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Supervised learning as function approximation

— Underlying true function: fo

— Training data: {x;,y,;} with y, = fo (x:)

Choose a family of functions H, so that
3f € H and [ and [y are close

— Find f, i.e., optimization

HllIl Zé v, f )+ Q(f)

— Approximation capacity: Univeral approximation theorems (UAT)
—> replace ‘H by DNNyy, i.e., a deep neural network with weights W

— Optimization:
min Zz (y;, DNNyw (2:)) + Q (W)
— Generalization: how to avoid over-complicated DNNyy in view of UAT

Now we start to focus on optimization.
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— x;: i-th element of @, z;;: (i, )-th element of X, ': i-th row
of X as a row vector, x;: j-th column of X as a column
vector

— R: real numbers, R, : positive reals, R": space of
n-dimensional vectors, R™*™: space of m x n matrices,
R™*7xE: space of m x n X k tensors, etc
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Differentiability — first order

Consider f (x) : R — R™
— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*" such that

f@+d)— f(x)— Bd
161,

—0 as 6 — 0.

6/24



Differentiability — first order

Consider f (x) : R — R™

— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*" such that

f@+d)— f(x)— Bd

—0 as 6 — 0.
1611,

te, f(x+6)=[f(x)+Bd+o(d]|],) as J—0.

6/24



Differentiability — first order

Consider f (x) : R — R™
— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*"™ such that

f@+d)— f(x)— Bd
161,

—0 as 6 — 0.

te, f(x+6)=[f(x)+Bd+o(d]|],) as J—0.

— B is called the (Fréchet) derivative. When m =1, b7 (i.e., BT)
called gradient, denoted as V f (x). For general m, also called
Jacobian matrix, denoted as J s ().

6/24



Differentiability — first order

Consider f (x) : R — R™
— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*"™ such that

f@+d)— f(x)— Bd
161,

—0 as 6 — 0.

te, f(x+6)=[f(x)+Bd+o(d]|],) as J—0.

— B is called the (Fréchet) derivative. When m =1, b7 (i.e., BT)
called gradient, denoted as V f (x). For general m, also called
Jacobian matrix, denoted as J s ().

— Calculation: b;; = g)j: (x)
- J

6/24



Differentiability — first order

Consider f (x) : R — R™
— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*"™ such that

f@+d)— f(x)— Bd
161,

—0 as 6 — 0.

te, f(x+6)=[f(x)+Bd+o(d]|],) as J—0.

— B is called the (Fréchet) derivative. When m =1, b7 (i.e., BT)
called gradient, denoted as V f (x). For general m, also called
Jacobian matrix, denoted as J s ().

— Calculation: b;; = gﬁ: ()
- J

— Sufficient condition: if all partial derivatives exist and are
continuous at x, then f (x) is differentiable at x.
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Calculus rules

Assume f,g: R™ — R™ are differentiable at a point € R".

— linearity: A1 f + A\og is differentiable at « and
VIALf + Xag] () = MV f () + X2 Vg (z)

— product: assume m =1, fg is differentiable at « and
Vifgl(x) = f (=) Vg(x) + g () Vf ()

— quotient: assume m =1 and g (x) # 0, 5 is differentiable at = and
v {ﬂ (z) = g(w)Vf(wy)zzg)(w)Vg(w)
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— quotient: assume m =1 and g (x) # 0, 5 is differentiable at = and
v {ﬂ (z) = g(w)Vf(wy)zzg)(w)Vg(w)

— Chain rule: Let f:R™ — R" and h: R” — R*, and f is
differentiable at @ and y = f (x) and h is differentiable at y. Then,
ho f:R"™ — RF is differentiable at «, and

Jihop) (@) = JIn (f () I 5 ().
When k£ =1,

Vihofl(x)=Jd; () VR (f (x)).
7/24



Differentiability — second order

Consider f (x) : R™ — IR and assume f is 1st-order differentiable in a
small ball around =

— Write ('95;'!;2%1 (x) = [i <af>} (x) provided the right side well

defined
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Differentiability — second order

Consider f (x) : R™ — IR and assume f is 1st-order differentiable in a
small ball around =

— Write 57 fdl (x) = [% (dalflﬂ (x) provided the right side well
defined

— Symmetry: If both ax a - (z) and 5 ém (x) exist and both are
continuous at x, then they are equal.

— Hessian (matrix):

af?
v? = 1
Fle)= 5o (’”)L/ 1)
where [aff;w (w)} € R™ ™ has its (j,i)-th element as Daf;:v ().
jOTq Gy i
- V2f is symmetric.
— Sufficient condition: if all 5 0 - (@) exist and are continuous, f

is 2nd-order differentiable at T (not converse; we omit the definition
due to its technicality). 8 /24



Taylor’s theorem

Vector version: consider f (x) : R — R

— If f is 1st-order differentiable at x, then

f(x+4)= +0(||8]|,) as 6 — 0.
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Taylor’s theorem

Vector version: consider f (x) : R — R

— If f is 1st-order differentiable at x, then
fe+8)=f(x)+ (V[f(x),d) +o(]d],) asd — 0.
— If f is 2nd-order differentiable at x, then
- 1, o, -
f@+8)=f(x)+ (Vf(x),8)+ (5, Vf(x)d)+o(|d]|3) asd — 0.

Matrix version: consider f (X): R™*" — R

— If f is 1st-order differentiable at X, then

F(X+A)=((X)+(V(X).A)+o(]|Alp) as A — 0.

9/24



Taylor’s theorem

Vector version: consider f () : R" — R
— If f is 1st-order differentiable at x, then
f@+6)=[(x)+ (V[(x).0)+o(|d],) asd — 0.
— If f is 2nd-order differentiable at x, then

f@+8)=f(x)+ (Vf(x),8)+ (5, Vf(x)d)+o(|d]|3) asd — 0.

1
2
Matrix version: consider f (X): R™*" — R

— If f is 1st-order differentiable at X, then

F(X+A)=((X)+(V(X).A)+o(]|Alp) as A — 0.
— If fis 2nd-order differentiable at X, then

FX+A)=f(X)+ (VF(X),A)+ = (A V[ (X)A) +o(|A]Z)

N

as A — 0.
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Taylor approximation — asymptotic uniqueness

Let f: R — R be k (k > 1 integer) times differentiable at a point x. If P(J) is
a k-th order polynomial satisfying f (z 4+ &) — P (8) = 0o(6%) as § — 0, then
P (8) = Pu(8) = f() + Xy i (@) 6",
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Let f: R — R be k (k > 1 integer) times differentiable at a point x. If P(J) is
a k-th order polynomial satisfying f (z 4+ &) — P (8) = 0o(6%) as § — 0, then
P (8) = Pu(8) = f() + Xy i (@) 6",
Generalization to the vector version
— Assume f (x) : R™ — R is l-order differentiable at x. If
P (6) = f (x) + (v, §) satisties that
f@+8)—P(8) = oll8l,) as6—0,
then P (8) = f () + (Vf(x),d), i.e., the 1st-order Taylor expansion.

— Assume f (x) : R™ — R is 2-order differentiable at x. If
P (8) = f(x) + (v,8) + 1 (6, HS) with H symmetric satisties that

f(x+8) =P (&) =o(|0]3) asd— 0,

then P (8) = f(x) + (V[ (x),8) + 5 (86, V>f (x) ), i.e., the 2nd-order
Taylor expansion. We can read off V f and V[ if we know the expansion!

Similarly for the matrix version. See Chap 5 of [Coleman, 2012] for other

forms of Taylor theorems and proofs of the asymptotic uniqueness. 10/24



Asymptotic uniqueness — why interesting?

Two ways of deriving gradients and Hessians (Recall HWO!)

(a) Derive the gradient and Hessian of the linear least-squares function f (z) = |y — Az\|2.
Please include your calculation details.

(b) Leto = H},,, , i.e., the logistic function. Derive the gradient of the matrix-variable function
g(W) =l|y—o(We) H%, where ¢ is applied to the vector W elementwise. This is regression

based on a simplified one-neuron network. Please include your calculation details.

(a) Consider the least- s%uares ob)echve f(z) =]y - A(EH 5 again. Recall that for any two vectors
a.b, |a— b“z = |lal3 —?aTbH\bHZ Nowf(x+6 =||(y — Ax) AéHZ Expand this square
by the previous formula, and compare it to the 2nd order Taylor expansion by plugging your
results from Problem 1(a). Are they equal or not? Why? (Hint: You may find this fact useful:
for any two vectors u, v € R" and any matrix M € R"*", (u, Mv) = (MTu,v). This can be
derived from the trace cyclic property above. )

(b) Consider the one-neuron network regression again: g (W) = |ly — o (Wac)Hﬁ witho = H(%,
i.e., the logistic function. Let’s try to work out its 1st order Taylor expansion by direct expansion
as follows.

e Show thato (W + A)z) =0 (Wz) + 0’ (Wa)© (Az) + o||Al| ;) when A — 0. Here,
both o and ¢’ are applied elementw1se, and © denotes the elementwise (Hadamard)
product.

eSoy—o(W+A)x) = (y—o(We)) - o (Wz) © (Az) — o(||A]|z) when A —
0. Substitute this back into the square and use the identity ||a + b + cHo = HuHZ +
anz + HcH2 +2a"bh + 2aTc + 2bTc to obtain the first-order approximation to g (W + A).
Remember that any terms lower order than || A|| are not interesting and we can always
assume A as small as needed.

o Substitute the result from Problem 1(b) into the 1st order Taylor expansion formula
above and compare it to the result obtained here. Are they equal or not?
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Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

fw) = Z ly; = WiW o1 ... WoWizi||7

()

12 /24



Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

fw) = Z ly; = WiW o1 ... WoWizi||7

()

How to derive the gradient?

— Scalar chain rule?

12 /24



Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

fw) = Z ly; = WiW o1 ... WoWizi||7

()

How to derive the gradient?

— Scalar chain rule?

— Vector chain rule?

12 /24



Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

fw) = Z ly; = WiW o1 ... WoWizi||7

()

How to derive the gradient?

— Scalar chain rule?
— Vector chain rule?

— First-order Taylor expansion

12 /24



Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

fw) = Z ly; = WiW o1 ... WoWizi||7

()

How to derive the gradient?

— Scalar chain rule?
— Vector chain rule?

— First-order Taylor expansion

Why interesting? See e.g.,
[Kawaguchi, 2016, Lampinen and Ganguli, 2018]
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Directional derivatives and curvatures

Consider f (x) :R" - R

directional derivative: D, f (z) = 4 f (x + tv)

— When f is 1-st order differentiable at x,
Dy f (x) = (V[ (x),v).
- Now D, f () : R — R, what is Dy, (D, f) (x)?

Du (Duf) (x) = (u, Vf (z)v).

When © = v,
2

Du (Duf) () = (. V3] () u) = =1 (

T +tu).
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_ % is the directional curvature along u independent of
2

the norm of u
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Directional curvature

<u,V2f(m)u>
[leel5
norm of u

is the directional curvature along u independent of the

flay)=a*—y°
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Directional curvature

<u,V2f(m)u>
[leel5
norm of u

is the directional curvature along u independent of the

flay)=a*—y°

Blue: negative curvature (bending down)
Red: positive curvature (bending up)
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Optimality conditions of unconstrained optimization
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Optimization problems

Nothing takes place in the world
whose meaning is not that of some
f(z) maximum or minimum. — Euler

minimum

min f () s.t. © € C.

xr

— @: optimization variables, f (x): objective function, C" constraint
(or feasible) set
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Optimization problems

Nothing takes place in the world
whose meaning is not that of some
f(z) maximum or minimum. — Euler

minimum

min f () s.t. © € C.

xr

— @: optimization variables, f (x): objective function, C" constraint
(or feasible) set

— C consists of discrete values (e.g., {—1,+1}"): discrete
optimization; C' consists of continuous values (e.g., R™, [0,1]™):
continuous optimization

— C whole space R™: unconstrained optimization; C' a strict subset
of the space: constrained optimization

We focus on continuous, unconstrained optimization here.
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Global and local mins

Local Maximum Global Maximum
\ Let f(x): R" = R,

N |
N RN iy f (@)

,

Global Minimum Local Minimum
Credit: study.com

— o is a local minimizer if: Je > 0, so that [ (xg) < f (x) for all
satisfying || — @ol|, < €. The value f (x() is called a local
minimum.
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Global and local mins

Local Maximum Global Maximum
\ Let f(x): R" = R,

N |
N RN iy f (@)

,

Global Minimum Local Minimum

Credit: study.com

— o is a local minimizer if: 3¢ > 0, so that f (x¢) < f (x) for all
satisfying || — @ol|, < €. The value f (x() is called a local
minimum.

— @ is a global minimizer if: [ (x¢) < f () for all x € R™. The
value is f (x¢) called the global minimum.
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A naive solution

Grid search

— For 1D problem, assume we know the global min lies in [—1, 1]
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A naive solution

Grid search

— For 1D problem, assume we know the global min lies in [—1, 1]

— Take uniformly grid points in [—1, 1] so that any adjanent points are
separated by e.

— Need 0(571) points to get an e-close point to the global min by
exhaustive search

For N-D problems, need O (¢~") computation.

Better characterization of the local/global mins may help avoid this.
18 /24



First-order optimality condition

Necessary condition: Assume f is lst-order differentiable at xo. If x is a
local minimizer, V f (o) = 0.
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First-order optimality condition

Necessary condition: Assume f is lst-order differentiable at xo. If x is a
local minimizer, V f (o) = 0.

Local Muximurn Global Masinmun Intuition: V[ is “rate of change” of function
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Necessary condition: Assume f is lst-order differentiable at xo. If @ is a
local minimizer, then V f (xo) = 0.

When sufficient? for convex functions

— geometric def.: function for which any
line segment connecting two points of its
graph always lies above the graph

— algebra def.: Vz,y and a € [0, 1]:

i Wioes flaw +(1-a)y) < af (@)+(1—a) f ().
Any convex function has only one local minimum (value!), which is also global!
Proof sketch: if @, z are both local minimizers and f (z) < f (),
flaz+(1-a)z) <af(z)+(1—-a)f(z) <af(x)+(1-a)f(z)=[().

Butaz+ (1 —a)x — @ as a — 0.



First-order optimality condition

Necessary condition: Assume f is lst-order differentiable at x. If x¢ is a
local minimizer, then V f (xo) = 0.
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are relatively mature. Recommended resources: analysis:
[Hiriart-Urruty and Lemaréchal, 2001], optimization:
[Boyd and Vandenberghe, 2004]
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Sufficient condition: Assume f is convex and 1st-order differentiable. If
Vf(x) =0 at a point & = o, then xo is a local/global minimizer.

— Convex analysis (i.e., theory) and optimization (i.e., numerical methods)
are relatively mature. Recommended resources: analysis:
[Hiriart-Urruty and Lemaréchal, 2001], optimization:
[Boyd and Vandenberghe, 2004]

— We don’t assume convexity unless stated, as DNN objectives are almost

always nonconvex.
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Second-order optimality condition

Necessary condition: Assume f (x) is 2-order differentiable at @o. If ¢ is
a local min, Vf (x¢) = 0 and V2f (zo) = O (i.e., positive definite).
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What’s in between?

2nd order sufficient: Vf (o) = 0 and V2f (zo) = 0
2nd order necessary: Vf (zo) = 0 and V[ (z0) = 0

floy)y=a" -y gz, y) =2* —y*
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