Course Project

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

February 6, 2020

Logistics

Project ideas

- Proposal (5%, 1 page): Feb 16th
- Progress presentation (5%, 2-3 mins): Mar 26th
- Progress report (5%, 2 pages): Mar 28th
- Final report (25%, 6-8 pages): May 12th
- Poster presentation?
- Publisable results \implies A!

Template for all writeups: NeurIPS 2019 style

https://neurips.cc/Conferences/2019/PaperInformation/
StyleFiles

Groups

	× 🕾 꾼 100% × S % .0	.00 123 + Default (ArL. + 10 + B I - G	▼ ● 田 SE + ■ + T + ● + ▲ +	Θ 🖬 🗄 🝸 • Σ • ^					
-11	A	в	c	D					
		Please enter both your name and email ID, on	Please enter both your name and email ID, one column per person, and one row for one group. See the next row for an example						
ex	Group ID		Group Members						
ex	ample_group	Ju Sun, jusun	Taihui Li, lixx5027						

- Each group: $2 \mbox{ or } 3$ students; $1 \mbox{ permitted but discouraged}$
- All submissions as a group (in Canvas as group assignment); the group gets the same score

- What problem?
- Why interesting?
- Previous work
- Your goal
- Plan and milestones

Logistics

Project ideas

Roughly by ascending level of difficulty

- Literature survey/review
- Novel applications
- Novel methods
- Novel theories

Excerpt from a research project is fine, but you should describe your own contributions

A coherent account of recent papers in a focused topic

- Description and comparison of main ideas, or
- Implementation and comparison of performance, or
- Both of the above

should complement the topics we cover in the course

Random topics

- DL for noneuclidean data (e.g., graph NN, manifold NN)
- transformer models for sequential data
- generative models (e.g., GAN, VAE)
- 2nd order methods for deep learning
- differential programming
- universal approximation theorems
- DL for 3D reconstruction
- DL for video understanding and analysis
- DL for solving PDEs

- DL for games
- RL for robotics
- adversarial attacks; robustness of DL
- privacy, fairness in DL
- visualization for DNN
- network quantization and compression
- hardware/software platforms for DL
- automated ML; architecture search
- optimization/generalization theory of DL

Novel applications

Apply DL to new application problems

- A good place to start: Kaggle https://www.kaggle.com/

					Register
Findundiane Conjustane Despfake Detection C Generify videos with facility or ve Despfake Detection C Despfake Detection Conserve	pice manipulations	a morth to go until meng		1.020.000	
Overview Data Notebooks Disc	assion Leaderboard Rules		ول	n Competition	
Public Leaderboard Private Leader			🛦 Ree Da	a Øfattaats	
E in the money E Gold E Silver I					
# Team Name	Notebook	Tears Members	Score O Entries	Last	
1 Viadislav Leketush		S	0.25781 63	105	
2 ID R&D		🕱 🖻 👷 🕅 👷	0.30857 8	1d	

- Think about data availability

Google dataset search

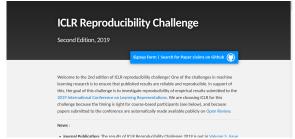
https://datasetsearch.research.google.com/

Think about GPUs

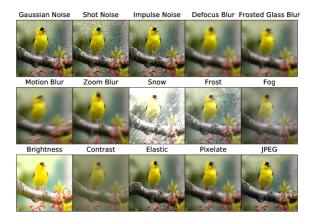
- arXiv machine learning
 - https://arxiv.org/list/cs.LG/recent
- Recent conference papers

ML: NeurIPS, ICML, ICLR, etc CV: ICCV, ECCV, CVPR, etc NLP: ACL, EMNLP, etc Robotics: ICRA, etc Graphics: SIGGRAPH, etc

- Talk to researchers!


Novel methods

Create new **NN models or training algorithms** to improve the state-of-the-art


Where to start:

- Kaggle (again)!
- arXiv machine learning and recent conference papers
- ICLR reproducibility challenge: https:

//reproducibility-challenge.github.io/iclr_2019/

Equally interesting to fool/fail the state-of-the-art, i.e., exploring robustness of DL

Credit: ImageNet-C

Novel theories

Nothing is more practical than a good theory. - V. Vapnik

- universal approximation theorems
- nonconvex optimization
- generalization

Where to start:

- Analyses of Deep Learning (Stanford, fall 2019) https://stats385.github.io/
- Theories of Deep Learning (Stanford, fall 2017) https://stats385.github.io/stats385_2017.github.io/
- Toward theoretical understanding of deep learning (ICML 2018 Tutorial) https:

//unsupervised.cs.princeton.edu/deeplearningtutorial.html

Questions?