Fundamental Belief: Universal Approximation Theorems

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

January 29, 2020

- HW 0 posted (due: midnight Feb 07)
- Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (2ed) now available at UMN library (limited e-access)
- Guest lectures (Feb 04: Tutorial on Numpy, Scipy, Colab. Bring your laptops if possible!)
- Feb 06: discussion of the course project & ideas

Recap

Why should we trust NNs?

Suggested reading

Recap I

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

biological neuron vs. artificial neuron

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels

Recap II

Zoo of NN models in ML

- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)

Also:

- Support vector machines (SVM)
- PCA (autoencoder)
- Matrix factorization

Recap III

Brief history of NNs:

- 1943: first NNs invented (McCulloch and Pitts)
- 1958 -1969: perceptron (Rosenblatt)
- 1969: Perceptrons (Minsky and Papert)—end of perceptron
- 1980's-1990's: Neocognitron, CNN, back-prop, SGD-we use today
- 1990's-2010's: SVMs, Adaboosting, decision trees and random forests
- 2010's-now: DNNs and deep learning

Recap

Why should we trust NNs?

Suggested reading

Supervised learning

General view:

- Gather training data $({m x}_1, {m y}_1), \dots, ({m x}_n, {m y}_n)$

- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $y_i \approx f(x_i)$ for all i
- Set up a loss function ℓ
- Find an $f \in \mathcal{H}$ to minimize the average loss

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right)$$

NN view:

- Gather training data $({m x}_1, {m y}_1), \dots, ({m x}_n, {m y}_n)$
- Choose a NN with k neurons, so that there is a group of weights, e.g., $(w_1, \ldots, w_k, b_1, \ldots, b_k)$, to ensure $y_i \approx$ $\{NN(w_1, \ldots, w_k, b_1, \ldots, b_k)\}(x_i) \quad \forall i$
- Set up a loss function ℓ
- Find weights $(w_1, \ldots, w_k, b_1, \ldots, b_k)$ to minimize the average loss

 $\min_{\boldsymbol{w}'s, b's} \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i}, \left\{\mathsf{NN}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}, b_{1}, \ldots, b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]$

Why should we trust NNs?

Function approximation

More accurate description of supervised learning

- Underlying true function: $f_{\rm 0}$
- Training data: $oldsymbol{y}_{i}pprox f_{0}\left(oldsymbol{x}_{i}
 ight)$
- Choose a family of functions \mathcal{H} , so that $\exists f \in \mathcal{H}$ and f and f_0 are close
- Approximation capacity: H matters (e.g., linear? quadratic? sinusoids? etc)
- **Optimization & Generalization**: how to find the best $f \in \mathcal{H}$ matters
- We focus on approximation capacity now.

- k-layer NNs: with k layers of weights
- k-hidden-layer NNs: with k hidden layers of nodes (i.e., (k + 1)-layer NNs)

First trial

Think of single-output (i.e., R) problems first

A single neuron

 $(f
ightarrow \sigma:$ again, activation always as $\sigma)$

$$\mathcal{H}: \{ \boldsymbol{x} \mapsto \sigma \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b \right) \}$$

- σ identity or linear: linear functions
- σ sign function sign ($w^T x + b$) (perceptron): 0/1 function with hyperplane threshold

$$-\sigma = \frac{1}{1+e^{-z}} \left\{ \boldsymbol{x} \mapsto \frac{1}{1+e^{-(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)}} \right\}$$
$$-\sigma = \max(0, z) \text{ (ReLU):}$$
$$\{\boldsymbol{x} \mapsto \max(0, \boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)\}$$

Second trial

Think of single-output (i.e., R) problems first

Add depth!

. . .

But make all hidden-nodes activations identity or linear

 $\sigma\left(\boldsymbol{w}_{L}^{\mathsf{T}}\left(\boldsymbol{W}_{L-1}\left(\ldots\left(\boldsymbol{W}_{1}\boldsymbol{x}+\boldsymbol{b}_{1}\right)+\ldots\right)\boldsymbol{b}_{L-1}\right)+\boldsymbol{b}_{L}\right)$

No better than a signle neuron! Why?

Think of single-output (i.e., R) problems first

Add both depth & nonlinearity!

two-layer network, linear activation at output

Surprising news: universal approximation theorem

The 2-layer network can approximate **arbitrary** continuous functions **arbitrarily** well, provided that the hidden layer is **sufficiently wide**.

- we don't worry about the capacity

Universal approximation theorem

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the *m*-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for $i = 1, \ldots, N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \sigma \left(w_i^T x + b_i \right)$$

as an approximate realization of the function f; that is,

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$.

- $\sigma : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous: what about ReLU (leaky ReLU) or sign function (as in perceptron)? We have **theorem(s)**
- I_m denote the m-dimensional unit hypercube $[0,1]^m$: this can replaced by any compact subset of \mathbb{R}^m
- there exist an integer N: but how large N needs to be?
 (later)
- The space of real-valued continuous functions on I_m : two examples to ponder on
 - binary classification
 - learn to solve square root

The proof is very technical ... functional analysis

• Riesz Representation: Every linear functional on $C^0([0,1]^k)$ is given by

$$f\mapsto \int_{[0,1]^k}f(x)d\mu(x),\qquad \mu\in\mathcal{M}$$

where $\mathcal{M} = \left\{ \text{finite signed regular Borel measures on } [0,1]^k \right\}.$

2 Lemma. Suppose for each $\mu \in \mathcal{M}$, we have

$$\int_{[0,1]^k} \phi(w \cdot x + b) d\mu(x) = 0 \quad \forall w, b \quad \Rightarrow \quad \mu = 0. \quad (0.1)$$

Then Nets₁(ϕ) is dense in $C^0([0,1]^k)$.

(a) Lemma. ϕ continuous, sigmoidal \Rightarrow satisfies (0.1).

Visual "proof"

(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of $\mathbb{R} \to \mathbb{R}$ functions first, $\sigma = \frac{1}{1 + e^{-z}}$

- Step 1: Build "step" functions
- Step 2: Build "bump" functions
- Step 3: Sum up bumps to approximate

Step 1: build step functions

$$y = \frac{1}{1 + e^{-(wx+b)}} = \frac{1}{1 + e^{-w(x-b/w)}}$$

- Larger w, sharper transition
- Transition around -b/w, written as s

Step 2: build bump functions

 $0.6 * \operatorname{step}(0.3) - 0.6 * \operatorname{step}(0.6)$

Write h as the bump height

Step 3: sum up bumps to approximate

two bumps

five bumps

Recap

Why should we trust NNs?

Suggested reading

Chap 4, Neural Networks and Deep Learning (online book)
 http://neuralnetworksanddeeplearning.com/chap4.html

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303–314.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257.