Think Deep Learning: Overview

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

January 21, 2020

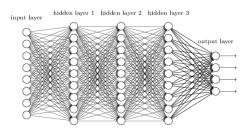
Outline

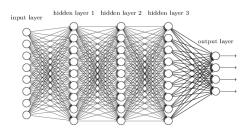
Why deep learning?

Why first principles?

Our topics

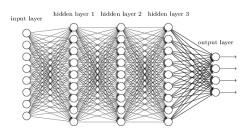
Course logistics



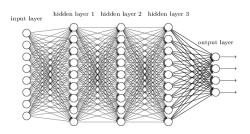


DL is about...

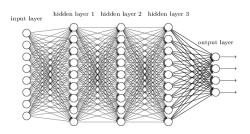
Deep neural networks (DNNs)



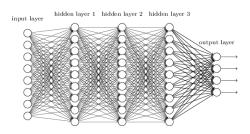
- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)



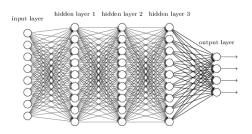
- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)
- Methods for training DNNs (e.g., AdaGrad, ADAM, RMSProp, Dropout)



- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)
- Methods for training DNNs (e.g., AdaGrad, ADAM, RMSProp, Dropout)
- Hardware platforms for traning DNNs (e.g., GPUs, TPUs, FPGAs)



- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)
- Methods for training DNNs (e.g., AdaGrad, ADAM, RMSProp, Dropout)
- Hardware platforms for training DNNs (e.g., GPUs, TPUs, FPGAs)
- Software platforms for training DNNs (e.g., Tensorflow, PyTorch, MXNet)



DL is about...

- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)
- Methods for training DNNs (e.g., AdaGrad, ADAM, RMSProp, Dropout)
- Hardware platforms for training DNNs (e.g., GPUs, TPUs, FPGAs)
- Software platforms for training DNNs (e.g., Tensorflow, PyTorch, MXNet)
- Applications! (e.g., vision, speech, NLP, imaging, physics, mathematics, finance)

3 / 28

Why DL?

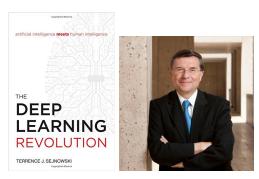
DL leads to many things ...

Revolution: a great change in conditions, ways of working, beliefs, etc. that affects large numbers of people – from the Oxford Dictionary

Why DL?

DL leads to many things ...

Revolution: a great change in conditions, ways of working, beliefs, etc. that affects large numbers of people – from the Oxford Dictionary



Terrence Sejnowski (Salk Institute)

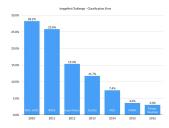


image classification

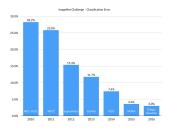
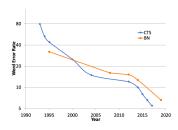


image classification



speech recognition credit: IBM

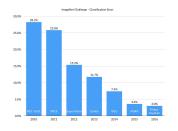
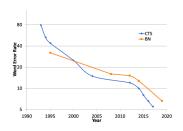


image classification

chess game (2017)



 $speech\ recognition\ {}_{\text{credit: IBM}}$

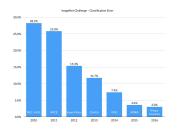
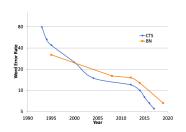


image classification

chess game (2017)



speech recognition credit: IBM

image generation credit: I. Goodfellow

self-driving vehicles $_{\text{credit: wired.com}}$

self-driving vehicles credit: wired.com smart-home devices credit: Amazon

self-driving vehicles credit: wired.com

smart-home devices credit: Amazon

healthcare credit: Google AI

self-driving vehicles credit: wired.com

healthcare credit: Google AI

smart-home devices credit: Amazon

robotics credit: Cornell U.

DL leads to productivity

Papers are produced at an overwhelming rate

DL leads to productivity

Papers are produced at an overwhelming rate

image credit: arxiv.org

DL leads to productivity

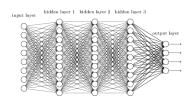
Papers are produced at an overwhelming rate

image credit: arxiv.org

$$400 \times 0.8 \times 52/140000 \approx 11.9\%$$

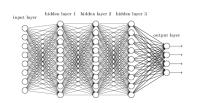
DL Supremacy!?

DL leads to fame



Turing Award 2018 credit: ACM.org

DL leads to fame



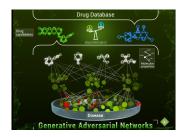
Turing Award 2018 credit: ACM.org

Citation: For conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing.

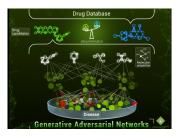
DL leads to frustration

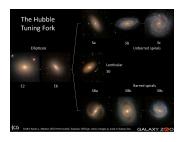
esp. for academic researchers ...

It's working amazingly well, but we don't understand why

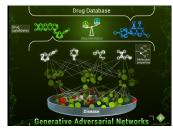


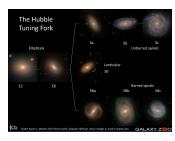
chemistry



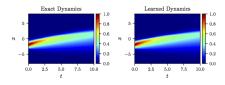


astronomy



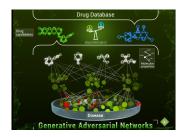


astronomy

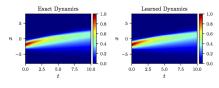


chemistry

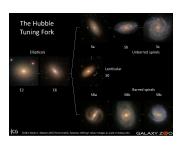
applied math



chemistry



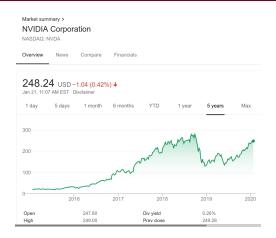
applied math



astronomy

social science

DL leads to money



- Funding
- Investment
- Job opportunities

Outline

Why deep learning?

Why first principles?

Our topics

Course logistics

Why first principles?

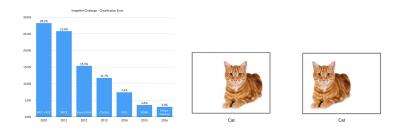
Why first principles?

- Tuning and optimizing for a task require basic intuitions

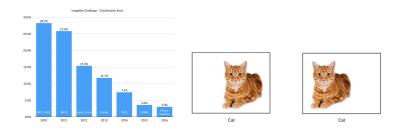
Why first principles?

- Tuning and optimizing for a task require basic intuitions
- Historical lesson: model structures in data
- Current challenge: move toward trustworthiness
- Future world: navigate uncertainties

Structures are crucial



Structures are crucial



- Representation of images should ideally be translation-invariant.
- The 2012 breakthrough was based on modifying the classic DNNs setup to achieve translation-invariant.
- Similar success stories exist for sequences, graphs, 3D meshes.

Toward trustworthy AI

Super human-level vision?

Adversarial examples

credit: ImageNet-C
Natural corruptions

- Trustworthiness: robustness, fairness, explainability, transparency
- We need to know first principles in order to improve and understand

Future uncertainties

- New types of data (e.g., 6-D tensors)
- New hardware (e.g., better GPU memory)
- New model pipelines (e.g., network of networks, differential programming)
- New applications
- New techniques replacing DL

Outline

Why deep learning?

Why first principles?

Our topics

Course logistics

Outline of the course - I

Overview and history

Course overview (1)

Neural networks: old and new (1)

Outline of the course - I

Overview and history

Course overview (1)

Neural networks: old and new (1)

Fundamentals

Fundamental belief: universal approximation theorem (2)

Numerical optimization with math: optimization with gradient descent and beyond (2)

Numerical optimization without math: auto-differentiation and differential programming (2)

Outline of the course - II

Structured data: images and sequences

Work with images: convolutional neural networks (2)

Work with images: recognition, detection, segmentation (2)

Work with sequences: recurrent neural networks (2)

Outline of the course - II

Structured data: images and sequences

Work with images: convolutional neural networks (2)

Work with images: recognition, detection, segmentation (2)

Work with sequences: recurrent neural networks (2)

Deterministic DNN

To train or not? scattering transforms (2)

Outline of the course - II

Structured data: images and sequences

Work with images: convolutional neural networks (2)
Work with images: recognition, detection, segmentation (2)
Work with sequences: recurrent neural networks (2)

Deterministic DNN

To train or not? scattering transforms (2)

Other settings: generative/unsupervised/reinforcement learning

Learning probability distributions: generative adversarial networks (2)

Learning representation without labels: dictionary learning and autoencoders (1)

Gaming time: deep reinforcement learning (2)

Outline of tutorial/discussion sessions

Python, Numpy, and Google Cloud/Colab Project ideas Tensorflow 2.0 and Pytorch Backpropagation and computational tricks Research ideas

Outline

Why deep learning?

Why first principles?

Our topics

Course logistics

Instructor: Professor Ju Sun Email: jusun@umn.edu
 Office hours: Th 4–6pm 5-225E Keller H

- Instructor: Professor Ju Sun Email: jusun@umn.edu
 Office hours: Th 4–6pm 5-225E Keller H
- TA: Yuan Yao Email: yaoxx340@umn.edu
 Office hours: Wed 12:15–2:15pm at Shepherd Lab 234

- Instructor: Professor Ju Sun Email: jusun@umn.edu
 Office hours: Th 4–6pm 5-225E Keller H
- TA: Yuan Yao Email: yaoxx340@umn.edu
 Office hours: Wed 12:15–2:15pm at Shepherd Lab 234
- Courtesy TA: Taihui Li Email: lixx5027@umn.edu
 who is responsible for setting up hard homework problems!

- Instructor: Professor Ju Sun Email: jusun@umn.edu
 Office hours: Th 4–6pm 5-225E Keller H
- TA: Yuan Yao Email: yaoxx340@umn.edu
 Office hours: Wed 12:15–2:15pm at Shepherd Lab 234
- Courtesy TA: Taihui Li Email: lixx5027@umn.edu
 who is responsible for setting up hard homework problems!
- Guest lecturers (TBA)

Technology we use

Course Website:

https://sunju.org/teach/DL-Spring-2020/

All course materials will be posted on the course website.

Technology we use

- Course Website:

https://sunju.org/teach/DL-Spring-2020/

All course materials will be posted on the course website.

 Communication: Canvas is the preferred and most efficient way of communication. All questions and discussions go to Canvas. Send emails in exceptional situations.

For bookworms...

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville.
 MIT Press, 2016. Online URL: https://www.deeplearningbook.org/ (comprehensive coverage of recent developments)
- Neural Networks and Deep Learning by Charu Aggarwal. Springer,
 2018. UMN library online access (login required): Click here.
 (comprehensive coverage of recent developments)

For bookworms...

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville.
 MIT Press, 2016. Online URL: https://www.deeplearningbook.org/ (comprehensive coverage of recent developments)
- Neural Networks and Deep Learning by Charu Aggarwal. Springer,
 2018. UMN library online access (login required): Click here.
 (comprehensive coverage of recent developments)
- The Deep Learning Revolution by Terrence J. Sejnowski. MIT Press,
 2018. UMN library online access (login required): Click here. (account of historic developments and related fields)

For bookworms...

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville.
 MIT Press, 2016. Online URL: https://www.deeplearningbook.org/ (comprehensive coverage of recent developments)
- Neural Networks and Deep Learning by Charu Aggarwal. Springer,
 2018. UMN library online access (login required): Click here.
 (comprehensive coverage of recent developments)
- The Deep Learning Revolution by Terrence J. Sejnowski. MIT Press,
 2018. UMN library online access (login required): Click here. (account of historic developments and related fields)
- Deep Learning with Python by François Chollet. Online URL:
 https://livebook.manning.com/book/deep-learning-with-python
 (hands-on deep learning using Keras with the Tensorflow backend)
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron (2ed). O'Reilly Media, 2019. UMN library online access (available soon). (hands-on machine learning, including deep learning, using Scikit-Learn and Keras)

- 60 % homework + 40 % course project

- 60 % homework + 40 % course project
- 5/7 homework counts. Submission to Canvas. Writing in LATEX(to PDF) and programming in Python 3 notebook.

Acknowledge your collaborators for each problem!

- 60 % homework + 40 % course project
- 5/7 homework counts. Submission to Canvas. Writing in $\mbox{\sc BT}_{\mbox{\sc EX}}(\mbox{to PDF})$ and programming in Python 3 notebook.

Acknowledge your collaborators for each problem!

– Project based on team of 2 or 3. 5% proposal + 10% mid-term presentation + 25% final report

- 60 % homework + 40 % course project
- 5/7 homework counts. Submission to Canvas. Writing in $\protect\operatorname{MTEX}(to\ PDF)$ and programming in Python 3 notebook.

Acknowledge your collaborators for each problem!

- Project based on team of 2 or 3. 5% proposal + 10% mid-term presentation + 25% final report
- Publish a paper \Longrightarrow A!

Programming and Computing

> 2.0 ≥ 3

 ≥ 1.0

Programming and Computing

 ≥ 3

 ≥ 2.0

 ≥ 1.0

Computing

- Local installation
- Google Colab: https://colab.research.google.com/
 (Yes, it's free)
- Google Cloud (\$50 credits per student) (similarly AWS and Azure)
- Minnesota Supercomputing Institute (MSI)

We're not alone

Related deep learning courses at UMN

 Topics in Computational Vision: Deep networks (Prof. Daniel Kersten, Department of Psychology. Focused on connection with computational neuroscience and vision)

We're not alone

Related deep learning courses at UMN

- Topics in Computational Vision: Deep networks (Prof. Daniel Kersten, Department of Psychology. Focused on connection with computational neuroscience and vision)
- Analytical Foundations of Deep Learning (Prof. Jarvis Haupt, Department of Electrical and Computer Engineering. Focused on mathematical foundations and theories)

We're not alone

Related deep learning courses at UMN

- Topics in Computational Vision: Deep networks (Prof. Daniel Kersten, Department of Psychology. Focused on connection with computational neuroscience and vision)
- Analytical Foundations of Deep Learning (Prof. Jarvis Haupt, Department of Electrical and Computer Engineering. Focused on mathematical foundations and theories)

To learn more computational methods for large-scale optimization

– IE5080: Optimization Models and Methods for Machine Learning (Prof. Zhaosong Lu, Department of Industrial and Systems Engineering (ISyE))

Homework 0 today!

About basic **linear algebra** and **calculus** and **probability**, in **machine learning** context

Homework 0 today!

About basic **linear algebra** and **calculus** and **probability**, in **machine learning** context

If you struggle too much with it

- Find the right resources to pick up in the first week
- OR take the course in later iterations

Thank you!