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Logistics

– HW 0 posted (due: midnight Feb 07)

– Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow (2ed) now available at UMN library (limited e-access)

– Guest lectures (Feb 04: Tutorial on Numpy, Scipy, Colab. Bring your

laptops if possible!)

– Feb 06: discussion of the course project & ideas
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https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701
https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701
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Recap I

biological neuron vs. artificial neuron

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
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Recap II

Zoo of NN models in ML

– Linear regression

– Perception and

Logistic regression

– Softmax regression

– Multilayer perceptron

(feedforward NNs)

Also:

– Support vector machines (SVM)

– PCA (autoencoder)

– Matrix factorization
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Recap III

Brief history of NNs:

– 1943: first NNs invented (McCulloch and Pitts)

– 1958 –1969: perceptron (Rosenblatt)

– 1969: Perceptrons (Minsky and Papert)—end of perceptron

– 1980’s–1990’s: Neocognitron, CNN, back-prop, SGD—we use today

– 1990’s–2010’s: SVMs, Adaboosting, decision trees and random forests

– 2010’s–now: DNNs and deep learning
6 / 23



Outline

Recap

Why should we trust NNs?

Suggested reading

7 / 23



Supervised learning

General view:

– Gather training data

(x1,y1) , . . . , (xn,yn)

– Choose a family of

functions, e.g., H, so that

there is f ∈ H to ensure

yi ≈ f (xi) for all i

– Set up a loss function `

– Find an f ∈ H to

minimize the average loss

min
f∈H

1

n

n∑
i=1

` (yi, f (xi))

NN view:

– Gather training data

(x1,y1) , . . . , (xn,yn)

– Choose a NN with k neurons, so that

there is a group of weights, e.g.,

(w1, . . . ,wk, b1, . . . , bk), to ensure yi ≈
{NN (w1, . . . ,wk, b1, . . . , bk)} (xi) ∀i

– Set up a loss function `

– Find weights (w1, . . . ,wk, b1, . . . , bk) to

minimize the average loss

min
w′s,b′s

1

n

n∑
i=1

` [yi, {NN (w1, . . . ,wk, b1, . . . , bk)} (xi)]

Why should we trust NNs?
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Function approximation

More accurate description of supervised learning

– Underlying true function: f0

– Training data: yi ≈ f0 (xi)

– Choose a family of functions

H, so that ∃f ∈ H and

f and f0 are close

– Approximation capacity: H matters (e.g., linear? quadratic?

sinusoids? etc)

– Optimization & Generalization: how to find the best f ∈ H
matters

We focus on approximation capacity now.
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A word on notation

– k-layer NNs: with k layers of weights

– k-hidden-layer NNs: with k hidden layers of nodes (i.e.,

(k + 1)-layer NNs)
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First trial

Think of single-output (i.e., R) problems first

A single neuron

(f → σ: again, activation

always as σ)

H : {x 7→ σ (wᵀx+ b)}

– σ identity or linear: linear functions

– σ sign function sign (wᵀx+ b)

(perceptron): 0/1 function with

hyperplane threshold

– σ = 1
1+e−z :

{
x 7→ 1

1+e−(wᵀx+b)

}
– σ = max(0, z) (ReLU):

{x 7→ max(0,wᵀx+ b)}
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Second trial

Think of single-output (i.e., R) problems first

Add depth!

. . .

But make all hidden-nodes activations

identity or linear

σ (wᵀ
L (WL−1 (. . . (W 1x+ b1) + . . .) bL−1) + bL)

No better than a signle neuron!

Why?
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Third trial

Think of single-output (i.e., R) problems first

Add both depth & nonlinearity!

two-layer network, linear

activation at output

Surprising news:

universal approximation theorem

The 2-layer network can

approximate arbitrary

continuous functions arbitrarily

well, provided that the hidden

layer is sufficiently wide.

— we don’t worry about the capacity
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Universal approximation theorem

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let σ : R→ R be a nonconstant, bounded, and continuous

function. Let Im denote the m-dimensional unit hypercube [0, 1]m.

The space of real-valued continuous functions on Im is denoted by

C(Im). Then, given any ε > 0 and any function f ∈ C(Im), there

exist an integer N , real constants vi, bi ∈ R and real vectors

wi ∈ Rm for i = 1, . . . , N , such that we may define:

F (x) =

N∑
i=1

viσ
(
wT
i x+ bi

)
as an approximate realization of the function f ; that is,

|F (x)− f(x)| < ε

for all x ∈ Im.
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Thoughts on UAT

– σ : R→ R be a nonconstant, bounded, and continuous:

what about ReLU (leaky ReLU) or sign function (as in

perceptron)? We have theorem(s)

– Im denote the m-dimensional unit hypercube [0, 1]m: this

can replaced by any compact subset of Rm

– there exist an integer N : but how large N needs to be?

(later)

– The space of real-valued continuous functions on Im:

two examples to ponder on

– binary classification

– learn to solve square root
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Why could UAT hold?

The proof is very technical ... functional analysis
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Why could UAT hold?

Visual “proof”

(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R→ R functions first, σ = 1
1+e−z

– Step 1: Build “step” functions

– Step 2: Build “bump” functions

– Step 3: Sum up bumps to approximate
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http://neuralnetworksanddeeplearning.com/chap4.html


Step 1: build step functions

y =
1

1 + e−(wx+b)
=

1

1 + e−w(x−b/w)

– Larger w, sharper transition

– Transition around −b/w, written as s

18 / 23



Step 2: build bump functions

0.6 ∗ step(0.3)− 0.6 ∗ step (0.6)

Write h as the bump height
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Step 3: sum up bumps to approximate

two bumps
five bumps

ultimate idea

familiar?
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Suggested reading

– Chap 4, Neural Networks and Deep Learning (online book)

http://neuralnetworksanddeeplearning.com/chap4.html
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http://neuralnetworksanddeeplearning.com/chap4.html
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