
Basics of Numerical Optimization:
Iterative Methods

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

February 13, 2020

1 / 43

Find global minimum

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

x with ∇f (x) = 0: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

x with ∇f (x) = 0 and ∇2f (x) � 0: 2nd-order stationary point (2OSP)

– Analytic method: find 1OSP’s using gradient first, then study them using

Hessian — for simple functions! e.g., f (x) = ‖y −Ax‖22, or

f (x, y) = x2y2 − x3y + y2 − 1)

– Grid search: incurs O
(
ε−n

)
cost

– Iterative methods: find 1OSP’s/2OSP’s by making consecutive small

movements

2 / 43

Find global minimum

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

x with ∇f (x) = 0: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

x with ∇f (x) = 0 and ∇2f (x) � 0: 2nd-order stationary point (2OSP)

– Analytic method: find 1OSP’s using gradient first, then study them using

Hessian — for simple functions! e.g., f (x) = ‖y −Ax‖22, or

f (x, y) = x2y2 − x3y + y2 − 1)

– Grid search: incurs O
(
ε−n

)
cost

– Iterative methods: find 1OSP’s/2OSP’s by making consecutive small

movements

2 / 43

Find global minimum

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

x with ∇f (x) = 0: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

x with ∇f (x) = 0 and ∇2f (x) � 0: 2nd-order stationary point (2OSP)

– Analytic method: find 1OSP’s using gradient first, then study them using

Hessian — for simple functions! e.g., f (x) = ‖y −Ax‖22, or

f (x, y) = x2y2 − x3y + y2 − 1)

– Grid search: incurs O
(
ε−n

)
cost

– Iterative methods: find 1OSP’s/2OSP’s by making consecutive small

movements

2 / 43

Find global minimum

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

x with ∇f (x) = 0: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

x with ∇f (x) = 0 and ∇2f (x) � 0: 2nd-order stationary point (2OSP)

– Analytic method: find 1OSP’s using gradient first, then study them using

Hessian — for simple functions! e.g., f (x) = ‖y −Ax‖22, or

f (x, y) = x2y2 − x3y + y2 − 1)

– Grid search: incurs O
(
ε−n

)
cost

– Iterative methods: find 1OSP’s/2OSP’s by making consecutive small

movements

2 / 43

Find global minimum

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

x with ∇f (x) = 0: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

x with ∇f (x) = 0 and ∇2f (x) � 0: 2nd-order stationary point (2OSP)

– Analytic method: find 1OSP’s using gradient first, then study them using

Hessian — for simple functions! e.g., f (x) = ‖y −Ax‖22, or

f (x, y) = x2y2 − x3y + y2 − 1)

– Grid search: incurs O
(
ε−n

)
cost

– Iterative methods: find 1OSP’s/2OSP’s by making consecutive small

movements
2 / 43

Iterative methods

Credit: aria42.com

Illustration of iterative

methods on the

contour/levelset plot (i.e., the

function assumes the same

value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

– Line-search methods: direction first, size second

– Trust-region methods: size first, direction second

3 / 43

Iterative methods

Credit: aria42.com

Illustration of iterative

methods on the

contour/levelset plot (i.e., the

function assumes the same

value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

– Line-search methods: direction first, size second

– Trust-region methods: size first, direction second

3 / 43

Iterative methods

Credit: aria42.com

Illustration of iterative

methods on the

contour/levelset plot (i.e., the

function assumes the same

value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

– Line-search methods: direction first, size second

– Trust-region methods: size first, direction second

3 / 43

Iterative methods

Credit: aria42.com

Illustration of iterative

methods on the

contour/levelset plot (i.e., the

function assumes the same

value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

– Line-search methods: direction first, size second

– Trust-region methods: size first, direction second

3 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

4 / 43

Framework of line-search methods

A generic line search algorithm

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: choose a direction dk

3: decide a step size tk

4: make a step: xk = xk−1 + tkdk

5: update counter: k = k + 1

6: end while

Four questions:

– How to choose direction dk?

– How to choose step size tk?

– Where to initialize?

– When to stop?

5 / 43

Framework of line-search methods

A generic line search algorithm

Input: initialization x0, stopping criterion (SC), k = 1

1: while SC not satisfied do

2: choose a direction dk

3: decide a step size tk

4: make a step: xk = xk−1 + tkdk

5: update counter: k = k + 1

6: end while

Four questions:

– How to choose direction dk?

– How to choose step size tk?

– Where to initialize?

– When to stop?
5 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed t > 0, using 1st order Taylor

expansion

f (xk + tdk+1)− f (xk) ≈ t 〈∇f (xk) ,dk+1〉

min
‖v‖2=1

〈∇f (xk) ,v〉 =⇒ v = − ∇f (xk)

‖∇f (xk)‖2

Set dk = −∇f (xk)

gradient/steepest descent: xk+1 = xk − t∇f (xk)

6 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed t > 0, using 1st order Taylor

expansion

f (xk + tdk+1)− f (xk) ≈ t 〈∇f (xk) ,dk+1〉

min
‖v‖2=1

〈∇f (xk) ,v〉 =⇒ v = − ∇f (xk)

‖∇f (xk)‖2

Set dk = −∇f (xk)

gradient/steepest descent: xk+1 = xk − t∇f (xk)

6 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed t > 0, using 1st order Taylor

expansion

f (xk + tdk+1)− f (xk) ≈ t 〈∇f (xk) ,dk+1〉

min
‖v‖2=1

〈∇f (xk) ,v〉

=⇒ v = − ∇f (xk)

‖∇f (xk)‖2

Set dk = −∇f (xk)

gradient/steepest descent: xk+1 = xk − t∇f (xk)

6 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed t > 0, using 1st order Taylor

expansion

f (xk + tdk+1)− f (xk) ≈ t 〈∇f (xk) ,dk+1〉

min
‖v‖2=1

〈∇f (xk) ,v〉 =⇒ v = − ∇f (xk)

‖∇f (xk)‖2

Set dk = −∇f (xk)

gradient/steepest descent: xk+1 = xk − t∇f (xk)

6 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed t > 0, using 1st order Taylor

expansion

f (xk + tdk+1)− f (xk) ≈ t 〈∇f (xk) ,dk+1〉

min
‖v‖2=1

〈∇f (xk) ,v〉 =⇒ v = − ∇f (xk)

‖∇f (xk)‖2

Set dk = −∇f (xk)

gradient/steepest descent: xk+1 = xk − t∇f (xk)

6 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian

7 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path

conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian

7 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian

7 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian

7 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian

7 / 43

Gradient descent

minx xᵀAx + bᵀx

typical zig-zag path conditioning affects the path length

– remember direction curvature?

vᵀ∇2f (x)v = d2

dt2 f (x + tv)

– large curvature ↔ narrow valley

– directional curvatures encoded

in the Hessian
7 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)
grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.

8 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)
grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.

8 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉

minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)
grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.

8 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)

grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.

8 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)
grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.

8 / 43

How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side

=⇒ v = −t−1
[
∇2f (xk)

]−1∇f (xk)
grad desc: green; Newton: red

Set dk =
[
∇2f (xk)

]−1∇f (xk)

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

t can set to be 1.
8 / 43

Why called Newton’s method?

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

Recall Newton’s method for root-finding

xk+1 = xk − f ′ (xn) f (xn)

Newton’s method for solving nonliear system f (x) = 0

xk+1 = xk − [Jf (xn)]† f (xn)

Newton’s method for solving ∇f (x) = 0

xk+1 = xk −
[
∇2f (xn)

]−1
f (xn)

9 / 43

Why called Newton’s method?

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

Recall Newton’s method for root-finding

xk+1 = xk − f ′ (xn) f (xn)

Newton’s method for solving nonliear system f (x) = 0

xk+1 = xk − [Jf (xn)]† f (xn)

Newton’s method for solving ∇f (x) = 0

xk+1 = xk −
[
∇2f (xn)

]−1
f (xn)

9 / 43

Why called Newton’s method?

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

Recall Newton’s method for root-finding

xk+1 = xk − f ′ (xn) f (xn)

Newton’s method for solving nonliear system f (x) = 0

xk+1 = xk − [Jf (xn)]† f (xn)

Newton’s method for solving ∇f (x) = 0

xk+1 = xk −
[
∇2f (xn)

]−1
f (xn)

9 / 43

How to choose a search direction?

grad desc: green; Newton: red

Newton’s method take fewer steps

nearsighted choice: cost O(n) per step

gradient/steepest descent:

xk+1 = xk − t∇f (xk)

farsighted choice: cost O(n3) per step

Newton’s method: xk+1 =

xk − t
[
∇2f (xk)

]−1∇f (xk),

Implication: The plain Newton never

used for large-scale problems. More on

this later ...

10 / 43

How to choose a search direction?

grad desc: green; Newton: red

Newton’s method take fewer steps

nearsighted choice: cost O(n) per step

gradient/steepest descent:

xk+1 = xk − t∇f (xk)

farsighted choice: cost O(n3) per step

Newton’s method: xk+1 =

xk − t
[
∇2f (xk)

]−1∇f (xk),

Implication: The plain Newton never

used for large-scale problems. More on

this later ...

10 / 43

How to choose a search direction?

grad desc: green; Newton: red

Newton’s method take fewer steps

nearsighted choice: cost O(n) per step

gradient/steepest descent:

xk+1 = xk − t∇f (xk)

farsighted choice: cost O(n3) per step

Newton’s method: xk+1 =

xk − t
[
∇2f (xk)

]−1∇f (xk),

Implication: The plain Newton never

used for large-scale problems. More on

this later ...

10 / 43

How to choose a search direction?

grad desc: green; Newton: red

Newton’s method take fewer steps

nearsighted choice: cost O(n) per step

gradient/steepest descent:

xk+1 = xk − t∇f (xk)

farsighted choice: cost O(n3) per step

Newton’s method: xk+1 =

xk − t
[
∇2f (xk)

]−1∇f (xk),

Implication: The plain Newton never

used for large-scale problems. More on

this later ...

10 / 43

Problems with Newton’s method

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side =⇒ v = −t−1

[
∇2f (xk)

]−1∇f (xk)

– ∇2f (xk) may be non-invertible

– the minimum value is − 1
2

〈
∇f (xk) ,

[
∇2f (xk)

]−1∇f (xk)
〉

. If

∇2f (xk) not positive definite, may be positive

solution: e.g., modify the Hessian ∇2f (xk) + τI with τ sufficiently large

11 / 43

Problems with Newton’s method

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side =⇒ v = −t−1

[
∇2f (xk)

]−1∇f (xk)

– ∇2f (xk) may be non-invertible

– the minimum value is − 1
2

〈
∇f (xk) ,

[
∇2f (xk)

]−1∇f (xk)
〉

. If

∇2f (xk) not positive definite, may be positive

solution: e.g., modify the Hessian ∇2f (xk) + τI with τ sufficiently large

11 / 43

Problems with Newton’s method

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side =⇒ v = −t−1

[
∇2f (xk)

]−1∇f (xk)

– ∇2f (xk) may be non-invertible

– the minimum value is − 1
2

〈
∇f (xk) ,

[
∇2f (xk)

]−1∇f (xk)
〉

. If

∇2f (xk) not positive definite, may be positive

solution: e.g., modify the Hessian ∇2f (xk) + τI with τ sufficiently large

11 / 43

Problems with Newton’s method

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side =⇒ v = −t−1

[
∇2f (xk)

]−1∇f (xk)

– ∇2f (xk) may be non-invertible

– the minimum value is − 1
2

〈
∇f (xk) ,

[
∇2f (xk)

]−1∇f (xk)
〉

. If

∇2f (xk) not positive definite, may be positive

solution: e.g., modify the Hessian ∇2f (xk) + τI with τ sufficiently large

11 / 43

Problems with Newton’s method

Newton’s method: xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk),

for any fixed t > 0, using 2nd-order Taylor expansion

f (xk + tv)− f (v) ≈ t 〈∇f (xk) ,v〉

+
1

2
t2
〈
v,∇2f (xk)v

〉
minimizing the right side =⇒ v = −t−1

[
∇2f (xk)

]−1∇f (xk)

– ∇2f (xk) may be non-invertible

– the minimum value is − 1
2

〈
∇f (xk) ,

[
∇2f (xk)

]−1∇f (xk)
〉

. If

∇2f (xk) not positive definite, may be positive

solution: e.g., modify the Hessian ∇2f (xk) + τI with τ sufficiently large

11 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

How to choose step size?

xk = xk−1 + tkdk

– Naive choice: sufficiently small constant t for all k

– Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

– By Taylor’s theorem,

f (xk + tdk) = f (xk) + t 〈∇f (xk) ,dk〉+ o
(
t ‖dk‖2

)
when t sufficiently

small — t 〈∇f (xk) ,dk〉 dictates the value decrease

– But we also want t large as possible to make rapid progress

– idea: find a large possible t∗ to make sure

f (xk + t∗dk)− f (xk) ≤ ct∗ 〈∇f (xk) ,dk〉 (key condition) for a chosen

parameter c ∈ (0, 1), and no less

– details: start from t = 1. If the key condition not satisfied, t = ρt for a

chosen parameter ρ ∈ (0, 1).

12 / 43

Back-tracking line search

A widely implemented strategy in numerical optimization packages

Back-tracking line search

Input: initial t > 0, ρ ∈ (0, 1), c ∈ (0, 1)

1: while f (xk + tdk)− f (xk) ≥ ct 〈∇f (xk) ,dk〉 do

2: t = ρt

3: end while

Output: tk = t.

13 / 43

Where to initialize?

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

14 / 43

https://sunju.org/research/nonconvex/

Where to initialize?

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

14 / 43

https://sunju.org/research/nonconvex/

Where to initialize?

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

14 / 43

https://sunju.org/research/nonconvex/

Where to initialize?

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

14 / 43

https://sunju.org/research/nonconvex/

Where to initialize?

convex vs. nonconvex functions

– Convex: most iterative methods converge to the global min no matter the

initialization

– Nonconvex: initialization matters a lot. Common heuristics: random

initialization, multiple independent runs

– Nonconvex: clever initialization is possible with certain assumptions on

the data:

https://sunju.org/research/nonconvex/

and sometimes random initialization works!

14 / 43

https://sunju.org/research/nonconvex/

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x0.

If x0 is a local minimizer, then ∇f (x0) = 0.

2nd-order necessary condition: Assume f (x) is 2-order differentiable at

x0. If x0 is a local min, ∇f (x0) = 0 and ∇2f (x0) � 0.

Fix some positive tolerance values εg, εH , εf , εv. Possibilities:

– ‖∇f (xk)‖2 ≤ εg

– ‖∇f (xk)‖2 ≤ εg and λmin

(
∇2f (xk)

)
≥ −εH

– |f (xk)− f (xk−1)| ≤ εf

– ‖xk − xk−1‖2 ≤ εv

15 / 43

Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!

(see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: ∇f (x0) = 0 and ∇2f (x0) � 0

2nd order necessary: ∇f (x0) = 0 and ∇2f (x0) � 0

Cases in between: local shapes around SOSP determined by spectral properties

of higher-order derivative tensors, calculating which is

hard [Hillar and Lim, 2013]!

16 / 43

Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!

(see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: ∇f (x0) = 0 and ∇2f (x0) � 0

2nd order necessary: ∇f (x0) = 0 and ∇2f (x0) � 0

Cases in between: local shapes around SOSP determined by spectral properties

of higher-order derivative tensors, calculating which is

hard [Hillar and Lim, 2013]!

16 / 43

Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!

(see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: ∇f (x0) = 0 and ∇2f (x0) � 0

2nd order necessary: ∇f (x0) = 0 and ∇2f (x0) � 0

Cases in between: local shapes around SOSP determined by spectral properties

of higher-order derivative tensors, calculating which is

hard [Hillar and Lim, 2013]!

16 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

17 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

18 / 43

Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

19 / 43

Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence?

Answer: using historic

information

19 / 43

Why momentum?

Credit: Princeton ELE522

– GD is cheap (O(n) per step) but overall convergence sensitive

to conditioning

– Newton’s convergence is not sensitive to conditioning but

expensive (O(n3) per step)

A cheap way to achieve faster convergence? Answer: using historic

information

19 / 43

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change

velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path!

20 / 43

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change

velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path!

20 / 43

Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change

velocity.

xk+1 = xk − αk∇f (xk) + βk (xk − xk−1)︸ ︷︷ ︸
momentum

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path! 20 / 43

Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].

21 / 43

Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].

21 / 43

Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1))

Credit: Stanford CS231N

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].

21 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

22 / 43

Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n2) storage and O(n3) computation per step

xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk)

Idea: approximate ∇2f (xk) or
[
∇2f (xk)

]−1
to allow efficient storage and

computation — Quasi-Newton Methods

Choose Hk to approximate ∇2f (xk) so that

– avoid calculation of second derivatives

– simplify matrix inversion, i.e., computing the search direction

23 / 43

Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n2) storage and O(n3) computation per step

xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk)

Idea: approximate ∇2f (xk) or
[
∇2f (xk)

]−1
to allow efficient storage and

computation — Quasi-Newton Methods

Choose Hk to approximate ∇2f (xk) so that

– avoid calculation of second derivatives

– simplify matrix inversion, i.e., computing the search direction

23 / 43

Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost O(n2) storage and O(n3) computation per step

xk+1 = xk − t
[
∇2f (xk)

]−1∇f (xk)

Idea: approximate ∇2f (xk) or
[
∇2f (xk)

]−1
to allow efficient storage and

computation — Quasi-Newton Methods

Choose Hk to approximate ∇2f (xk) so that

– avoid calculation of second derivatives

– simplify matrix inversion, i.e., computing the search direction

23 / 43

Quasi-Newton methods

– Different variants differ on how to compute Hk+1

– Normally H−1k or its factorized version stored to simplify calculation

of ∆xk

Credit: UCLA ECE236C

24 / 43

BFGS method

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

Cost of update: O(n2) (vs. O(n3) in Newton’s method), storage: O(n2) To

derive the update equations, three conditions are imposed:

– secant condition: Hk+1s = y (think of 1st Taylor expansion to ∇f)

– Curvature condition: sᵀkyk > 0 to ensure that Hk+1 � 0 if Hk � 0

– Hk+1 and Hk are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

25 / 43

BFGS method

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

Cost of update: O(n2) (vs. O(n3) in Newton’s method), storage: O(n2)

To

derive the update equations, three conditions are imposed:

– secant condition: Hk+1s = y (think of 1st Taylor expansion to ∇f)

– Curvature condition: sᵀkyk > 0 to ensure that Hk+1 � 0 if Hk � 0

– Hk+1 and Hk are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

25 / 43

BFGS method

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

Cost of update: O(n2) (vs. O(n3) in Newton’s method), storage: O(n2) To

derive the update equations, three conditions are imposed:

– secant condition: Hk+1s = y (think of 1st Taylor expansion to ∇f)

– Curvature condition: sᵀkyk > 0 to ensure that Hk+1 � 0 if Hk � 0

– Hk+1 and Hk are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

25 / 43

Limited-memory BFGS (L-BFGS)

Cost of update: O(mn) (vs. O(n2) in BFGS), storage: O(mn) (vs. O(n2) in

BFGS) — linear in dimension n! recall the cost of GD?

See Chap 7 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

26 / 43

Limited-memory BFGS (L-BFGS)

Cost of update: O(mn) (vs. O(n2) in BFGS), storage: O(mn) (vs. O(n2) in

BFGS) — linear in dimension n! recall the cost of GD?

See Chap 7 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C

26 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

27 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent

Consider a function f (x1, . . . ,xp) with x1 ∈ Rn1 , . . . , xp ∈ Rnp

A generic block coordinate descent algorithm

Input: initialization (x1,0, . . . ,xp,0) (the 2nd subscript indexes iteration number)

1: for k = 1, 2, . . . do

2: Pick a block index i ∈ {1, . . . , p}
3: Minimize wrt the chosen block:

xi,k = arg minξ∈Rni f (x1,k−1, . . . ,xi−1,k−1, ξ,xi+1,k−1, . . . ,xp,k−1)

4: Leave other blocks unchanged: xj,k = xj,k−1 ∀ j 6= i

5: end for

– Also called alternating direction/minimization methods

– When n1 = n2 = · · · = np = 1, called coordinate descent

– Minimization in Line 3 can be inexact: e.g.,

xi,k = xi,k−1− tk ∂f∂ξ (x1,k−1, . . . ,xi−1,k−1,xi,k−1,xi+1,k−1, . . . ,xp,k−1)

– In Line 2, many different ways of picking an index, e.g., cyclic, randomized,

weighted sampling, etc

28 / 43

Block coordinate descent: examples

Least-squares minx f (x) = ‖y −Ax‖22

– ‖y −Ax‖22 = ‖y −A−ix−i − aixi‖2

– coordinate descent: minξ∈R ‖y −A−ix−i − aiξ‖2

=⇒ xi,+ = 〈y−A−ix−i,ai〉
‖ai‖22

(A−i is A with the i-th column removed; x−i is x with the i-th

coordinate removed)

Matrix factorization minA,B ‖Y −AB‖2F

– Two groups of variables, consider block coordinate descent

– Updates:

A+ = Y B†,

B+ = A†Y .

(·)† denotes the matrix pseudoinverse.)

29 / 43

Block coordinate descent: examples

Least-squares minx f (x) = ‖y −Ax‖22

– ‖y −Ax‖22 = ‖y −A−ix−i − aixi‖2

– coordinate descent: minξ∈R ‖y −A−ix−i − aiξ‖2

=⇒ xi,+ = 〈y−A−ix−i,ai〉
‖ai‖22

(A−i is A with the i-th column removed; x−i is x with the i-th

coordinate removed)

Matrix factorization minA,B ‖Y −AB‖2F

– Two groups of variables, consider block coordinate descent

– Updates:

A+ = Y B†,

B+ = A†Y .

(·)† denotes the matrix pseudoinverse.)
29 / 43

Why block coordinate descent?

– may work with constrained problems and non-differentiable

problems (e.g., minA,B ‖Y −AB‖2F , s. t. A orthogonal,

Lasso: minx ‖y −Ax‖22 + λ ‖x‖1)

– may be faster than gradient descent or Newton (next)

– may be simple and cheap!

Some references:

– [Wright, 2015]

– Lecture notes by Prof. Ruoyu Sun

30 / 43

https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Why block coordinate descent?

– may work with constrained problems and non-differentiable

problems (e.g., minA,B ‖Y −AB‖2F , s. t. A orthogonal,

Lasso: minx ‖y −Ax‖22 + λ ‖x‖1)

– may be faster than gradient descent or Newton (next)

– may be simple and cheap!

Some references:

– [Wright, 2015]

– Lecture notes by Prof. Ruoyu Sun

30 / 43

https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Why block coordinate descent?

– may work with constrained problems and non-differentiable

problems (e.g., minA,B ‖Y −AB‖2F , s. t. A orthogonal,

Lasso: minx ‖y −Ax‖22 + λ ‖x‖1)

– may be faster than gradient descent or Newton (next)

– may be simple and cheap!

Some references:

– [Wright, 2015]

– Lecture notes by Prof. Ruoyu Sun

30 / 43

https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Why block coordinate descent?

– may work with constrained problems and non-differentiable

problems (e.g., minA,B ‖Y −AB‖2F , s. t. A orthogonal,

Lasso: minx ‖y −Ax‖22 + λ ‖x‖1)

– may be faster than gradient descent or Newton (next)

– may be simple and cheap!

Some references:

– [Wright, 2015]

– Lecture notes by Prof. Ruoyu Sun

30 / 43

https://wiki.illinois.edu/wiki/display/ie598co/Post+2%3A+Coordinate+Descent#Post2:CoordinateDescent-1.5Advantages

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

31 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

apply coordinate descent...

diagonal A: solve the problem in n

steps

non-diagonal A: does not solve the

problem in n steps

32 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

apply coordinate descent...

diagonal A: solve the problem in n

steps

non-diagonal A: does not solve the

problem in n steps

32 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

apply coordinate descent...

diagonal A: solve the problem in n

steps

non-diagonal A: does not solve the

problem in n steps

32 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate direction methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

non-diagonal A: does not solve

the problem in n steps

Idea: define n “conjugate directions”

{p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

– Write P = [p1, . . . ,pn]. Can verify that

P ᵀAP is diagonal and positive

– Write x = Ps. Then 1
2
xᵀAx− bᵀx =

1
2
sᵀ (P ᵀAP) s− (P ᵀb)ᵀ s — quadratic

with diagonal P ᵀAP

– Perform updates in the s space, but write

the equivalent form in x space

– The i-the coordinate direction in the s

space is pi in the x space

In short, change of variable trick!

33 / 43

Conjugate gradient methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

Idea: define n “conjugate directions” {p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

Generally, many choices for {p1, . . . ,pn}.
Conjugate gradient methods: choice based on ideas from steepest descent

34 / 43

Conjugate gradient methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

Idea: define n “conjugate directions” {p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

Generally, many choices for {p1, . . . ,pn}.
Conjugate gradient methods: choice based on ideas from steepest descent

34 / 43

Conjugate gradient methods

Solve linear equation y = Ax⇐⇒ minx
1
2
xᵀAx− bᵀx with A � 0

Idea: define n “conjugate directions” {p1, . . . ,pn} so that pᵀ
iApj = 0 for all

i 6= j—conjugate as generalization of orthogonal

Generally, many choices for {p1, . . . ,pn}.
Conjugate gradient methods: choice based on ideas from steepest descent

34 / 43

Conjugate gradient methods

CG vs. GD (Green: GD,

Red: CG)

– Can be extended to general

non-quadratic functions

– Often used to solve

subproblems of other

iterative methods, e.g.,

truncated Newton method,

the trust-region subproblem

(later)

See Chap 5

of [Nocedal and Wright, 2006]

35 / 43

Conjugate gradient methods

CG vs. GD (Green: GD,

Red: CG)

– Can be extended to general

non-quadratic functions

– Often used to solve

subproblems of other

iterative methods, e.g.,

truncated Newton method,

the trust-region subproblem

(later)

See Chap 5

of [Nocedal and Wright, 2006]

35 / 43

Outline

Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods

36 / 43

Iterative methods

Credit: aria42.com

Illustration of iterative

methods on the

contour/levelset plot (i.e., the

function assumes the same

value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

– Line-search methods: direction first, size second

– Trust-region methods (TRM): size first, direction second

37 / 43

Ideas behind TRM

Recall Taylor expansion f (x+ d) ≈ f (x) + 〈∇f (xk) ,d〉+ 1
2

〈
d,∇2f (xk)d

〉

Credit: [Arezki et al., 2018]

Start with x0. Repeat the following:

– At xk, approximate f by the quadratic function

(called model function dotted black)

mk (d) = f (xk) + 〈∇f (xk) ,d〉+
1

2
〈d,Bkd〉

i.e., mk (d) ≈ f (xk + d), and Bk to approximate

∇2f (xk)

– Minimize mk (d) within a trust region{
d : ‖d‖ ≤ ∆

}
, i.e., a norm ball (in red), to obtain dk

– If the approximation is inaccurate, decrease the region

size; if the approximation is sufficiently accurate,

increase the region size.

– If the approximation is reasonably accurate, update the

iterate xk+1 = xk + dk.

38 / 43

Ideas behind TRM

Recall Taylor expansion f (x+ d) ≈ f (x) + 〈∇f (xk) ,d〉+ 1
2

〈
d,∇2f (xk)d

〉

Credit: [Arezki et al., 2018]

Start with x0. Repeat the following:

– At xk, approximate f by the quadratic function

(called model function dotted black)

mk (d) = f (xk) + 〈∇f (xk) ,d〉+
1

2
〈d,Bkd〉

i.e., mk (d) ≈ f (xk + d), and Bk to approximate

∇2f (xk)

– Minimize mk (d) within a trust region{
d : ‖d‖ ≤ ∆

}
, i.e., a norm ball (in red), to obtain dk

– If the approximation is inaccurate, decrease the region

size; if the approximation is sufficiently accurate,

increase the region size.

– If the approximation is reasonably accurate, update the

iterate xk+1 = xk + dk.

38 / 43

Ideas behind TRM

Recall Taylor expansion f (x+ d) ≈ f (x) + 〈∇f (xk) ,d〉+ 1
2

〈
d,∇2f (xk)d

〉

Credit: [Arezki et al., 2018]

Start with x0. Repeat the following:

– At xk, approximate f by the quadratic function

(called model function dotted black)

mk (d) = f (xk) + 〈∇f (xk) ,d〉+
1

2
〈d,Bkd〉

i.e., mk (d) ≈ f (xk + d), and Bk to approximate

∇2f (xk)

– Minimize mk (d) within a trust region{
d : ‖d‖ ≤ ∆

}
, i.e., a norm ball (in red), to obtain dk

– If the approximation is inaccurate, decrease the region

size; if the approximation is sufficiently accurate,

increase the region size.

– If the approximation is reasonably accurate, update the

iterate xk+1 = xk + dk.

38 / 43

Ideas behind TRM

Recall Taylor expansion f (x+ d) ≈ f (x) + 〈∇f (xk) ,d〉+ 1
2

〈
d,∇2f (xk)d

〉

Credit: [Arezki et al., 2018]

Start with x0. Repeat the following:

– At xk, approximate f by the quadratic function

(called model function dotted black)

mk (d) = f (xk) + 〈∇f (xk) ,d〉+
1

2
〈d,Bkd〉

i.e., mk (d) ≈ f (xk + d), and Bk to approximate

∇2f (xk)

– Minimize mk (d) within a trust region{
d : ‖d‖ ≤ ∆

}
, i.e., a norm ball (in red), to obtain dk

– If the approximation is inaccurate, decrease the region

size; if the approximation is sufficiently accurate,

increase the region size.

– If the approximation is reasonably accurate, update the

iterate xk+1 = xk + dk.

38 / 43

Ideas behind TRM

Recall Taylor expansion f (x+ d) ≈ f (x) + 〈∇f (xk) ,d〉+ 1
2

〈
d,∇2f (xk)d

〉

Credit: [Arezki et al., 2018]

Start with x0. Repeat the following:

– At xk, approximate f by the quadratic function

(called model function dotted black)

mk (d) = f (xk) + 〈∇f (xk) ,d〉+
1

2
〈d,Bkd〉

i.e., mk (d) ≈ f (xk + d), and Bk to approximate

∇2f (xk)

– Minimize mk (d) within a trust region{
d : ‖d‖ ≤ ∆

}
, i.e., a norm ball (in red), to obtain dk

– If the approximation is inaccurate, decrease the region

size; if the approximation is sufficiently accurate,

increase the region size.

– If the approximation is reasonably accurate, update the

iterate xk+1 = xk + dk.

38 / 43

Framework of trust-region methods

To measure approximation quality: ρk
.
= f(xk)−f(xk+dk)

mk(0)−mk(dk)
= actual decrease

model decrease

A generic trust-region algorithm

Input: x0, radius cap ∆̂ > 0, initial radius ∆0, acceptance ratio η ∈ [0, 1/4)

1: for k = 0, 1, . . . do

2: dk = arg mindmk (d) , s. t. ‖d‖ ≤ ∆k (TR Subproblem)

3: if ρk < 1/4 then

4: ∆k+1 = ∆k/4

5: else

6: if ρk > 3/4 and ‖dk‖ = ∆k then

7: ∆k+1 = min
(
2∆k, ∆̂

)
8: else

9: ∆k+1 = ∆k

10: end if

11: end if

12: if ρk > η then

13: xk+1 = xk + dk

14: else

15: xk+1 = xk

16: end if

17: end for

39 / 43

Framework of trust-region methods

To measure approximation quality: ρk
.
= f(xk)−f(xk+dk)

mk(0)−mk(dk)
= actual decrease

model decrease

A generic trust-region algorithm

Input: x0, radius cap ∆̂ > 0, initial radius ∆0, acceptance ratio η ∈ [0, 1/4)

1: for k = 0, 1, . . . do

2: dk = arg mindmk (d) , s. t. ‖d‖ ≤ ∆k (TR Subproblem)

3: if ρk < 1/4 then

4: ∆k+1 = ∆k/4

5: else

6: if ρk > 3/4 and ‖dk‖ = ∆k then

7: ∆k+1 = min
(
2∆k, ∆̂

)
8: else

9: ∆k+1 = ∆k

10: end if

11: end if

12: if ρk > η then

13: xk+1 = xk + dk

14: else

15: xk+1 = xk

16: end if

17: end for

39 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

Why TRM?

Recall the model function mk (d)
.
= f (xk) + 〈∇f (xk) ,d〉+ 1

2
〈d,Bkd〉

– Take Bk = ∇2f (xk)

– Gradient descent: stop at ∇f (xk) = 0

– Newton’s method:
[
∇2f (xk)

]−1∇f (xk) may just stop at ∇f (xk) = 0

or be ill-defined

– Trust-region method: mind mk (d) s. t. ‖d‖ ≤ ∆k

When ∇f (xk) = 0,

mk (d)− f (xk) =
1

2

〈
d,∇2f (xk)d

〉
.

If ∇2f (xk) has negative eigenvalues, i.e., there

are negative directional curvatures,
1
2

〈
d,∇2f (xk)d

〉
< 0 for certain choices of d

(e.g., eigenvectors corresponding to the negative

eigenvalues)

TRM can help to move away from “nice” saddle points!

40 / 43

To learn more about TRM

– A comprehensive reference [Conn et al., 2000]

– A closely-related alternative: cubic regularized second-order

(CRSOM)

method [Nesterov and Polyak, 2006, Agarwal et al., 2018]

– Example implementation of both TRM and CRSOM: Manopt

(in Matlab) https://www.manopt.org/ (choosing the

Euclidean manifold)

41 / 43

https://www.manopt.org/

References i

[Agarwal et al., 2018] Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. (2018).

Adaptive regularization with cubics on manifolds. arXiv:1806.00065.

[Arezki et al., 2018] Arezki, Y., Nouira, H., Anwer, N., and Mehdi-Souzani, C. (2018).

A novel hybrid trust region minimax fitting algorithm for accurate dimensional

metrology of aspherical shapes. Measurement, 127:134–140.

[Beck, 2017] Beck, A. (2017). First-Order Methods in Optimization. Society for

Industrial and Applied Mathematics.

[Conn et al., 2000] Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust

Region Methods. Society for Industrial and Applied Mathematics.

[Hillar and Lim, 2013] Hillar, C. J. and Lim, L.-H. (2013). Most tensor problems are

NP-hard. Journal of the ACM, 60(6):1–39.

[Murty and Kabadi, 1987] Murty, K. G. and Kabadi, S. N. (1987). Some

NP-complete problems in quadratic and nonlinear programming. Mathematical

Programming, 39(2):117–129.

[Nesterov, 2018] Nesterov, Y. (2018). Lectures on Convex Optimization. Springer

International Publishing.

42 / 43

References ii

[Nesterov and Polyak, 2006] Nesterov, Y. and Polyak, B. (2006). Cubic

regularization of newton method and its global performance. Mathematical

Programming, 108(1):177–205.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical

Optimization. Springer New York.

[Wright, 2015] Wright, S. J. (2015). Coordinate descent algorithms. Mathematical

Programming, 151(1):3–34.

43 / 43

	Classic line-search methods
	Advanced line-search methods
	Trust-region methods

