Basics of Numerical Optimization: Computing Derivatives

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

September 28, 2023

Derivatives for numerical optimization

Credit: aria42.com

- gradient descent
- Newton's method
- momentum methods
- quasi-Newton methods
- coordinate descent
- conjugate gradient methods
- trust-region methods
- Almost all methods entail low-order derivatives, i.e., gradient and/or Hessian, to proceed.
 - * 1st order methods: use f(x) and $\nabla f(x)$
 - * 2nd order methods: use $f\left(x\right)$ and $\nabla f\left(x\right)$ and $\nabla^{2}f\left(x\right)$
- Numerical (not analytical) derivatives (i.e., numbers) needed for the iterations

This lecture: how to compute the numerical derivatives

Four kinds of computing techniques

Credit: [Baydin et al., 2017]

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Analytical derivatives

Idea: derive the analytical derivatives first, then make numerical substitution

To derive the analytical derivatives by hand:

- Chain rule (vector version) method

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{z} = h\left(\boldsymbol{y}\right)$ is differentiable at $\boldsymbol{y} = f\left(\boldsymbol{x}\right)$. Then, $\boldsymbol{z} = h \circ f\left(\boldsymbol{x}\right) : \mathbb{R}^m \to \mathbb{R}^k$ is differentiable at \boldsymbol{x} , and

$$oldsymbol{J}_{\left[h\circ f
ight]}\left(oldsymbol{x}
ight)=oldsymbol{J}_{h}\left(f\left(oldsymbol{x}
ight)
ight)oldsymbol{J}_{f}\left(oldsymbol{x}
ight), ext{ or }rac{\partialoldsymbol{z}}{\partialoldsymbol{x}}=rac{\partialoldsymbol{z}}{\partialoldsymbol{y}}rac{\partialoldsymbol{y}}{\partialoldsymbol{x}}$$

When k=1,

$$\nabla \left[h \circ f\right](\boldsymbol{x}) = \boldsymbol{J}_f^{\top}\left(\boldsymbol{x}\right) \nabla h\left(f\left(\boldsymbol{x}\right)\right).$$

- Taylor expansion method

Expand the perturbed function $f\left(x+\delta\right)$ and then match it against Taylor expansions to read off the gradient and/or Hessian:

$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_{2})$$
$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{\delta} \rangle + \frac{1}{2} \langle \boldsymbol{\delta}, \nabla^{2} f(\boldsymbol{x}) \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_{2}^{2})$$

Symbolic differentiation

Idea: derive the analytical derivatives first, then make numerical substitution

To derive the analytical derivatives by software:

```
Differentiate Function
Find the derivative of the function \sin(x^2).

syms f(x) \\ f(x) = \sin(x^2); \\ df = diff(f, x)

df(x) = 2^2x^*\cos(x^2)

Find the value of the derivative at x = 2. Convert the value to double.

df2 = df(2) \\ df2 = 4^*\cos(4)
```

- Matlab (Symbolic Math Toolbox, diff)
- Python (SymPy, diff)
- Mathmatica (D)
- Matrix Calculus https://www.matrixcalculus.org/

Effective for simple functions

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Limitation of analytical differentiation

What is the gradient and/or Hessian of

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \sigma(\boldsymbol{W}_{k}\sigma(\boldsymbol{W}_{k-1}\sigma\dots(\boldsymbol{W}_{1}\boldsymbol{x}_{i})))\|_{F}^{2}?$$

Applying the chain rule is boring and error-prone. Performing Taylor expansion can also be tedious

Lesson we learn from tech history: leave boring jobs to computers

Approximate the gradient

$$\begin{split} f'\left(\boldsymbol{x}\right) &= \lim_{\delta \to 0} \frac{f\left(\boldsymbol{x} + \delta\right) - f\left(\boldsymbol{x}\right)}{\delta} \approx \frac{f\left(\boldsymbol{x} + \delta\right) - f\left(\boldsymbol{x}\right)}{\delta} \\ \text{with } \delta \text{ sufficiently small} \end{split}$$
 For $f\left(\boldsymbol{x}\right) : \mathbb{R}^n \to \mathbb{R}$, $\frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta\boldsymbol{e}_i\right) - f\left(\boldsymbol{x}\right)}{\delta} \quad \text{(forward)}$ $\frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x}\right) - f\left(\boldsymbol{x} - \delta\boldsymbol{e}_i\right)}{\delta} \quad \text{(backward)}$

 $\frac{\partial f}{\partial x_i} \approx \frac{f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i\right) - f\left(\boldsymbol{x} - \delta \boldsymbol{e}_i\right)}{2\delta} \quad \text{(central)}$

(Credit: numex-blog.com)

Similarly, to approximate the Jacobian for $f(x): \mathbb{R}^n \to \mathbb{R}^m$:

$$\frac{\partial f_{j}}{\partial x_{i}} \approx \frac{f_{j}\left(\boldsymbol{x} + \delta\boldsymbol{e}_{i}\right) - f_{j}\left(\boldsymbol{x}\right)}{\delta} \qquad \text{(one element each time)}$$

$$\frac{\partial f}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x} + \delta\boldsymbol{e}_{i}\right) - f\left(\boldsymbol{x}\right)}{\delta} \qquad \text{(one column each time)}$$

$$\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{p} \approx \frac{f\left(\boldsymbol{x} + \delta\boldsymbol{p}\right) - f\left(\boldsymbol{x}\right)}{\delta} \qquad \text{(directional)}$$

central themes can also be derived

Why central?

Stronger form of Taylor's theorems

- **1st order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $f(x + \delta) = f(x) + \langle \nabla f(x), \delta \rangle + O(\|\delta\|_2^2)$
- **2nd order**: If $f(x): \mathbb{R}^n \to \mathbb{R}$ is three-times continuously differentiable, $f(x+\delta) = f(x) + \langle \nabla f(x), \delta \rangle + \frac{1}{2} \langle \delta, \nabla^2 f(x) \delta \rangle + \frac{O(\|\delta\|_2^3)}{2}$

Why the central theme is better?

- Forward: by 1st-order Taylor expansion $\frac{1}{2} \left(f(x + \delta e) f(x) \right) \frac{1}{2} \left(\delta \frac{\partial f}{\partial x} + O(\delta^2) \right)$
 - $\frac{1}{\delta}\left(f\left(\boldsymbol{x}+\delta\boldsymbol{e}_{i}\right)-f\left(\boldsymbol{x}\right)\right)=\frac{1}{\delta}\left(\delta\frac{\partial f}{\partial x_{i}}+O\left(\delta^{2}\right)\right)=\frac{\partial f}{\partial x_{i}}+\frac{O\left(\delta\right)}{O\left(\delta\right)}$
- Central: by 2nd-order Taylor expansion $\frac{1}{\delta}\left(f\left(x+\delta e_{i}\right)-f\left(x-\delta e_{i}\right)\right)=\frac{1}{2\delta}\left(\delta\frac{\partial f}{\partial x_{i}}+\frac{1}{2}\delta^{2}\frac{\partial^{2} f}{\partial x_{i}^{2}}+\delta\frac{\partial f}{\partial x_{i}}-\frac{1}{2}\delta^{2}\frac{\partial^{2} f}{\partial x_{i}^{2}}+O\left(\delta^{3}\right)\right)=\frac{\partial f}{\partial x_{i}}+\frac{O(\delta^{2})}{\delta^{2}}$

Approximate the Hessian

- Recall that for $f(x): \mathbb{R}^n \to \mathbb{R}$ that is 2nd-order differentiable, $\frac{\partial f}{\partial x_i}(x): \mathbb{R}^n \to \mathbb{R}$. So

$$rac{\partial f^2}{\partial x_j \partial x_i} \left(oldsymbol{x}
ight) = rac{\partial}{\partial x_j} \left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x}
ight) pprox rac{\left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x} + \delta oldsymbol{e}_j
ight) - \left(rac{\partial f}{\partial x_i}
ight) \left(oldsymbol{x}
ight)}{\delta}$$

- We can also compute one row of Hessian each time by

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x}) \approx \frac{\left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x} + \delta \boldsymbol{e}_j) - \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) (\boldsymbol{x})}{\delta},$$

obtaining \widehat{H} , which might not be symmetric. Return $\frac{1}{2}\left(\widehat{m{H}}+\widehat{m{H}}^{\mathsf{T}}\right)$ instead

- Most times (e.g., in TRM, Newton-CG), only $\nabla^2 f(x) v$ for certain v's needed: (see, e.g., Manopt https://www.manopt.org/)

$$abla^2 f(\boldsymbol{x}) \, \boldsymbol{v} pprox \frac{\nabla f(\boldsymbol{x} + \delta \boldsymbol{v}) - \nabla f(\boldsymbol{x})}{\delta}$$

A few words

- Can be used for sanity check of correctness of analytical gradient
- Finite-difference approximation of higher (i.e., ≥ 2)-order derivatives combined with high-order iterative methods can be very efficient (e.g., Manopt
 - https://www.manopt.org/tutorial.html#costdescription)
- Numerical stability can be an issue: truncation and round off errors (finite δ ; accurate evaluation of the nominators)

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Four kinds of computing techniques

Credit: [Baydin et al., 2017]

Misnomer: should be automatic numerical differentiation

Auto differentiation (auto diff, AD) in 1D

Consider a univariate function $f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1(x) : \mathbb{R} \to \mathbb{R}$. Write $y_0 = x$, $y_1 = f_1(x)$, $y_2 = f_2(y_1)$, ..., $y_k = f(y_{k-1})$, or in **computational graph** form:

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

Chain rule in Leibniz form:

$$\frac{\partial f}{\partial x} = \frac{\partial y_k}{\partial y_0} = \frac{\partial y_k}{\partial y_{k-1}} \frac{\partial y_{k-1}}{\partial y_{k-2}} \cdots \frac{\partial y_2}{\partial y_1} \frac{\partial y_1}{\partial y_0}$$

How to evalute the product?

- From left to right in the chain: forward mode auto diff
- From right to left in the chain: backward/reverse mode auto diff
- Hybrid: mixed mode

Forward mode in 1D

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

$$\text{Chain rule:} \quad \frac{df}{dx} = \frac{dy_k}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0} \right) \right) \right) \right) \right)$$

Example: For $f(x) = (x^2 + 1)^2$, calculate $\nabla f(1)$ (whiteboard)

Compute $\left. \frac{df}{dx} \right|_{x_0}$ in one pass, from inner to outer most parenthesis:

```
Input: y_0, initialization \left.\frac{dy_0}{dy_0}\right|_{y_0}=1 for i=1,\ldots,k do compute y_i=f_i\left(y_{i-1}\right) compute \left.\frac{dy_i}{dy_0}\right|_{y_0}=\left.\frac{dy_i}{dy_{i-1}}\right|_{y_{i-1}}\cdot\left.\frac{dy_{i-1}}{dy_0}\right|_{y_0}=f_i'\left(y_{i-1}\right)\left.\frac{dy_{i-1}}{dy_0}\right|_{y_0} end for Output: \left.\frac{dy_k}{dy_0}\right|_{y_0}
```

Reverse mode in 1D

$$y_0$$
 f_1 y_1 f_2 y_2 f_3 \cdots f_k y_k

$$\text{Chain rule:} \quad \frac{df}{dx} = \frac{df}{dy_0} = \left(\left(\left(\left(\left(\frac{dy_k}{dy_{k-1}} \right) \frac{dy_{k-1}}{dy_{k-2}} \right) \ldots \right) \frac{dy_2}{dy_1} \right) \frac{dy_1}{dy_0} \right)$$

Example: For $f(x) = (x^2 + 1)^2$, calculate $\nabla f(1)$ (whiteboard)

Compute $\frac{df}{dx}\big|_{x_0}$ in two passes:

- Forward pass: calculate the y_i 's sequentially
- Backward pass: calculate the $\frac{dy_k}{dy_i}=\frac{dy_k}{dy_{i+1}}\frac{dy_{i+1}}{dy_i}$ backward

```
\begin{split} & \text{Input: } y_0, \frac{dy_k}{dy_k} = 1 \\ & \text{for } i = 1, \dots, k \text{ do} \\ & \text{compute } y_i = f_i \left( y_{i-1} \right) \\ & \text{end for } / / \text{forward pass} \\ & \text{for } i = k-1, k-2, \dots, 0 \text{ do} \\ & \text{compute } \left. \frac{dy_k}{dy_i} \right|_{y_i} = \left. \frac{dy_k}{dy_{i+1}} \right|_{y_{i+1}} \cdot \left. \frac{dy_{i+1}}{dy_i} \right|_{y_i} = f'_{i+1} \left( y_i \right) \left. \frac{dy_k}{dy_{i+1}} \right|_{y_{i+1}} \\ & \text{end for } / / \text{backward pass} \\ & \text{Output: } \left. \frac{dy_k}{dy_0} \right|_{y_0} \end{split}
```

Forward vs reverse modes

- forward mode AD: one forward pass, compute y_i 's and $\frac{dy_i}{dy_0}$'s together
- **reverse mode AD**: one forward pass to compute y_i 's, one backward pass to compute $\frac{dy_k}{du_i}$'s

Effectively, two different ways of grouping the multiplicative differential terms:

$$\begin{split} \frac{df}{dx} &= \frac{df}{dy_0} = \left(\frac{dy_k}{dy_{k-1}} \left(\frac{dy_{k-1}}{dy_{k-2}} \left(\dots \left(\frac{dy_2}{dy_1} \left(\frac{dy_1}{dy_0}\right)\right)\right)\right)\right) \\ \text{i.e., starting from the root:} & \frac{dy_0}{dy_0} \mapsto \frac{dy_1}{dy_0} \mapsto \frac{dy_2}{dy_0} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \\ \frac{df}{dx} &= \frac{df}{dy_0} = \left(\left(\left(\left(\frac{dy_k}{dy_{k-1}}\right)\frac{dy_{k-1}}{dy_{k-2}}\right)\dots\right)\frac{dy_2}{dy_1}\right)\frac{dy_1}{dy_0} \\ \text{i.e., starting from the leaf:} & \frac{dy_k}{dy_k} \mapsto \frac{dy_k}{dy_{k-1}} \mapsto \frac{dy_k}{dy_{k-2}} \mapsto \dots \mapsto \frac{dy_k}{dy_0} \end{split}$$

...mixed forward and reverse modes are indeed possible!

Auto differentiation in high dimensions

Chain Rule Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at \boldsymbol{x} and $\boldsymbol{z} = h\left(\boldsymbol{y}\right)$ is differentiable at $\boldsymbol{y} = f\left(\boldsymbol{x}\right)$. Then, $\boldsymbol{z} = h \circ f\left(\boldsymbol{x}\right) : \mathbb{R}^m \to \mathbb{R}^k$ is differentiable at \boldsymbol{x} , and

$$\boldsymbol{J}_{[h \circ f]}\left(\boldsymbol{x}\right) = \boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right) \boldsymbol{J}_{f}\left(\boldsymbol{x}\right), \text{ or } \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} \Leftrightarrow \frac{\partial z_{j}}{\partial x_{i}} = \sum_{\ell=1}^{n} \frac{\partial z_{j}}{\partial y_{\ell}} \frac{\partial y_{\ell}}{\partial x_{i}} \ \forall \ i, j$$

- Each node is a variable, as a function of all incoming variables
- If node B a child of node A, $\frac{\partial B}{\partial A}$ is the rate of change in B wrt change in A
- Traveling along a path, rates of changes should be multiplied
- Chain rule: summing up rates over all connecting paths! (e.g., x_2 to z_j as shown)

A multivariate example—forward mode

$$y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \left(\frac{x_1}{x_2} - e^{x_2}\right)$$

$v_{-1} = x_1$	=1.5000		
$\dot{v}_{-1} = \dot{x}_1$	=1.0000		
$v_0 = x_2$	= 0.5000		
$\dot{v}_0 = \dot{x}_2$	= 0.0000		
$v_1 = v_{-1}/v_0$	= 1.5000/0.5000	=	3.0000
$\dot{v}_1 = (\dot{v}_{-1} - v_1 * \dot{v}_0)/v_0$	= 1.0000/0.5000	=	2.0000
$v_2 = \sin(v_1)$	$= \sin(3.0000)$	=	0.1411
$\dot{v}_2 = \cos(v_1) * \dot{v}_1$	= -0.9900 * 2.0000	= -	-1.9800
$v_3 = \exp(v_0)$	$= \exp(0.5000)$	=	1.6487
$\dot{v}_3 = v_3 * \dot{v}_0$	= 1.6487 * 0.0000	=	0.0000
$v_4 = v_1 - v_3$	= 3.0000 - 1.6487	=	1.3513
$\dot{v}_4 = \dot{v}_1 - \dot{v}_3$	= 2.0000 - 0.0000	=	2.0000
	= 0.1411 + 1.3513	=	1.4924
$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= -1.9800 + 2.0000	=	0.0200
	= 1.4924 * 1.3513	=	
$\dot{v}_6 = \dot{v}_5 * v_4 + v_5 * \dot{v}_4$	= 0.0200 * 1.3513 + 1.4924 * 2.0000) =	3.0118
$y = v_6$	= 2.0100		
$\dot{y} = \dot{v}_6$	= 3.0110		

v_{-1}	=	x_1	=	1.5000		
v_0	=	x_2	=	0.5000		
v_1	=	v_{-1}/v_{0}	=	1.5000/0.5000	=	3.0000
v_2	=	$\sin(v_1)$	=	$\sin(3.0000)$	=	0.1411
v_3	=	$\exp(v_0)$	=	$\exp(0.5000)$	=	1.6487
v_4	=	$v_1 - v_3$	=	3.0000-1.6487	=	1.3513
v_5	=	$v_2 + v_4$	=	0.1411 + 1.3513	=	1.4924
v_6	=	$v_5 * v_4$	=	1.4924*1.3513	=	2.0167
y	=	v_6	=	2.0167		

- interested in $\frac{\partial}{\partial x_1}$; for each variable v_i , write $\dot{v}_i \doteq \frac{\partial v_i}{\partial x_1}$
- for each node, sum up partials over all incoming edges, e.g., $\dot{v}_4 = \frac{\partial v_4}{\partial u_1} \dot{v}_1 + \frac{\partial v_4}{\partial u_2} \dot{v}_3$
- complexity:

O(# edges + # nodes)

- for $f: \mathbb{R}^n \to \mathbb{R}^m$, make n forward passes: O(n (#edges + #nodes))

A multivariate example—reverse mode


```
v_{-1} = x_1 = 1.5000
     v_0 = x_2 = 0.5000
         v_1 = v_{-1}/v_0 = 1.5000/0.5000 = 3.0000
            v_2 = \sin(v_1) = \sin(3.0000) = 0.1411
               v_3 = \exp(v_0) = \exp(0.5000) = 1.6487
                   v_4 = v_1 - v_3 = 3.0000 - 1.6487 = 1.3513
                      v_5 = v_2 + v_4 = 0.1411 + 1.3513 = 1.4924
                          v_6 = v_5 * v_4 = 1.4924 * 1.3513 = 2.0167
                           u = v_6 = 2.0167
                           \bar{v}_6 = \bar{y} = 1.0000
                          \bar{v}_5 = \bar{v}_6 * v_4 = 1.0000 * 1.3513 = 1.3513
                          \bar{v}_4 = \bar{v}_6 * v_5 = 1.0000 * 1.4924 = 1.4924
                      \bar{v}_4 = \bar{v}_4 + \bar{v}_5 = 1.4924 + 1.3513 = 2.8437
                      \bar{v}_2 = \bar{v}_5 = 1.3513
                   \bar{v}_3 = -\bar{v}_4 = -2.8437
                   \bar{v}_1 = \bar{v}_4 = 2.8437
               \bar{v}_0 = \bar{v}_3 * v_3 = -2.8437 * 1.6487 = -4.6884
            \bar{v}_1 = \bar{v}_1 + \bar{v}_2 * \cos(v_1) = 2.8437 + 1.3513 * (-0.9900) = 1.5059
         \bar{v}_0 = \bar{v}_0 - \bar{v}_1 * v_1/v_0 = -4.6884 - 1.5059 * 3.000/0.5000 = -13.7239
         \bar{v}_{-1} = \bar{v}_1/v_0 = 1.5059/0.5000 = 3.0118
     \bar{x}_2 = \bar{v}_0 = -13.7239
```

 $\bar{x}_1 = \bar{v}_{-1} = 3.0118$

- interested in $\frac{\partial y}{\partial}$; for each variable v_i , write $\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (called **adjoint variable**)
- for each node, sum up partials over all outgoing edges, e.g., $\overline{v}_4 = \frac{\partial v_5}{\partial n_t} \overline{v}_5 + \frac{\partial v_6}{\partial n_t} \overline{v}_6$
 - complexity:

$$O\left(\#\mathsf{edges} + \#\mathsf{nodes}\right)$$

- for $f: \mathbb{R}^n \to \mathbb{R}^m$, make m backward passes:

$$O\left(m\left(\#\mathsf{edges} + \#\mathsf{nodes}\right)\right)$$

example from Ch 1 of [Griewank and Walther, 2008]

Forward vs. reverse modes

For general function $f: \mathbb{R}^n \to \mathbb{R}^m$, suppose there is no loop in the computational graph, i.e., **acyclic graph**. E: set of edges; V: set of nodes

	forward mode	reverse mode		
start from	roots	leaves		
end with	leaves	roots		
invariants	$\dot{v}_i \doteq \frac{\partial v_i}{\partial x}$ (x—root of interest)	$\overline{v}_i \doteq \frac{\partial y}{\partial v_i}$ (y—leaf of interest)		
rule	sum over incoming edges	sum over outgoing edges		
computation	O(n E +n V)	O(m E +m V)		
memory	O(V), typically way smaller	O(V)		
better when $m\gg n$		$n \gg m$		

Implementation trick—tensor abstraction

Tensors: multi-dimensional arrays

Each node in the computational graph can be a tensor (scalar, vector, matrix, 3-D tensor, ...)

$$f\left(\boldsymbol{W}\right) = \left\|\boldsymbol{Y} - \sigma\left(\boldsymbol{W}_{k}\sigma\left(\boldsymbol{W}_{k-1}\sigma\dots\left(\boldsymbol{W}_{1}\boldsymbol{X}\right)\right)\right)\right\|_{F}^{2}$$

computational graph for DNN

Implementation trick—tensor abstraction

computational graph for DNN

$$f(\mathbf{W}) = \|\mathbf{Y} - \sigma(\mathbf{W}_k \sigma(\mathbf{W}_{k-1} \sigma \dots (\mathbf{W}_1 \mathbf{X})))\|_F^2$$

- neater computational graph
- tensor (i.e., vector) chain rules apply, often in tensor-free computation Fact: For two matrices (tensors) D and M of compatiable size, where D is fixed and M is a function of M'

$$abla_{m{M}'}\left = \mathcal{J}_{m{M}' om{M}}^{\intercal}(m{M}')\left[m{D}
ight]$$

- * EX1: $\frac{\partial f}{\partial V_4}$ (whiteboard)
- * EX2: $\frac{\partial f}{\partial V_1}$ (whiteboard)

Implementation trick—VJP

Interested in $\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)$ for $f:\mathbb{R}^{n}\mapsto\mathbb{R}^{m}$. Implement $\boldsymbol{v}^{\intercal}\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)$ for any $\boldsymbol{v}\in\mathbb{R}^{m}$

- Why?
 - * set $\boldsymbol{v}=e_{i}$ for $i=1,\ldots,m$ to recover rows of $\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)$
 - * special structures in $oldsymbol{J}_f\left(oldsymbol{x}
 ight)$ (e.g., sparsity) can be exploited
 - * often enough for application, e.g., calculate $\nabla \left(g\circ f\right)=(\nabla f^{\mathsf{T}}J_f)^{\mathsf{T}}$ with known ∇f
- Why possible?
 - * $v^{\mathsf{T}} J_f(x) = J_{v^{\mathsf{T}} f}(x)$ so keep track of $\frac{\partial}{\partial v_i} (v^{\mathsf{T}} f) = \sum_{k: \mathsf{outgoing}} \frac{\partial v_k}{\partial v_i} \frac{\partial}{\partial v_k} (v^{\mathsf{T}} f)$
 - * implemeted in reverse-mode auto diff

 $\verb|torch.autograd.functional.vjp| (func, inputs, \textit{v=None}, create_graph=False, strict=False)|$

[SOLIDCE

Function that computes the dot product between a vector $\, v \,$ and the Jacobian of the given function at the point given by the inputs.

https://pytorch.org/docs/stable/autograd.html

Implementation trick—JVP

Interested in $\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)$ for $f:\mathbb{R}^{n}\mapsto\mathbb{R}^{m}$. Implement $\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)\boldsymbol{p}$ for any $\boldsymbol{p}\in\mathbb{R}^{n}$

- Why?
 - * set $p = e_i$ for i = 1, ..., n to recover columns of $J_f(x)$
 - * special structures in $oldsymbol{J}_f\left(x
 ight)$ (e.g., sparsity) can be exploited
 - * often enough for application
- Why possible?
 - * (1) initialize partial derivatives for the input nodes as $D_{p}v_{n-1}=p_{1}$, ..., $D_{p}v_{0}=p_{n}$. (2) apply chain rule:

$$\nabla_{\boldsymbol{x}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} \nabla_{\boldsymbol{x}} v_j \Longrightarrow D_{\boldsymbol{p}} v_i = \sum_{j: \text{incoming}} \frac{\partial v_i}{\partial v_j} D_{\boldsymbol{p}} v_j$$

* implemented in forward-mode auto diff

Putting tricks together

Basis of implementation for: Tensorflow, Pytorch, Jax, etc https://pytorch.org/docs/stable/autograd.html

Jax: https://github.com/google/jax http://videolectures.net/
deeplearning2017_johnson_automatic_differentiation/

Good to know:

- In practice, graphs are built automatically by software
- Higher-order derivatives can also be done, particularly Hessian-vector product $\nabla^2 f\left(x\right)v$ (Check out Jax!)
- Auto-diff in Tensorflow and Pytorch are specialized to DNNs , whereas Jax (in Python) is full fledged and more general
- General resources for autodiff: http://www.autodiff.org/,
 [Griewank and Walther, 2008]

Autodiff in Pytorch

Solve least squares $f\left(m{x}\right)=\frac{1}{2}\left\|m{y}-m{A}m{x}\right\|_{2}^{2}$ with $\nabla f\left(m{x}\right)=-m{A}^{\intercal}\left(m{y}-m{A}m{x}\right)$

```
import torch
import matplotlib.pyplot as plt
dtype = torch.float
device = torch.device("cpu")
n. p = 500. 100
A = torch.randn(n, p, device=device, dtype=dtype)
v = torch.randn(n, device=device, dtvpe=dtvpe)
x = torch.randn(p, device=device, dtype=dtype, requires_grad=True)
step size = 1e-4
num step = 500
loss vec = torch.zeros(500, device=device, dtype=dtype)
for t in range(500):
 pred = torch.matmul(A, x)
  loss = torch.pow(torch.norm(y - pred), 2)
 loss vec[t] = loss.item()
  # one line for computing the gradient
  loss.backward()
  # updates
 with torch.no grad():
    x -= step size*x.grad
    # zero the gradient after updating
    x.grad.zero ()
plt.plot(loss vec.numpy())
```


Autodiff in Pytorch

Train a shallow neural network

$$f\left(\boldsymbol{W}\right) = \sum_{i} \left\|\boldsymbol{y}_{i} - \boldsymbol{W}_{2}\sigma\left(\boldsymbol{W}_{1}\boldsymbol{x}_{i}\right)\right\|_{2}^{2}$$

where $\sigma(z) = \max(z, 0)$, i.e., ReLU

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

- torch.mm
- torch.clamp
- torch.no_grad()

Back propagation is reverse mode auto-differentiation!

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Example: image enhancement

- Each stage applies a parameterized function to the image, i.e., $q_{w_k} \circ \cdots \circ h_{w_3} \circ g_{w_2} \circ f_{w_1}(X)$ (X is the camera raw)
- The parameterized functions may or may not be DNNs
- Each function may be analytic, or simply a chunk of codes dependent on the parameters
- w_i 's are the trainable parameters

Example: image enhancement

- the trainable parameters are learned by gradient descent based on auto-differentiation
- This is generalization of training DNNs with the classic feedforward structure to training general parameterized functions, using derivative-based methods

Example: control a trebuchet

https://fluxml.ai/blogposts/2019-03-05-dp-vs-rl/

- Given wind speed and target distance, the DNN predicts the angle of release and mass of counterweight
- Given the angle of release and mass of counterweight as initial conditions,
 the ODE solver calculates the actual distance by iterative methods
- We perform auto-differentiation through the iterative ODE solver and the DNN

Differential programming

Interesting resources

- Differential programming workshop @ NeurIPS'21 https://diffprogramming.mit.edu/
- Jax ecosystem https://jax.readthedocs.io/en/latest/ notebooks/quickstart.html
- Notable implementations: Swift for Tensorflow https://www.tensorflow.org/swift, and Zygote in Julia https://github.com/FluxML/Zygote.jl
- Flux: machine learning package based on Zygote https://fluxml.ai/
- Taichi: differentiable programming language tailored to 3D computer graphics https://github.com/taichi-dev/taichi

Outline

Analytical differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading

Suggested reading

Autodiff in DNNs

- http://neuralnetworksanddeeplearning.com/chap2.html
- https://colah.github.io/posts/2015-08-Backprop/
- http://videolectures.net/deeplearning2017_johnson_automatic_ differentiation/

Yes you should understand backprop

```
- https://medium.com/@karpathy/
yes-you-should-understand-backprop-e2f06eab496b
```

Differentiable programming

- https://en.wikipedia.org/wiki/Differentiable_programming
- https://fluxml.ai/2019/02/07/
 what-is-differentiable-programming.html
- https://fluxml.ai/2019/03/05/dp-vs-rl.html

References i

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017). Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1):5595–5637.

[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics.