 500
loss vec = torch.zeros(500, device=device, dtype=dtype)
for t in range(500):
 pred = torch.matmul(A, x)
  loss = torch.pow(torch.norm(y - pred), 2)
 loss vec[t] = loss.item()
  # one line for computing the gradient
  loss.backward()
  # updates
 with torch.no grad():
    x -= step size*x.grad
    # zero the gradient after updating
    x.grad.zero ()
plt.plot(loss vec.numpy())
```



Autodiff in Pytorch

Train a shallow neural network

$$f\left(\boldsymbol{W}\right) = \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{2}\sigma\left(\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right)\right\|_{2}^{2}$$

where $\sigma(z) = \max(z, 0)$, i.e., ReLU

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

- torch.mm
- torch.clamp
- torch.no_grad()

Back propagation is reverse mode auto-differentiation!

Outline

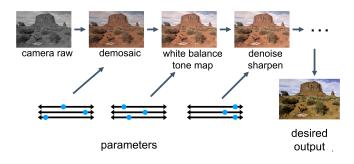
Analytic differentiation

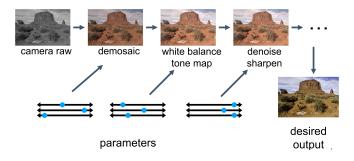
Finite-difference approximation

Automatic differentiation

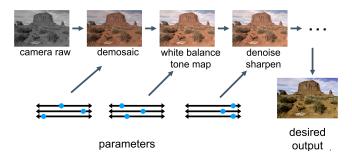
Differentiable programming

Suggested reading

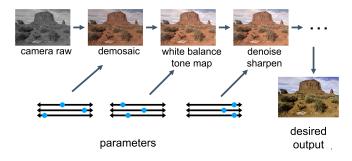




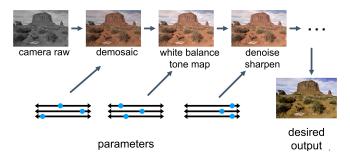
– Each stage applies a parameterized function to the image, i.e., $q_{\boldsymbol{w}_k} \circ \cdots \circ h_{\boldsymbol{w}_3} \circ g_{\boldsymbol{w}_2} \circ f_{\boldsymbol{w}_1}\left(\boldsymbol{X}\right)$ (\boldsymbol{X} is the camera raw)



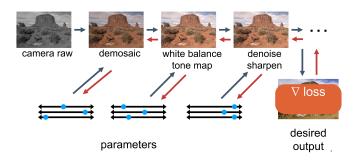
- Each stage applies a parameterized function to the image, i.e., $q_{\boldsymbol{w}_k} \circ \cdots \circ h_{\boldsymbol{w}_3} \circ g_{\boldsymbol{w}_2} \circ f_{\boldsymbol{w}_1}\left(\boldsymbol{X}\right)$ (\boldsymbol{X} is the camera raw)
- The parameterized functions may or may not be DNNs



- Each stage applies a parameterized function to the image, i.e., $q_{w_k} \circ \cdots \circ h_{w_3} \circ g_{w_2} \circ f_{w_1}(X)$ (X is the camera raw)
- The parameterized functions may or may not be DNNs
- Each function may be analytic, or simply a chunk of codes dependent on the parameters

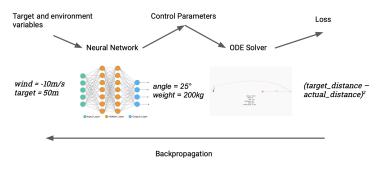


- Each stage applies a parameterized function to the image, i.e., $q_{w_k} \circ \cdots \circ h_{w_3} \circ g_{w_2} \circ f_{w_1}(X)$ (X is the camera raw)
- The parameterized functions may or may not be DNNs
- Each function may be analytic, or simply a chunk of codes dependent on the parameters
- $oldsymbol{w}_i$'s are the trainable parameters



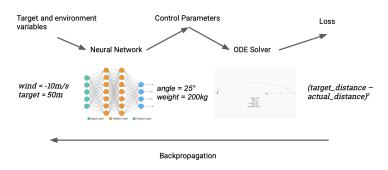
- the trainable parameters are learned by gradient descent based on auto-differentiation
- This is generalization of training DNNs with the classic feedforward structure to training general parameterized functions, using derivative-based methods

Example: control a trebuchet



https://fluxml.ai/2019/03/05/dp-vs-rl.html

Example: control a trebuchet



https://fluxml.ai/2019/03/05/dp-vs-rl.html

- Given wind speed and target distance, the DNN predicts the angle of release and mass of counterweight
- Given the angle of release and mass of counterweight as initial conditions,
 the ODE solver calculates the actual distance by iterative methods
- We perform auto-differentiation through the iterative ODE solver and the DNN

Differential programming

Interesting resources

- Notable implementations: Swift for Tensorflow https://www.tensorflow.org/swift, and Zygote in Julia https://github.com/FluxML/Zygote.jl
- Flux: machine learning package based on Zygote https://fluxml.ai/
- Taichi: differentiable programming language tailored to 3D computer graphics
 https://github.com/taichi-dev/taichi

Outline

Analytic differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Autodiff in DNNs

- http: //neuralnetworksanddeeplearning.com/chap2.html
- https://colah.github.io/posts/2015-08-Backprop/

Differentiable programming

- https://en.wikipedia.org/wiki/Differentiable_
 programming
- https://fluxml.ai/2019/02/07/
 what-is-differentiable-programming.html
- https://fluxml.ai/2019/03/05/dp-vs-rl.html

References i

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017). Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1):5595–5637.

[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). **Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.** Society for Industrial and Applied Mathematics.