Basics of Numerical Optimization: Computing Derivatives

Ju Sun
Computer Science \& Engineering
University of Minnesota, Twin Cities

September 28, 2023

Derivatives for numerical optimization

Credit: aria42.com

- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- Almost all methods entail low-order derivatives, i.e., gradient and/or Hessian, to proceed.
* 1st order methods: use $f(\boldsymbol{x})$ and $\nabla f(\boldsymbol{x})$
* 2nd order methods: use $f(\boldsymbol{x})$ and $\nabla f(\boldsymbol{x})$ and $\nabla^{2} f(\boldsymbol{x})$
- Numerical (not analytical) derivatives (i.e., numbers) needed for the iterations

This lecture: how to compute the numerical derivatives

Four kinds of computing techniques

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Analytical derivatives

Idea: derive the analytical derivatives first, then make numerical substitution
To derive the analytical derivatives by hand:

- Chain rule (vector version) method Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{z}=h(\boldsymbol{y})$ is differentiable at $\boldsymbol{y}=f(\boldsymbol{x})$. Then, $\boldsymbol{z}=h \circ f(\boldsymbol{x}): \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is differentiable at \boldsymbol{x}, and

$$
\boldsymbol{J}_{[h \circ f]}(\boldsymbol{x})=\boldsymbol{J}_{h}(f(\boldsymbol{x})) \boldsymbol{J}_{f}(\boldsymbol{x}), \text { or } \frac{\partial z}{\partial \boldsymbol{x}}=\frac{\partial z}{\partial y} \frac{\partial y}{\partial \boldsymbol{x}}
$$

When $k=1$,

$$
\nabla[h \circ f](\boldsymbol{x})=\boldsymbol{J}_{f}^{\top}(\boldsymbol{x}) \nabla h(f(\boldsymbol{x}))
$$

- Taylor expansion method

Expand the perturbed function $f(\boldsymbol{x}+\boldsymbol{\delta})$ and then match it against Taylor expansions to read off the gradient and/or Hessian:

$$
\begin{aligned}
& f(\boldsymbol{x}+\boldsymbol{\delta})=f(x)+\langle\nabla f(x), \boldsymbol{\delta}\rangle+o\left(\|\boldsymbol{\delta}\|_{2}\right) \\
& f(\boldsymbol{x}+\boldsymbol{\delta})=f(x)+\langle\nabla f(x), \delta\rangle+\frac{1}{2}\left\langle\delta, \nabla^{2} f(x) \delta\right\rangle+o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right)
\end{aligned}
$$

Symbolic differentiation

Idea: derive the analytical derivatives first, then make numerical substitution
To derive the analytical derivatives by software:

```
Differentiate Function
```

Find the derivative of the function $\sin \left(x^{\wedge} 2\right)$.

```
syms f(x)
f(x)=sin( }\mp@subsup{x}{}{\wedge}2)
df = diff(f,x)
df(x)=
2* ** cos (x^2)
```

Find the value of the derivative at $\mathrm{x}=2$. Convert the value to double.

```
df2 = df(2)
```

df2 $=$
4* $\cos (4)$

- Matlab (Symbolic Math Toolbox, diff)
- Python (SymPy, diff)
- Mathmatica (D)
- Matrix Calculus https://www.matrixcalculus.org/

Effective for simple functions

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Limitation of analytical differentiation

What is the gradient and/or Hessian of

$$
f(\boldsymbol{W})=\sum_{i}\left\|\boldsymbol{y}_{i}-\sigma\left(\boldsymbol{W}_{k} \sigma\left(\boldsymbol{W}_{k-1} \sigma \ldots\left(\boldsymbol{W}_{1} \boldsymbol{x}_{i}\right)\right)\right)\right\|_{F}^{2} ?
$$

Applying the chain rule is boring and error-prone. Performing Taylor expansion can also be tedious

Lesson we learn from tech history: leave boring jobs to computers

Approximate the gradient

$$
\begin{aligned}
& f^{\prime}(\boldsymbol{x})=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta} \approx \frac{f(x+\delta)-f(x)}{\delta} \\
& \text { with } \delta \text { sufficiently small }
\end{aligned}
$$

For $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}} & \approx \frac{f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})}{\delta} \quad \text { (forward) } \\
\frac{\partial f}{\partial x_{i}} & \approx \frac{f(\boldsymbol{x})-f\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}\right)}{\delta} \quad \text { (backward) } \\
\frac{\partial f}{\partial x_{i}} & \approx \frac{f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}\right)}{2 \delta} \quad \text { (central) }
\end{aligned}
$$

(Credit: numex-blog.com)
Similarly, to approximate the Jacobian for $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
\begin{array}{rlr}
\frac{\partial f_{j}}{\partial x_{i}} & \approx \frac{f_{j}\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f_{j}(\boldsymbol{x})}{\delta} & \text { (one element each time) } \\
\frac{\partial f}{\partial x_{i}} & \approx \frac{f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})}{\delta} & \text { (one column each time) } \\
\boldsymbol{J}_{f}(\boldsymbol{x}) \boldsymbol{p} & \approx \frac{f(\boldsymbol{x}+\delta \boldsymbol{p})-f(\boldsymbol{x})}{\delta} & \text { (directional) }
\end{array}
$$

Why central?

Stronger form of Taylor's theorems

- 1st order: If $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable,

$$
f(\boldsymbol{x}+\boldsymbol{\delta})=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{\delta}\rangle+O\left(\|\delta\|_{2}^{2}\right)
$$

- 2nd order: If $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is three-times continuously differentiable, $f(\boldsymbol{x}+\boldsymbol{\delta})=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{\delta}\rangle+\frac{1}{2}\left\langle\boldsymbol{\delta}, \nabla^{2} f(\boldsymbol{x}) \boldsymbol{\delta}\right\rangle+O\left(\|\delta\|_{2}^{3}\right)$

Why the central theme is better?

- Forward: by 1st-order Taylor expansion

$$
\frac{1}{\delta}\left(f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})\right)=\frac{1}{\delta}\left(\delta \frac{\partial f}{\partial x_{i}}+O\left(\delta^{2}\right)\right)=\frac{\partial f}{\partial x_{i}}+O(\delta)
$$

- Central: by 2nd-order Taylor expansion $\frac{1}{\delta}\left(f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)-f\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}\right)\right)=$

$$
\frac{1}{2 \delta}\left(\delta \frac{\partial f}{\partial x_{i}}+\frac{1}{2} \delta^{2} \frac{\partial^{2} f}{\partial x_{i}^{2}}+\delta \frac{\partial f}{\partial x_{i}}-\frac{1}{2} \delta^{2} \frac{\partial^{2} f}{\partial x_{i}^{2}}+O\left(\delta^{3}\right)\right)=\frac{\partial f}{\partial x_{i}}+O\left(\delta^{2}\right)
$$

Approximate the Hessian

- Recall that for $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ that is 2 nd-order differentiable, $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$. So

$$
\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{x}) \approx \frac{\left(\frac{\partial f}{\partial x_{i}}\right)\left(\boldsymbol{x}+\delta \boldsymbol{e}_{j}\right)-\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{x})}{\delta}
$$

- We can also compute one row of Hessian each time by

$$
\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial \boldsymbol{x}}\right)(\boldsymbol{x}) \approx \frac{\left(\frac{\partial f}{\partial \boldsymbol{x}}\right)\left(\boldsymbol{x}+\delta \boldsymbol{e}_{j}\right)-\left(\frac{\partial f}{\partial \boldsymbol{x}}\right)(\boldsymbol{x})}{\delta}
$$

obtaining \widehat{H}, which might not be symmetric. Return $\frac{1}{2}\left(\widehat{\boldsymbol{H}}+\widehat{\boldsymbol{H}}^{\top}\right)$ instead

- Most times (e.g., in TRM, Newton-CG), only $\nabla^{2} f(\boldsymbol{x}) \boldsymbol{v}$ for certain \boldsymbol{v}^{\prime} s needed: (see, e.g., Manopt https://www.manopt.org/)

$$
\nabla^{2} f(\boldsymbol{x}) \boldsymbol{v} \approx \frac{\nabla f(\boldsymbol{x}+\delta \boldsymbol{v})-\nabla f(\boldsymbol{x})}{\delta}
$$

A few words

- Can be used for sanity check of correctness of analytical gradient
- Finite-difference approximation of higher (i.e., ≥ 2)-order derivatives combined with high-order iterative methods can be very efficient (e.g., Manopt https://www.manopt.org/tutorial.html\#costdescription)
- Numerical stability can be an issue: truncation and round off errors (finite δ; accurate evaluation of the nominators)

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Four kinds of computing techniques

Credit: [Baydin et al., 2017]

Auto differentiation (auto diff, AD) in 1D

Consider a univariate function $f_{k} \circ f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}(x): \mathbb{R} \rightarrow \mathbb{R}$. Write $y_{0}=x$, $y_{1}=f_{1}(x), y_{2}=f_{2}\left(y_{1}\right), \ldots, y_{k}=f\left(y_{k-1}\right)$, or in computational graph form:

Chain rule in Leibniz form:

$$
\frac{\partial f}{\partial x}=\frac{\partial y_{k}}{\partial y_{0}}=\frac{\partial y_{k}}{\partial y_{k-1}} \frac{\partial y_{k-1}}{\partial y_{k-2}} \cdots \frac{\partial y_{2}}{\partial y_{1}} \frac{\partial y_{1}}{\partial y_{0}}
$$

How to evalute the product?

- From left to right in the chain: forward mode auto diff
- From right to left in the chain: backward/reverse mode auto diff
- Hybrid: mixed mode

Forward mode in 1D

Chain rule: $\quad \frac{d f}{d x}=\frac{d y_{k}}{d y_{0}}=\left(\frac{d y_{k}}{d y_{k-1}}\left(\frac{d y_{k-1}}{d y_{k-2}}\left(\ldots\left(\frac{d y_{2}}{d y_{1}}\left(\frac{d y_{1}}{d y_{0}}\right)\right)\right)\right)\right)$
Example: For $f(\boldsymbol{x})=\left(x^{2}+1\right)^{2}$, calculate $\nabla f(1)$ (whiteboard)
Compute $\left.\frac{d f}{d x}\right|_{x_{0}}$ in one pass, from inner to outer most parenthesis:

```
Input: \(y_{0}\), initialization \(\left.\frac{d y_{0}}{d y_{0}}\right|_{y_{0}}=1\)
    for \(i=1, \ldots, k\) do
        compute \(y_{i}=f_{i}\left(y_{i-1}\right)\)
        compute \(\left.\frac{d y_{i}}{d y_{0}}\right|_{y_{0}}=\left.\left.\frac{d y_{i}}{d y_{i-1}}\right|_{y_{i-1}} \cdot \frac{d y_{i-1}}{d y_{0}}\right|_{y_{0}}=\left.f_{i}^{\prime}\left(y_{i-1}\right) \frac{d y_{i-1}}{d y_{0}}\right|_{y_{0}}\)
    end for
Output: \(\left.\frac{d y_{k}}{d y_{0}}\right|_{y_{0}}\)
```


Reverse mode in 1D

Chain rule: $\frac{d f}{d x}=\frac{d f}{d y_{0}}=\left(\left(\left(\left(\left(\frac{d y_{k}}{d y_{k-1}}\right) \frac{d y_{k-1}}{d y_{k-2}}\right) \ldots\right) \frac{d y_{2}}{d y_{1}}\right) \frac{d y_{1}}{d y_{0}}\right)$
Example: For $f(\boldsymbol{x})=\left(x^{2}+1\right)^{2}$, calculate $\nabla f(1)$ (whiteboard)
Compute $\left.\frac{d f}{d x}\right|_{x_{0}}$ in two passes:

- Forward pass: calculate the y_{i} 's sequentially
- Backward pass: calculate the $\frac{d y_{k}}{d y_{i}}=\frac{d y_{k}}{d y_{i+1}} \frac{d y_{i+1}}{d y_{i}}$ backward

```
Input: \(y_{0}, \frac{d y_{k}}{d y_{k}}=1\)
    for \(i=1, \ldots, k\) do
        compute \(y_{i}=f_{i}\left(y_{i-1}\right)\)
    end for // forward pass
    for \(i=k-1, k-2, \ldots, 0\) do
        compute \(\left.\frac{d y_{k}}{d y_{i}}\right|_{y_{i}}=\left.\left.\frac{d y_{k}}{d y_{i+1}}\right|_{y_{i+1}} \cdot \frac{d y_{i+1}}{d y_{i}}\right|_{y_{i}}=\left.f_{i+1}^{\prime}\left(y_{i}\right) \frac{d y_{k}}{d y_{i+1}}\right|_{y_{i+1}}\)
    end for // backward pass
Output: \(\left.\frac{d y_{k}}{d y_{0}}\right|_{y_{0}}\)
```


Forward vs reverse modes

- forward mode AD: one forward pass, compute y_{i} 's and $\frac{d y_{i}}{d y_{0}}$'s together
- reverse mode AD: one forward pass to compute y_{i} 's, one backward pass to compute $\frac{d y_{k}}{d y_{i}}$'s

Effectively, two different ways of grouping the multiplicative differential terms:

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{d f}{d y_{0}}=\left(\frac{d y_{k}}{d y_{k-1}}\left(\frac{d y_{k-1}}{d y_{k-2}}\left(\ldots\left(\frac{d y_{2}}{d y_{1}}\left(\frac{d y_{1}}{d y_{0}}\right)\right)\right)\right)\right) \\
& \quad \text { i.e., starting from the root: } \frac{d y_{0}}{d y_{0}} \mapsto \frac{d y_{1}}{d y_{0}} \mapsto \frac{d y_{2}}{d y_{0}} \mapsto \cdots \mapsto \frac{d y_{k}}{d y_{0}} \\
& \frac{d f}{d x}=\frac{d f}{d y_{0}}=\left(\left(\left(\left(\left(\frac{d y_{k}}{d y_{k-1}}\right) \frac{d y_{k-1}}{d y_{k-2}}\right) \ldots\right) \frac{d y_{2}}{d y_{1}}\right) \frac{d y_{1}}{d y_{0}}\right)
\end{aligned}
$$

i.e., starting from the leaf: $\frac{d y_{k}}{d y_{k}} \mapsto \frac{d y_{k}}{d y_{k-1}} \mapsto \frac{d y_{k}}{d y_{k-2}} \mapsto \cdots \mapsto \frac{d y_{k}}{d y_{0}}$

Auto differentiation in high dimensions

Chain Rule Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{z}=h(\boldsymbol{y})$ is differentiable at $\boldsymbol{y}=f(\boldsymbol{x})$. Then, $\boldsymbol{z}=h \circ f(\boldsymbol{x}): \mathbb{R}^{\boldsymbol{m}} \rightarrow \mathbb{R}^{k}$ is differentiable at \boldsymbol{x}, and

$$
\boldsymbol{J}_{[h \circ f]}(\boldsymbol{x})=\boldsymbol{J}_{h}(f(\boldsymbol{x})) \boldsymbol{J}_{f}(\boldsymbol{x}) \text {, or } \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} \Leftrightarrow \frac{\partial z_{j}}{\partial x_{i}}=\sum_{\ell=1}^{n} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \forall i, j
$$

- Each node is a variable, as a function of all incoming variables
- If node B a child of node $A, \frac{\partial B}{\partial A}$ is the rate of change in B wrt change in A
- Traveling along a path, rates of changes should be multiplied
- Chain rule: summing up rates over all connecting paths! (e.g., x_{2} to z_{j} as shown)

A multivariate example-forward mode

$$
y=\left(\sin \frac{x_{1}}{x_{2}}+\frac{x_{1}}{x_{2}}-e^{x_{2}}\right)\left(\frac{x_{1}}{x_{2}}-e^{x_{2}}\right)
$$

$v_{-1}=x_{1}$	$=1.5000$	
$\dot{v}_{-1}=\dot{x}_{1}$	$=1.0000$	
$v_{0}=x_{2}$	$=0.5000$	
$\dot{v}_{0}=\dot{x}_{2}$	$=0.0000$	
$v_{1}=v_{-1} / v_{0}$	$=1.5000 / 0.5000$	3.0000
$\dot{v}_{1}=\left(\dot{v}_{-1}-v_{1} * \dot{v}_{0}\right) / v_{0}$	$=1.0000 / 0.5000$	2.0000
$v_{2}=\sin \left(v_{1}\right)$	$=\sin (3.0000)$	0.1411
$\dot{v}_{2}=\cos \left(v_{1}\right) * \dot{v}_{1}$	$=-0.9900 * 2.0000 \quad=$	-1.9800
$v_{3}=\exp \left(v_{0}\right)$	$=\exp (0.5000)$	1.6487
$\dot{v}_{3}=v_{3} * \dot{v}_{0}$	$=1.6487 * 0.0000 \quad=$	0.0000
$v_{4}=v_{1}-v_{3}$	$=3.0000-1.6487 \quad=$	1.3513
$\dot{v}_{4}=\dot{v}_{1}-\dot{v}_{3}$	$=2.0000-0.0000 \quad=$	2.0000
$v_{5}=v_{2}+v_{4}$	$=0.1411+1.3513 \quad=$	1.4924
$\dot{v}_{5}=\dot{v}_{2}+\dot{v}_{4}$	$=-1.9800+2.0000 \quad=$	0.0200
$v_{6}=v_{5} * v_{4}$	$=1.4924 * 1.3513=$	2.0167
$\dot{v}_{6}=\dot{v}_{5} * v_{4}+v_{5} * \dot{v}_{4}$	$=0.0200 * 1.3513+1.4924 * 2.0000=$	3.0118
$y=v_{6}$	$=2.0100$	
$\dot{y} \quad=\dot{v}_{6}$	$=3.0110$	

v_{-1}	$=x_{1}$	$=1.5000$	
v_{0}	$=x_{2}$	$=0.5000$	$=3.0000$
v_{1}	$=v_{-1} / v_{0}$	$=1.5000 / 0.5000$	$=\sin (3.0000)$
v_{2}	$=\sin \left(v_{1}\right)$	$=1411$	
v_{3}	$=\exp \left(v_{0}\right)$	$=\exp (0.5000)$	$=1.6487$
v_{4}	$=v_{1}-v_{3}=3.0000-1.6487$	$=1.3513$	
v_{5}	$=v_{2}+v_{4}$	$=0.1411+1.3513$	$=1.4924$
v_{6}	$=v_{5} * v_{4}$	$=1.4924 * 1.3513$	$=2.0167$
y	$=v_{6}$	$=2.0167$	

- interested in $\frac{\partial}{\partial x_{1}}$; for each variable v_{i}, write $\dot{v}_{i} \doteq \frac{\partial v_{i}}{\partial x_{1}}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_{4}=\frac{\partial v_{4}}{\partial v_{1}} \dot{v}_{1}+\frac{\partial v_{4}}{\partial v_{3}} \dot{v}_{3}$
- complexity:
O (\#edges + \#nodes)
- for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, make n forward passes: $O(n$ (\#edges $+\#$ nodes $))$

A multivariate example-reverse mode

$$
\begin{aligned}
& v_{-1}=x_{1}=1.5000 \\
& v_{0}=x_{2}=0.5000 \\
& v_{1}=v_{-1} / v_{0}=1.5000 / 0.5000=3.0000 \\
& v_{2}=\sin \left(v_{1}\right)=\sin (3.0000)=0.1411 \\
& v_{3}=\exp \left(v_{0}\right)=\exp (0.5000)=1.6487 \\
& v_{4}=v_{1}-v_{3}=3.0000-1.6487=1.3513 \\
& v_{5}=v_{2}+v_{4}=0.1411+1.3513=1.4924 \\
& v_{6}=v_{5} * v_{4}=1.4924 * 1.3513=2.0167 \\
& y=v_{6}=2.0167 \\
& \bar{v}_{6}=\bar{y}=1.0000 \\
& \bar{v}_{5}=\bar{v}_{6} * v_{4}=1.0000 * 1.3513=1.3513 \\
& \bar{v}_{4}=\bar{v}_{6} * v_{5}=1.0000 * 1.4924=1.4924 \\
& \bar{v}_{4}=\bar{v}_{4}+\bar{v}_{5}=1.4924+1.3513=2.8437 \\
& \bar{v}_{2}=\bar{v}_{5}=1.3513 \\
& \bar{v}_{3}=-\bar{v}_{4}=-2.8437 \\
& \bar{v}_{1}=\bar{v}_{4}=2.8437 \\
& \bar{v}_{0}=\bar{v}_{3} * v_{3}=-2.8437 * 1.6487=-4.6884 \\
& \bar{v}_{1}=\bar{v}_{1}+\bar{v}_{2} * \cos \left(v_{1}\right)=2.8437+1.3513 *(-0.9900)=1.5059 \\
& \bar{v}_{0}=\bar{v}_{0}-\bar{v}_{1} * v_{1} / v_{0}=-4.6884-1.5059 * 3.000 / 0.5000=-13.7239 \\
& \bar{v}_{-1}=\bar{v}_{1} / v_{0}=1.5059 / 0.5000=3.0118 \\
& \bar{x}_{2}=\bar{v}_{0}=-13.7239 \\
& \bar{x}_{1}=\bar{v}_{-1}=3.0118
\end{aligned}
$$ v_{i}, write $\bar{v}_{i} \doteq \frac{\partial y}{\partial v_{i}}$ (called adjoint variable)

- for each node, sum up partials over all outgoing edges, e.g., $\bar{v}_{4}=\frac{\partial v_{5}}{\partial v_{4}} \bar{v}_{5}+\frac{\partial v_{6}}{\partial v_{4}} \bar{v}_{6}$
- complexity:

O (\#edges + \#nodes)

- for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, make m backward passes:
$O(m$ (\#edges $+\#$ nodes $))$
example from Ch 1
of [Griewank and Walther, 2008]

Forward vs. reverse modes

For general function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, suppose there is no loop in the computational graph, i.e., acyclic graph. E : set of edges; V : set of nodes

	forward mode	reverse mode
start from	roots	leaves
end with	leaves	roots
invariants	$\dot{v}_{i} \doteq \frac{\partial v_{i}}{\partial x}(x$-root of interest $)$	$\bar{v}_{i} \doteq \frac{\partial y}{\partial v_{i}}(y$-leaf of interest $)$
rule	sum over incoming edges	sum over outgoing edges
computation	$O(n\|E\|+n\|V\|)$	$O(m\|E\|+m\|V\|)$
memory	$O(\|V\|)$, typically way smaller	$O(\|V\|)$
better when	$m \gg n$	$n \gg m$

Implementation trick-tensor abstraction

Tensors: multi-dimensional arrays

Tensor

Each node in the computational graph can be a tensor (scalar, vector, matrix, 3-D tensor, ...)

$$
\begin{gathered}
f(\boldsymbol{W})= \\
\left\|\boldsymbol{Y}-\sigma\left(\boldsymbol{W}_{k} \sigma\left(\boldsymbol{W}_{k-1} \sigma \ldots\left(\boldsymbol{W}_{1} \boldsymbol{X}\right)\right)\right)\right\|_{F}^{2}
\end{gathered}
$$

Implementation trick-tensor abstraction

hidden layer 1 hidden layer 2
computational graph for DNN

$$
f(\boldsymbol{W})=\left\|\boldsymbol{Y}-\sigma\left(\boldsymbol{W}_{k} \sigma\left(\boldsymbol{W}_{k-1} \sigma \ldots\left(\boldsymbol{W}_{1} \boldsymbol{X}\right)\right)\right)\right\|_{F}^{2}
$$

- neater computational graph
- tensor (i.e., vector) chain rules apply, often in tensor-free computation Fact: For two matrices (tensors) \boldsymbol{D} and \boldsymbol{M} of compatiable size, where \boldsymbol{D} is fixed and \boldsymbol{M} is a function of \boldsymbol{M}^{\prime}

$$
\nabla_{M^{\prime}}\langle M, \boldsymbol{D}\rangle=\mathcal{J}_{M^{\prime} \rightarrow M}^{\top}\left(M^{\prime}\right)[\boldsymbol{D}]
$$

* EX1: $\frac{\partial f}{\partial V_{4}}$ (whiteboard)
* EX2: $\frac{\partial f^{4}}{\partial V_{1}}$ (whiteboard)

Implementation trick—VJP

Interested in $\boldsymbol{J}_{f}(\boldsymbol{x})$ for $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$. Implement $\boldsymbol{v}^{\boldsymbol{\top}} \boldsymbol{J}_{f}(\boldsymbol{x})$ for any $\boldsymbol{v} \in \mathbb{R}^{m}$

- Why?
* set $\boldsymbol{v}=e_{i}$ for $i=1, \ldots, m$ to recover rows of $\boldsymbol{J}_{f}(\boldsymbol{x})$
* special structures in $\boldsymbol{J}_{f}(\boldsymbol{x})$ (e.g., sparsity) can be exploited
* often enough for application, e.g., calculate $\nabla(g \circ f)=\left(\nabla f^{\top} \boldsymbol{J}_{f}\right)^{\top}$ with known ∇f
- Why possible?
* $\boldsymbol{v}^{\top} \boldsymbol{J}_{f}(\boldsymbol{x})=\boldsymbol{J}_{\boldsymbol{v}^{\top} f}(\boldsymbol{x})$ so keep track of
$\frac{\partial}{\partial v_{i}}\left(\boldsymbol{v}^{\top} f\right)=\sum_{k: \text { outgoing }} \frac{\partial v_{k}}{\partial v_{i}} \frac{\partial}{\partial v_{k}}\left(\boldsymbol{v}^{\top} f\right)$
* implemeted in reverse-mode auto diff
torch.autograd.functional.vjp(func, inputs, v=None, create_graph=False, strict=False)
Function that computes the dot product between a vector v and the Jacobian of the given function at the point given by the inputs.

Implementation trick—JVP

Interested in $\boldsymbol{J}_{f}(\boldsymbol{x})$ for $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$. Implement $\boldsymbol{J}_{f}(\boldsymbol{x}) \boldsymbol{p}$ for any $\boldsymbol{p} \in \mathbb{R}^{n}$

- Why?
* set $\boldsymbol{p}=e_{i}$ for $i=1, \ldots, n$ to recover columns of $\boldsymbol{J}_{f}(\boldsymbol{x})$
* special structures in $\boldsymbol{J}_{f}(\boldsymbol{x})$ (e.g., sparsity) can be exploited
* often enough for application
- Why possible?
* (1) initialize partial derivatives for the input nodes as $D_{p} v_{n-1}=p_{1}$, $\ldots, D_{p} v_{0}=p_{n}$. (2) apply chain rule:

$$
\nabla_{\boldsymbol{x}} v_{i}=\sum_{j: \text { incoming }} \frac{\partial v_{i}}{\partial v_{j}} \nabla_{\boldsymbol{x}} v_{j} \Longrightarrow D_{\boldsymbol{p}} v_{i}=\sum_{j: \text { incoming }} \frac{\partial v_{i}}{\partial v_{j}} D_{\boldsymbol{p}} v_{j}
$$

* implemented in forward-mode auto diff

Putting tricks together

Basis of implementation for: Tensorflow, Pytorch, Jax, etc https://pytorch.org/docs/stable/autograd.html

Jax: https://github.com/google/jax http://videolectures.net/ deeplearning2017_johnson_automatic_differentiation/

Good to know:

- In practice, graphs are built automatically by software
- Higher-order derivatives can also be done, particularly Hessian-vector product $\nabla^{2} f(\boldsymbol{x}) \boldsymbol{v}$ (Check out Jax!)
- Auto-diff in Tensorflow and Pytorch are specialized to DNNs, whereas Jax (in Python) is full fledged and more general
- General resources for autodiff: http://www.autodiff.org/, [Griewank and Walther, 2008]

Autodiff in Pytorch

Solve least squares $f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$ with $\nabla f(\boldsymbol{x})=-\boldsymbol{A}^{\boldsymbol{\top}}(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x})$
import torch
import matplotlib.pyplot as plt
dtype $=$ torch.float
device = torch.device("cpu")
$\mathrm{n}, \mathrm{p}=500,100$
$A=$ torch, randn(n, p, device=device, dtype=dtype)
$y=$ torch. randn(n, device=device, dtype=dtype)
$x=$ torch. randn(p, device=device, dtype=dtype, requires_grad=True)
step_size $=1 \mathrm{e}-4$
num_step $=500$
loss \quad vec $=$ torch. zeros (500, device=device, dtype=dtype)
for t in range (500):
pred $=$ torch.matmul (A, x)
loss $=$ torch.pow(torch. norm $(y-$ pred $), 2)$
loss_vec[t] $=$ loss.item()
\# one line for computing the gradient
loss.backward()

\# updates

with torch.no_grad() :
$x=$ step_size*x.grad
\# zero the gradient after updating
x.grad.zero_()
plt.plot(loss_vec.numpy ())
loss vs. iterate

Autodiff in Pytorch

Train a shallow neural network

$$
f(\boldsymbol{W})=\sum_{i}\left\|\boldsymbol{y}_{i}-\boldsymbol{W}_{2} \sigma\left(\boldsymbol{W}_{1} \boldsymbol{x}_{i}\right)\right\|_{2}^{2}
$$

where $\sigma(z)=\max (z, 0)$, i.e., ReLU
https://pytorch.org/tutorials/beginner/pytorch_with_ examples.html

- torch.mm
- torch.clamp
- torch.no_grad()

Back propagation is reverse mode auto-differentiation!

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Example: image enhancement

- Each stage applies a parameterized function to the image, i.e., $q_{\boldsymbol{w}_{k}} \circ \cdots \circ h_{\boldsymbol{w}_{3}} \circ g_{\boldsymbol{w}_{2}} \circ f_{\boldsymbol{w}_{1}}(\boldsymbol{X})(\boldsymbol{X}$ is the camera raw $)$
- The parameterized functions may or may not be DNNs
- Each function may be analytic, or simply a chunk of codes dependent on the parameters
- $\boldsymbol{w}_{i}{ }^{\prime}$ s are the trainable parameters

Example: image enhancement

- the trainable parameters are learned by gradient descent based on auto-differentiation
- This is generalization of training DNNs with the classic feedforward structure to training general parameterized functions, using derivative-based methods

Example: control a trebuchet

- Given wind speed and target distance, the DNN predicts the angle of release and mass of counterweight
- Given the angle of release and mass of counterweight as initial conditions, the ODE solver calculates the actual distance by iterative methods
- We perform auto-differentiation through the iterative ODE solver and the DNN

Differential programming

Interesting resources

- Differential programming workshop @ NeurIPS'21 https://diffprogramming.mit.edu/
- Jax ecosystem https://jax.readthedocs.io/en/latest/ notebooks/quickstart.html
- Notable implementations: Swift for Tensorflow https://www.tensorflow.org/swift, and Zygote in Julia https://github.com/FluxML/Zygote.jl
- Flux: machine learning package based on Zygote https://fluxml.ai/
- Taichi: differentiable programming language tailored to 3D computer graphics https://github.com/taichi-dev/taichi

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Suggested reading

Autodiff in DNNs

- http://neuralnetworksanddeeplearning.com/chap2.html
- https://colah.github.io/posts/2015-08-Backprop/
- http://videolectures.net/deeplearning2017_johnson_automatic_ differentiation/

Yes you should understand backprop

- https://medium.com/@karpathy/ yes-you-should-understand-backprop-e2f06eab496b

Differentiable programming

- https://en.wikipedia.org/wiki/Differentiable_programming
- https://fluxml.ai/2019/02/07/ what-is-differentiable-programming.html
- https://fluxml.ai/2019/03/05/dp-vs-rl.html

References i

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017). Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1):5595-5637.
[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics.

