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— lterative methods: find 10SP’s/20SP’s by making consecutive small

movements
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Iterative methods

Credit: aria42.com

[llustration of iterative
methods on the
contour/levelset plot (i.e., the
function assumes the same
value on each curve)
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Iterative methods

[llustration of iterative
methods on the
contour/levelset plot (i.e., the
function assumes the same
value on each curve)

Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

— Line-search methods: direction first, size second

— Trust-region methods: size first, direction second
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Classic line-search methods
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Framework of line-search methods

A generic line search algorithm

Input: initialization x(, stopping criterion (SC), k =1
1: while SC not satisfied do
2:  choose a direction dy
3:  decide a step size t,
4. make a step: xp = xp_1 + tpdg
5. update counter: k =k + 1
6: end while
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Framework of line-search methods

A generic line search algorithm

Input: initialization x(, stopping criterion (SC), k =1
1: while SC not satisfied do
2:  choose a direction dy
3:  decide a step size t,
4. make a step: xp = xp_1 + tpdg
5. update counter: k =k + 1
6: end while

Four questions:

— How to choose direction d?

How to choose step size t}.?
Where to initialize?
— When to stop?
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How to choose a search direction?

We want to decrease the function value toward global minimum...
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How to choose a search direction?

We want to decrease the function value toward global minimum...
shortsighted answer: find a direction to decrease most rapidly

for any fixed ¢ > 0, using 1st order Taylor
expansion

f(xk +tdgy1) = f () 2 t(Vf(x) , diei1)

. \—/ (xr)
min (Vf(xg),v) —v=——"""—
uv\|2:1< flax),v) IV f (zk)]|,

Set dj, = —Vf (.'Ek)

gradient /steepest descent: x; 1 = x — tV f ()
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Gradient descent

ming, xTAxz +bTx

typical zig-zag path condltlonlng affects the path Iength

fla,y) = 2" -y

— remember direction curvature?
vIVEf ()0 = &= f (x + tv)

— large curvature < narrow valley

— directional curvatures encoded
in the Hessian
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How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly
farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion
f®s +tv) — f(v) = E(Vf (1), v)
1
+ §t2 <v, V2f (k) 'v>

minimizing the right side X
= wv=—t""[V3f ()] Vf(x)

grad desc: green; Newton: red

Set di = [V2f (k)] ' VI (k)

Newton’s method: @1 = @y —t [V2f (@1)] ' Vf (z1),

t can set to be 1.
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Why called Newton’s method?
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Why called Newton’s method?

Newton's method: @41 =z, — t [V2f (a:k)rl Vf(xp),

Recall Newton’s method for root-finding
rps1 = 2 — [ (20) f (20)
Newton's method for solving nonliear system f () =0
Tpy1 =z — [J (an)]T f ()
Newton's method for solving V f (x) =0
Tpy1 = — [V2f (3377,)]_1 I (zn)
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How to choose a search direction?

nearsighted choice: cost O(n) per step

gradient/steepest descent:
Tpr1 = xk — tV [ (x)

farsighted choice: cost O(n®) per step

Newton’s method: x;1 =
x, —t [V2f (@) VS (@),

%o

Implication: The plain Newton never
grad desc: green; Newton: red

, used for large-scale problems. More on
Newton's method take fewer steps .

this later ...
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Newton’s method: @1 =@, —t [V f (z)] BAACI]

for any fixed ¢ > 0, using 2nd-order Taylor expansion
[k +tv) = f (v) = (V] (2k),v)
+ %tQ (v, V2 f (k) v)
minimizing the right side = v = —t =" [V*f (x4)] vy (zr)
— V?f (xx) may be non-invertible

— the minimum value is —1 <Vf (zk), [V f (a:k)}71 i (a:k)> If

V2 f (z1) not positive definite, may be positive

solution: e.g., modify the Hessian V2 f (x1,) 4+ 7I with 7 sufficiently large
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How to choose step size?

T = Tr—1 + teds

— Naive choice: sufficiently small constant ¢ for all k

— Robust and practical choice: back-tracking line search
Intuition for back-tracking line search:

— By Taylor’s theorem,
[ (4 tdy) = f(xk) + t(Vf (zk),di) + 0 (t]|dr]l,) when t sufficiently
small — ¢t (Vf (xr),d)) dictates the value decrease

— But we also want ¢ large as possible to make rapid progress

— idea: find a large possible t* to make sure
f(xe+t7di) — f (k) < ct™ (Vf(xr),dr) (key condition) for a chosen
parameter ¢ € (0,1), and no less

— details: start from ¢ = 1. If the key condition not satisfied, ¢t = pt for a

chosen parameter p € (0, 1).
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Back-tracking line search

A widely implemented strategy in numerical optimization packages

Back-tracking line search

Input: initial £ >0, p € (0,1), c€ (0,1)
1: while f (CL‘k + tdk) —f (:ck) >ct <Vf (:Bk) ,dk> do
2: t=pt
3: end while

Output: ¢, =t.
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Where to initialize?

)
3 gey) = arsin(biz + ey) + di cos(eiz + f;
fay)=a* 43 o) = Y essinlhe ) ¢ dyeos(er + )

convex vs. nonconvex functions
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Where to initialize?

2
) gle.y) =Y aisin(biz + ciy) + di cos(eia + fiy)
=

fay) = +y .

T

convex vs. nonconvex functions

— Convex: most iterative methods converge to the global min no matter the
initialization

— Nonconvex: initialization matters a lot. Common heuristics: random
initialization, multiple independent runs

— Nonconvex: clever initialization is possible with certain assumptions on
the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!
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1st-order necessary condition: Assume f is 1st-order differentiable at xo.

If &0 is a local minimizer, then V f (zo) = 0.
2nd-order necessary condition: Assume f (x) is 2-order differentiable at
xo. If o is a local min, V£ (xo) = 0 and V[ (x0) = 0.
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1st-order necessary condition: Assume f is 1st-order differentiable at xo.

If &0 is a local minimizer, then V f (zo) = 0.
2nd-order necessary condition: Assume f (x) is 2-order differentiable at
xo. If o is a local min, V£ (xo) = 0 and V[ (x0) = 0.

Fix some positive tolerance values ¢4, e, €, €,. Possibilities:
= IVF (@)l < g
- IV (@), < &g and Ain (V2 f (T1)) > —2n

[f (wx) = f(®p-1)| <

ler — zp—1]l, < €0
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Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!
(see, e.g., [Murty and Kabadi, 1987])
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Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!
(see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: Vf (x0) = 0 and V2f (zo) = 0
2nd order necessary: Vf (zo) = 0 and V2f (x0) = 0

flay) =a® =y g(z,y) =2° —y°

Cases in between: local shapes around SOSP determined by spectral properties
of higher-order derivative tensors, calculating which is

hard [Hillar and Lim, 2013]!
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Advanced line-search methods
Momentum methods
Quasi-Newton methods
Coordinate descent

Conjugate gradient methods
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Advanced line-search methods

Momentum methods
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Why momentum?

gradient descent

Credit: Princeton ELE522

— GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

— Newton's convergence is not sensitive to conditioning but
expensive (O(n?) per step)
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Why momentum?

gradient descent

Credit: Princeton ELE522

— GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning
— Newton's convergence is not sensitive to conditioning but

expensive (O(n?) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

19/43



Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change
velocity.
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Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change
velocity.

Tp+1 =@k — V[ (xr) + Bk (xr — Tk—1) due to Polyak
[ —

momentum

heavy-ball method
Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 20/43



Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

Tpt1 =Tk + B (Tk — Tr—1) — &V f (Tr + B (ks — Tr—1))
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Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

Tpt1 =Tk + B (Tk — Tr—1) — &V f (Tr + B (ks — Tr—1))

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Credit: Stanford CS231N

HB Tahead = T + B(x — Tola),
Tnew = Tahead — @V f ().

Tahead = & + B(z — Zoid),

Nesterov
Znew = Zahead — OV f(Tahead)-
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Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

Tpt1 =Tk + B (Tk — Tr—1) — &V f (Tr + B (ks — Tr—1))

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum

momentum
step

step
actual step

actual step

gradient
step

Credit: Stanford CS231N

HB Tahead = 2 + B(T — Told), Nesterov Tahead = & + B(z — Zoid),
Tnew = Tahead — @V f (). Tnew = Zahead — OV f(Zanead)-

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].
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Advanced line-search methods

Quasi-Newton methods
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Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n?) storage and O(n®*) computation per step

Try1 =Tk — L [VQf (:Bk)] ! Vf (l’k)
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Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n?) storage and O(n®*) computation per step

Try1 =Tk — L [VQf (:l:k)] ! Vf (!Bk)

Idea: approximate V2f (x) or [VQf (mk)] ~! to allow efficient storage and
computation — Quasi-Newton Methods

Choose H, to approximate V2 f (x) so that

— avoid calculation of second derivatives

— simplify matrix inversion, i.e., computing the search direction
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Quasi-Newton methods

given: starting point xo € dom f, Hy > 0

fork=0,1,...

1. compute quasi-Newton direction Axy = —Hk_lVf(xk)

2. determine step size t; (e.g., by backtracking line search)
3. compute xj 1 = xp + tpAxy
4

. compute Hy 1

— Different variants differ on how to compute Hy 1

— Normally kal or its factorized version stored to simplify calculation
of Az,

Credit: UCLA ECE236C
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BFGS method

Broyden—Fletcher-Goldfarb—Shanno (BFGS) method

BFGS update
yy!' HpssTHy
yl's sTHys

where
$= X1 =Xk, Y = VI (ke) = V()

Inverse update

T T T
-1 _ sy -1 ys 5§
wily= (1= ) (1=35) + i
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BFGS update
T T
yy Hyss' Hy
Hpy1 = He + =5——
kel k yl's sTHys

where
$= X1 =Xk, Y = VI (ke) = V()

Inverse update

T T T
ST PO DY P PR
Hk+] - (1 yTA\') Hk (1 yTS) + yTA'

Cost of update: (vs. O(n®) in Newton's method), storage: O(n?)
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BFGS method

Broyden—Fletcher-Goldfarb—Shanno (BFGS) method

BFGS update
yy!' HpssTHy
yl's sTHys

where
$= X1 =Xk, Y = VI (ke) = V()

Inverse update

T T T
() (o2t s
H’”'_([ yTs)Hk (1 yTS)erTX

Cost of update: O(n?) (vs. O(n®) in Newton's method), storage: O(n?) To
derive the update equations, three conditions are imposed:

— secant condition: Hy1+18 = y (think of 1st Taylor expansion to V f)
— Curvature condition: s{yk > 0 to ensure that Hy4+1 >~ 0 if H; > 0

— Hy41 and Hy are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] credit: UCLA ECE236C
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Limited-memory BFGS (L-BFGS)

Limited-memory BFGS (L-BFGS): do not store H’k’l explicitly
* instead we store up to m (e.g., m = 30) values of

§j = Xj41 — Xj, yj = V.f'(xjﬂ) - Vf(f"j)
* we evaluate Axy = H}(’1Vf(xk) recursively, using

Y AT
- _ 4 -1+ -
17 y]fr.\"j / \Tsj ¥s;

“J J

forj=k-1,...,k —m, assuming, for example, H;_,, = [

e an alternative is to restart after m iterations
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Limited-memory BFGS (L-BFGS)

Limited-memory BFGS (L-BFGS): do not store H’k’l explicitly

* instead we store up to m (e.g., m = 30) values of
§j = Xj41 — Xj, yj = V.f'(xjﬂ) - Vf(f"j)
* we evaluate Axy = H}(’1Vf(xk) recursively, using
ol (1 S.fyf) - (1 vis] ) )5}
- - -+ —
+1 T | T T
/ Y S Yisil  ¥s

forj=k-1,...,k —m, assuming, for example, H;_,, = [

e an alternative is to restart after m iterations

Cost of update: (vs. O(n?) in BFGS), storage: (vs. O(n?) in
BFGS) —

See Chap 7 of [Nocedal and Wright, 2006] credit: UCLA ECE236C
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Advanced line-search methods

Coordinate descent
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Block coordinate descent

Consider a function f (x1,...,xp) with &1 € R™, ..., &, € R"?
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Block coordinate descent

Consider a function f (x1,...,xp) with &1 € R™, ..., &, € R"?

A generic block coordinate descent algorithm

Input: initialization (21,0, ..., Zp,0) (the 2nd subscript indexes iteration number)
1. for k=1,2,... do
2:  Pick a block index i € {1,...,p}

3: Minimize wrt the chosen block:

ik = argmingcgn; f(T1,h—1, s Bic1,k—1,&, Tit1, k=1, -+, Tp,k—1)
4. Leave other blocks unchanged: ;1 = ;-1 V j # i
5: end for
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Block coordinate descent

Consider a function f (x1,...,xp) with &1 € R™, ..., &, € R"?

A generic block coordinate descent algorithm

Input: initialization (21,0, ..., Zp,0) (the 2nd subscript indexes iteration number)
1. for k=1,2,... do
2:  Pick a block index i € {1,...,p}

3: Minimize wrt the chosen block:

ik = argmingcgn; f(T1,h—1, s Bic1,k—1,&, Tit1, k=1, -+, Tp,k—1)
4. Leave other blocks unchanged: ;1 = ;-1 V j # i
5: end for

— Also called alternating direction/minimization methods
— When ny =ng =--- =n, =1, called coordinate descent

— Minimization in Line 3 can be inexact: e.g.,

3
Tik = Lik—1 *tkrff Llk—1y+++ Li—1,k—1,Ljk—1,Lit1,k—15--+,Lpk—1
s s o€ s 5 y , P,
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Block coordinate descent

Consider a function f (x1,...,xp) with &1 € R™, ..., &, € R"?

A generic block coordinate descent algorithm

Input: initialization (21,0, ..., Zp,0) (the 2nd subscript indexes iteration number)

1. for k=1,2,... do

2:  Pick a block index i € {1,...,p}
3: Minimize wrt the chosen block:
Tik = argmingcpn; f(@1k—1s ic1k—1, & Tig 1 =1, -+ -y Tpl—1)
4: Leave other blocks unchanged: ;1 = ;-1 V j # i
5: end for

Also called alternating direction/minimization methods

When nqy =ng = --- =np, = 1, called coordinate descent

Minimization in Line 3 can be inexact: e.g.,

Lik = Lik—1 *tk% (5151,1@71, ey L1, k—1, Lik—1, Lit1,k—1y-- - a:p,kfl)

In Line 2, many different ways of picking an index, e.g., cyclic, randomized,
weighted sampling, etc
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Block coordinate descent: examples

Least-squares min,, f (x) = |y — Az’

= lly — Az|; = lly — A_jz—; — aji]”
~ coordinate descent: minger [y — A @i — a;é|’

<y_A7'L93fi:ai>
lla:ll2

:>‘/L.’L+:

(A_; is A with the i-th column removed; ©_; is « with the i-th

coordinate removed)
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Block coordinate descent: examples

Least-squares min,, f (x) = |y — Az’

= lly — Az|; = lly — A_jz—; — aji]”
~ coordinate descent: minger [y — A @i — a;é|’

<y_A7'wai:a'i>
lla:ll2

— ‘/L.’L+ =
(A_; is A with the i-th column removed; ©_; is « with the i-th
coordinate removed)

Matrix factorization ming g ||Y — AB||§7

— Two groups of variables, consider block coordinate descent
— Updates:

A, =YB",

B, =A'Y.

() denotes the matrix pseudoinverse.)
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Why block coordinate descent?

— may work with constrained problems and non-differentiable
problems (e.g., ming g [|Y — ABH%, s.t. A orthogonal,
Lasso: ming |y — Az|5 4+ A|z|,)

30,43
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https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Why block coordinate descent?

— may work with constrained problems and non-differentiable
problems (e.g., ming g [|Y — ABH%, s.t. A orthogonal,
Lasso: ming |y — Az|5 4+ A|z|,)

— may be faster than gradient descent or Newton (next)

— may be simple and cheap!
Some references:

— [Wright, 2015]
— Lecture notes by Prof. Ruoyu Sun
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Advanced line-search methods

Conjugate gradient methods
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Conjugate direction methods

Solve linear equation y = Az <= min, ;x"Ax — b'x with A > 0
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Conjugate direction methods
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apply coordinate descent...
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Conjugate direction methods

Solve linear equation y = Az <= min, ;x"Ax — b'x with A > 0

apply coordinate descent...

]

¢

diagonal A: solve the problem in n non-diagonal A: does not solve the
steps problem in n steps
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Conjugate direction methods

Solve linear equation y = Ax <= min, ixTAx — bTx with A >0

non-diagonal A: does not solve
the problem in n steps
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Conjugate direction methods

Solve linear equation y = Ax <= min, ixTAx — bTx with A >0
Idea: define n “conjugate directions”
{Py1;--.,p,} so that p] Ap, = 0 for all
i #

non-diagonal A: does not solve
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— Write = Ps. Then jxT Az — b'x =
18T (PTAP)s — (P"b)" s — quadratic
with diagonal PTAP

_ — Perform updates in the s space, but write

. the equivalent form in x space
non-diagonal A: does not solve . P

the problem in n steps — The i-the coordinate direction in the s
space is p, in the o space

33/43



Conjugate direction methods

Solve linear equation y = Ax <= min, ixTAx — bTx with A >0

Idea: define n “conjugate directions”
{Py1;--.,p,} so that p] Ap, = 0 for all

i # j—conjugate as generalization of orthogonal

— Write P = [py,...,p,]. Can verify that
PTAP is diagonal and positive

— Write = Ps. Then jxT Az — b'x =
18T (PTAP)s — (P"b)" s — quadratic
with diagonal PTAP

_ — Perform updates in the s space, but write

. the equivalent form in x space
non-diagonal A: does not solve . P

the problem in n steps — The i-the coordinate direction in the s
space is p, in the o space

In short, change of variable trick!
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Conjugate gradient methods

Solve linear equation y = Az <= min, iz’ Ax — b'x with A > 0
Idea: define n “conjugate directions” {p,,...,p,} so that p] Ap; =0 for all

i J—
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Conjugate gradient methods

Solve linear equation y = Az <= min, iz’ Ax — b'x with A > 0
Idea: define n “conjugate directions” {p,,...,p,} so that p] Ap; =0 for all

1 # j—conjugate as generalization of orthogonal

Generally, many choices for {p,,...,p, }.
Conjugate gradient methods: choice based on ideas from steepest descent
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Conjugate gradient methods

Solve linear equation y = Az <= min, iz’ Ax — b'x with A > 0
Idea: define n “conjugate directions” {p,,...,p,} so that p] Ap; =0 for all

1 # j—conjugate as generalization of orthogonal

Generally, many choices for {p,,...,p, }.
Conjugate gradient methods: choice based on ideas from steepest descent

Algorithm 5.2 (CG).
Given xg;
Setrg <— Axg — b, pg < —rg, k < 0;
while ry # 0

T

o <~ };‘ i ; (5.24a)
Pr APk

Xit1 <= X + o Pis (5.24b)

Fig1 < T+ arApg: (5.24¢)

rkT+1Vk+1

Bt < —5— (5.24d)
rk 143

Pkt < —Tkg1 + Brs1Pis (5.24¢)

k<—k+1; (5.24f)

end (while) 34/43



Conjugate gradient methods

CG vs. GD (Green: GD,
Red: CG)
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Conjugate gradient methods

— Can be extended to general

non-quadratic functions

— Often used to solve
subproblems of other
iterative methods, e.g.,
truncated Newton method,
the trust-region subproblem
(later)

See Chap 5
of [Nocedal and Wright, 2006]

CG vs. GD (Green: GD,

Red: CG)
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Trust-region methods
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Iterative methods

[llustration of iterative
methods on the
contour/levelset plot (i.e., the
function assumes the same
value on each curve)

Credit: aria42.com

Two questions: what direction to move, and how far to move

Two possibilities:

— Line-search methods: direction first, size second

— Trust-region methods (TRM): size first, direction second

37/43



Ideas behind TRM

Recall Taylor expansion f (z +d) ~ f () + (V[ (zk),d) + 3 (d, V> f (x) d)

Start with x¢. Repeat the following:

ntours of M,

Credit: [Arezki et al., 2018]
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Ideas behind

Recall Taylor expansion f (z +d) ~ f () + (V[ (zk),d) + 3 (d, V> f (x) d)

Start with x¢. Repeat the following:

— At x, approximate f by the quadratic function
(called model function dotted black)

i (d) = f (@) + (V5 (@) d) + 5 {d, B1d)

i.e.,, my (d) = f (xy + d), and By, to approximate
V2 f (k)

Credit: [Arezki et al., 2018]
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Ideas behind

Recall Taylor expansion f (z +d) ~ f () + (V[ (zk),d) + 3 (d, V> f (x) d)
Start with x¢. Repeat the following:

— At x, approximate f by the quadratic function

(called model function dotted black)
1
mi (d) = f(zr) + (VS (@), d) + 5 (d, Brd)

i.e.,, my (d) = f (xy + d), and By, to approximate
V2 (xx)

— Minimize my, (d) within a trust region
{d:||d|]| <A}, ie. anorm ball (in red), to obtain dy

Credit: [Arezki et al., 2018]
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Ideas behind TRM

Recall Taylor expansion f (z +d) ~ f () + (V[ (zk),d) + 3 (d, V> f (x) d)

Start with x¢. Repeat the following:

— At x, approximate f by the quadratic function
(called model function dotted black)

() = J (@) + (Vf (00) ,d) + 5 (d, Brd)

i.e.,, my (d) = f (xy + d), and By, to approximate
V2 f (k)

— Minimize my, (d) within a trust region
{d:||d|]| <A}, ie. anorm ball (in red), to obtain dy

— If the approximation is inaccurate, decrease the region

Credit: [Arezki et al., 2018]

size; if the approximation is sufficiently accurate,
increase the region size.
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Ideas behind TRM

Recall Taylor expansion f (z +d) ~ f () + (V[ (zk),d) + 3 (d, V> f (x) d)

Start with x¢. Repeat the following:

— At x, approximate f by the quadratic function
(called model function dotted black)

() = J (@) + (Vf (00) ,d) + 5 (d, Brd)

i.e.,, my (d) = f (xy + d), and By, to approximate
V2 f (k)

— Minimize my, (d) within a trust region
{d:||d|]| <A}, ie. anorm ball (in red), to obtain dy

— If the approximation is inaccurate, decrease the region

Credit: [Arezki et al., 2018]

size; if the approximation is sufficiently accurate,
increase the region size.
— If the approximation is reasonably accurate, update the
iterate xr4+1 = Tk + di.
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Framework of trust-region methods

To measure approximation quality: pr = %
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Framework of trust-region methods

. . P = f(zep)—f(ep+dr) _ actual decr
To measure approximation quality: p = fkk()(])fsfz(dk‘)) = e

A generic trust-region algorithm

Input: «(, radius cap A > 0, initial radius Ay, acceptance ratio n € [0,1/4)
1: for k=0,1,... do

2 dp, = argming my, (d), s.t. ||d|| < Ap (TR Subproblem)
3 if pj, < 1/4 then

4 App1 = Ag/4

5: else

6: if pp > 3/4 and ||dy|| = Ay then
7: Apy1 = min (QAk, &)

8 else

9: Apir = A

10: end if

11: end if

12: if pp, > n then

13: Tyl = xp +dg

14: else

15: Tyl = Tk

16: end if

17: end for
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Why TRM?

Recall the model function my (d) = f (zx) + (V f (xk),d) + 5 (d, B..d)
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- Take By = V*f ()
— Gradient descent: stop at Vf (zx) =0

— Newton's method: [V2f ()] ! V f (k) may just stop at Vf (zx) = 0
or be ill-defined

— Trust-region method: ming my (d) s.t. ||d]| < Ag

When Vf (zx) = 0,
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Recall the model function my (d) = f (zx) + (V f (xk),d) + 5 (d, B..d)
- Take By = V*f ()
— Gradient descent: stop at Vf (zx) =0

— Newton's method: [V2f ()] ! V f (k) may just stop at Vf (zx) = 0
or be ill-defined

— Trust-region method: ming my (d) s.t. ||d]| < Ag

When Vf (zx) = 0,

fla,y) =2* —

(d,V*f (zk) d) .

N[~

my (d) — f(xr) =

If V2f (21) has negative eigenvalues, i.e., there
are negative directional curvatures,

1{d,V? f (zx) d) < 0 for certain choices of d
(e.g., eigenvectors corresponding to the negative

eigenvalues)
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Why TRM?

Recall the model function my (d) = f (zx) + (V f (xk),d) + 5 (d, B..d)
- Take By = V*f ()
— Gradient descent: stop at Vf (zx) =0

— Newton's method: [V2f ()] ! V f (k) may just stop at Vf (zx) = 0
or be ill-defined

— Trust-region method: ming my (d) s.t. ||d]| < Ag

When Vf (zx) = 0,

fla,y) =2* —

(d,V*f (zk) d) .

N[~

my (d) — f(xr) =

If V2f (21) has negative eigenvalues, i.e., there
are negative directional curvatures,

1{d,V? f (zx) d) < 0 for certain choices of d
(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!
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To learn more about TRM

— A comprehensive reference [Conn et al., 2000]

— A closely-related alternative: cubic regularized second-order
(CRSOM)
method [Nesterov and Polyak, 2006, Agarwal et al., 2018]

— Example implementation of both TRM and CRSOM: Manopt

(in Matlab) https://www.manopt.org/ (choosing the
Euclidean manifold)
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