Fundamental Belief: Universal
Approximation Theorems

Ju Sun
Computer Science & Engineering

University of Minnesota, Twin Cities

January 29, 2020

1/23

HW 0 posted (due: midnight Feb 07)

— Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow (2ed) now available at UMN library (limited e-access)

Guest lectures (Feb 04: Tutorial on Numpy, Scipy, Colab. Bring your
laptops if possible!)

— Feb 06: discussion of the course project & ideas

2/23

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701
https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701

Recap

3/23

x0 wy
synapse
woTo

.)
axon from a neuron

impulses carried

toward cell body Ciod
branches celibody/ F(X wii+b
dendrites V] y;// of axon T 3 ;
\\ \/ wiz; +
v\\j/”; féj - output axon
{ axon
nucleus——=_g L aon_____\Me 7 activation

—e— function
% ‘{\\\ impulses carried

away from cell body
cell body

A cartoon drawing of a biological neuron (left) and its mathematical model (right)

biological neuron vs. artificial neuron

input layer
hidden layer 1 hidden layer 2

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
4/23

Recap Il

Zoo of NN models in ML

Linear regression

— Perception and
Logistic regression

Softmax regression

Multilayer perceptron
(feedforward NNs)

— Support vector machines (SVM)
— PCA (autoencoder)

— Matrix factorization

5/23

Recap Il

FirstNN Symbolic Al New NNs /Algorithms
1% Al Winter 2"AI Winter Machine Learning
Birth of Al
?
1974 198741993 .
‘ 1980
1450 1970 1990 2010 2030
Perceptron h

First Computer
(entac)

y Expert System
Turing Test
Deep Learning, Data Science

Brief history of NNs:

— 1943: first NNs invented (McCulloch and Pitts)

— 1958 —1969: perceptron (Rosenblatt)

— 1969: Perceptrons (Minsky and Papert)—end of perceptron

— 1980's—-1990's: Neocognitron, CNN, back-prop, SGD—we use today
— 1990's—2010's: SVMs, Adaboosting, decision trees and random forests

— 2010's—now: DNNs and deep learning 6/23

Why should we trust NNs?

7/23

Supervised learning

General view: NN view:
— Gather training data — Gather training data
(ml’yl)v'--’(mnvyn) (mlvyl)v"'v(wn7yn)
— Choose a family of — Choose a NN with k& neurons, so that
functions, e.g., H, so that there is a group of weights, e.g.,
there is f € H to ensure (w1, ..., wy,bi, ..., by), to ensure vy, ~
y, ~ f(x;) for all ¢ INN (w1, ..., wg, by, ..., bi)} (i) Vi
— Set up a loss function ¢ — Set up a loss function ¢
— Findan f € H to — Find weights (w1, ..., wi, b1, ..., br) to
minimize the average loss minimize the average loss
bl W ()
f}gﬁnzf y,. f mm Zﬁ [y;, {NN (w1, ..., wr. by, ..., b))} (x4)]

Why should we trust NNs?

8/23

Function approximation

More accurate description of supervised learning

— Underlying true function: fj
— Training data: y; ~ fo (x;)

— Choose a family of functions
‘H, so that 3f € H and

f and fq are close

— Approximation capacity: #H matters (e.g., linear? quadratic?
sinusoids? etc)

— Optimization & Generalization: how to find the best f € H
matters

We focus on approximation capacity now.
9/23

A word on notation

Qutput layer
Hidden layer

Input layer

— k-layer NNs: with k layers of weights

— k-hidden-layer NNs: with & hidden layers of nodes (i.e.,
(k + 1)-layer NNs)

10/23

First trial

Think of single-output (i.e., R) problems first

A single neuron

— o identity or linear: linear functions

@ w — o sign function sign (wTx + b)
wozg

cell body
S wiwi+b

— -9
axon from a neuron

(perceptron): 0/1 function with

hyperplane threshold

output axon
activation

function _ . 1) 2 1
0 = 14+e—#" Z | +e— (wTa+b)
- 0 = max(0, z) (ReLU):
(f — o again, activation {x — max(0,wTx + b)}

always as o)

H:{x—o(wx+b)}

11/23

Second trial

Think of single-output (i.e., R) problems first

Add depth!

But make all hidden-nodes activations
identity or linear

g (’LUE (WLfl (.. (W1:13 + b1) + ..) bL71) + bL)

No better than a signle neuron!
Why?

12/23

Third trial

Think of single-output (i.e., R) problems first

Add both depth & nonlinearity!
Surprising news:

universal approximation theorem

The 2-layer network can
approximate arbitrary
continuous functions arbitrarily
well, provided that the hidden
layer is sufficiently wide.

two-layer network, linear

activation at output — we don't worry about the capacity

13/23

Universal approximation theorem

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let 0 : R — R be a nonconstant, bounded, and continuous
function. Let I,,, denote the m-dimensional unit hypercube [0, 1]™.
The space of real-valued continuous functions on I, is denoted by
C(Iy,). Then, given any € > 0 and any function f € C(I,), there
exist an integer N, real constants v;,b; € R and real vectors

w; € R™ fori=1,..., N, such that we may define:

N
F(z) = Z V0 (szx + b;)
i=1
as an approximate realization of the function f; that is,

|F(z) — f(z)| <e

for all x € I,,.
14 /23

Thoughts on UAT

— 0 : R — R be a nonconstant, bounded, and continuous:
what about ReLU (leaky ReLU) or sign function (as in
perceptron)? We have theorem(s)

— I, denote the m-dimensional unit hypercube [0, 1|": this
can replaced by any compact subset of R™

— there exist an integer N: but how large N needs to be?
(later)

— The space of real-valued continuous functions on I,,,:
two examples to ponder on

— binary classification

— learn to solve square root

15/23

Why could hold?

The proof is very technical ... functional analysis

O Riesz Representation: Every linear functional on C°([0, 1]¥) is
given by

f f(x)du(x), ne M
[0,1]%

where M = {finite signed regular Borel measures on [0, 1]¥} .

@ Lemma. Suppose for each y € M, we have
/ S(w-x+b)du(x) =0 Yw,b = pu=0. (0.1)
[0.1]x
Then Nets;(¢) is dense in C°([0, 1]%).
@ Lemma. ¢ continuous, sigmoidal = satisfies (0.1).

16/23

Why could UAT hold?

Visual “proof”
(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R — R functions first, 0 = 1+i*2’

— Step 1: Build "step” functions
— Step 2: Build "bump” functions

— Step 3: Sum up bumps to approximate

17/23

http://neuralnetworksanddeeplearning.com/chap4.html

Step 1: build step functions

1 Qutput from top hidden neuron

b;-?O

Lz { > 0

1 1
- 1+ e—(wz+Db) - 1+ e—w(z—b/w)

Y

— Larger w, sharper transition

— Transition around —b/w, written as s

18/23

Step 2: build bump functions

RN ‘Weighted output from hidden layer

s; =0.30
a, : — - -~
N 37—060 e

T EL‘): -0.6

0.6 * step(0.3) — 0.6 * step (0.6)
Write h as the bump height

19/23

Step 3: sum up bumps to approximate

five bumps
two bumps

J .
he 10
0.40
e 0.2
0.60, “h=-12 =08
: B ko]
010 _ o ” i .
> heo
0.90

ultimate idea

N Y

familiar?
20/23

Suggested reading

21/23

Suggested reading

— Chap 4, Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/chap4.html

22/23

http://neuralnetworksanddeeplearning.com/chap4.html

References i

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303-314.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251-257.

23/23

	Recap
	Why should we trust NNs?
	Suggested reading

