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HW 0 posted (due: midnight Feb 07)

— Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow (2ed) now available at UMN library (limited e-access)

Guest lectures (Feb 04: Tutorial on Numpy, Scipy, Colab. Bring your
laptops if possible!)

— Feb 06: discussion of the course project & ideas
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https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701
https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51785209710001701

Recap
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A cartoon drawing of a biological neuron (left) and its mathematical model (right)

biological neuron vs. artificial neuron
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biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
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Recap Il

Zoo of NN models in ML

Linear regression

— Perception and
Logistic regression

Softmax regression

Multilayer perceptron
(feedforward NNs)

— Support vector machines (SVM)
— PCA (autoencoder)

— Matrix factorization
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Recap Il
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Brief history of NNs:

— 1943: first NNs invented (McCulloch and Pitts)

— 1958 —1969: perceptron (Rosenblatt)

— 1969: Perceptrons (Minsky and Papert)—end of perceptron

— 1980's—-1990's: Neocognitron, CNN, back-prop, SGD—we use today
— 1990's—2010's: SVMs, Adaboosting, decision trees and random forests

— 2010's—now: DNNs and deep learning 6/23



Why should we trust NNs?
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Supervised learning

General view: NN view:
— Gather training data — Gather training data
(ml’yl)v'--’(mnvyn) (mlvyl)v"'v(wn7yn)
— Choose a family of — Choose a NN with k& neurons, so that
functions, e.g., H, so that there is a group of weights, e.g.,
there is f € H to ensure (w1, ..., wy,bi, ..., by), to ensure vy, ~
y, ~ f(x;) for all ¢ INN (w1, ..., wg, by, ..., bi)} (i) Vi
— Set up a loss function ¢ — Set up a loss function ¢
— Findan f € H to — Find weights (w1, ..., wi, b1, ..., br) to
minimize the average loss minimize the average loss
bl W ()
f}gﬁnzf y,. f mm Zﬁ [y;, {NN (w1, ..., wr. by, ..., b))} (x4)]

Why should we trust NNs?
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Function approximation

More accurate description of supervised learning

— Underlying true function: fj
— Training data: y; ~ fo (x;)

— Choose a family of functions
‘H, so that 3f € H and

f and fq are close

— Approximation capacity: #H matters (e.g., linear? quadratic?
sinusoids? etc)

— Optimization & Generalization: how to find the best f € H
matters

We focus on approximation capacity now.
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A word on notation

Qutput layer
Hidden layer

Input layer

— k-layer NNs: with k layers of weights

— k-hidden-layer NNs: with & hidden layers of nodes (i.e.,
(k + 1)-layer NNs)
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First trial

Think of single-output (i.e., R) problems first

A single neuron

— o identity or linear: linear functions

@ w — o sign function sign (wTx + b)
wozg

cell body
S wiwi+b

— -9
axon from a neuron

(perceptron): 0/1 function with

hyperplane threshold

output axon
activation

function _ . 1 ) 2 1
0 = 14+e—#" Z | +e— (wTa+b)
- 0 = max(0, z) (ReLU):
(f — o again, activation {x — max(0,wTx + b)}

always as o)

H:{x—o(wx+b)}
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Second trial

Think of single-output (i.e., R) problems first

Add depth!

But make all hidden-nodes activations
identity or linear

g (’LUE (WLfl ( .. (W1:13 + b1) + .. ) bL71) + bL)

No better than a signle neuron!
Why?
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Third trial

Think of single-output (i.e., R) problems first

Add both depth & nonlinearity!
Surprising news:

universal approximation theorem

The 2-layer network can
approximate arbitrary
continuous functions arbitrarily
well, provided that the hidden
layer is sufficiently wide.

two-layer network, linear

activation at output — we don't worry about the capacity
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Universal approximation theorem

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let 0 : R — R be a nonconstant, bounded, and continuous
function. Let I,,, denote the m-dimensional unit hypercube [0, 1]™.
The space of real-valued continuous functions on I, is denoted by
C(Iy,). Then, given any € > 0 and any function f € C(I,), there
exist an integer N, real constants v;,b; € R and real vectors

w; € R™ fori=1,..., N, such that we may define:

N
F(z) = Z V0 (szx + b;)
i=1
as an approximate realization of the function f; that is,

|F(z) — f(z)| <e

for all x € I,,.
14 /23



Thoughts on UAT

— 0 : R — R be a nonconstant, bounded, and continuous:
what about ReLU (leaky ReLU) or sign function (as in
perceptron)? We have theorem(s)

— I, denote the m-dimensional unit hypercube [0, 1|": this
can replaced by any compact subset of R™

— there exist an integer N: but how large N needs to be?
(later)

— The space of real-valued continuous functions on I,,,:
two examples to ponder on

— binary classification

— learn to solve square root
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Why could hold?

The proof is very technical ... functional analysis

O Riesz Representation: Every linear functional on C°([0, 1]¥) is
given by

f f(x)du(x), ne M
[0,1]%

where M = {finite signed regular Borel measures on [0, 1]¥} .

@ Lemma. Suppose for each y € M, we have
/ S(w-x+b)du(x) =0 Yw,b = pu=0. (0.1)
[0.1]x
Then Nets;(¢) is dense in C°([0, 1]%).
@ Lemma. ¢ continuous, sigmoidal = satisfies (0.1).
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Why could UAT hold?

Visual “proof”
(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R — R functions first, 0 = 1+i*2’

— Step 1: Build "step” functions
— Step 2: Build "bump” functions

— Step 3: Sum up bumps to approximate
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http://neuralnetworksanddeeplearning.com/chap4.html

Step 1: build step functions

1 Qutput from top hidden neuron

b;-?O

Lz { > 0

1 1
- 1+ e—(wz+Db) - 1+ e—w(z—b/w)

Y

— Larger w, sharper transition

— Transition around —b/w, written as s
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Step 2: build bump functions

RN ‘Weighted output from hidden layer

s; =0.30
a, : — - -~
N 37—060 e

T EL‘): -0.6

0.6 * step(0.3) — 0.6 * step (0.6)
Write h as the bump height
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Step 3: sum up bumps to approximate

five bumps
two bumps

J .
he 10
0.40
e 0.2
0.60, “h=-12 =08
: B ko]
010 _ o ” i .
> heo
0.90

ultimate idea

N Y

familiar?
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Suggested reading
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Suggested reading

— Chap 4, Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/chap4.html
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http://neuralnetworksanddeeplearning.com/chap4.html
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