Review of High-Dimensional Calculus

Ju Sun
Computer Science \& Engineering
University of Minnesota, Twin Cities

September 13, 2023

Recommended references

Our notation

- scalars: x, vectors: \boldsymbol{x}, matrices: \boldsymbol{X}, tensors: \mathcal{X}, sets: S
- vectors are always column vectors, unless stated otherwise
- $x_{i}: i$-th element of $\boldsymbol{x}, x_{i j}:(i, j)$-th element of $\boldsymbol{X}, \boldsymbol{x}^{i}: i$-th row of \boldsymbol{X} as a row vector, $\boldsymbol{x}_{j}: j$-th column of \boldsymbol{X} as a column vector
- \mathbb{R} : real numbers, \mathbb{R}_{+}: positive reals, \mathbb{R}^{n} : space of n-dimensional vectors, $\mathbb{R}^{m \times n}$: space of $m \times n$ matrices, $\mathbb{R}^{m \times n \times k}$: space of $m \times n \times k$ tensors, etc
$-[n] \doteq\{1, \ldots, n\}$

Differentiability — first order

Consider $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

- Definition: First-order differentiable at a point \boldsymbol{x} if there exists a matrix $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ such that

$$
\frac{f(\boldsymbol{x}+\boldsymbol{\delta})-f(\boldsymbol{x})-\boldsymbol{B} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}} \rightarrow \mathbf{0} \quad \text { as } \quad \boldsymbol{\delta} \rightarrow \mathbf{0}
$$

$$
\text { i.e., } \quad f(\boldsymbol{x}+\boldsymbol{\delta})=f(\boldsymbol{x})+\boldsymbol{B} \boldsymbol{\delta}+o\left(\|\boldsymbol{\delta}\|_{2}\right) \quad \text { as } \quad \boldsymbol{\delta} \rightarrow \mathbf{0} .
$$

- \boldsymbol{B} is called the (Fréchet) derivative. When $m=1$, \boldsymbol{b}^{\top} (i.e., \boldsymbol{B}^{\top}) called gradient, denoted as $\nabla f(\boldsymbol{x})$. For general m, also called Jacobian matrix, denoted as $\boldsymbol{J}_{f}(\boldsymbol{x})$.
- Calculation: $b_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{x})$
- Sufficient condition: if all partial derivatives exist and are continuous at \boldsymbol{x}, then $f(\boldsymbol{x})$ is differentiable at \boldsymbol{x}.

Calculus rules

Assume $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are differentiable at a point $x \in \mathbb{R}^{n}$.

- linearity: $\lambda_{1} f+\lambda_{2} g$ is differentiable at \boldsymbol{x} and

$$
\nabla\left[\lambda_{1} f+\lambda_{2} g\right](\boldsymbol{x})=\lambda_{1} \nabla f(\boldsymbol{x})+\lambda_{2} \nabla g(\boldsymbol{x})
$$

- product: assume $m=1, f g$ is differentiable at x and $\nabla[f g](\boldsymbol{x})=f(\boldsymbol{x}) \nabla g(\boldsymbol{x})+g(\boldsymbol{x}) \nabla f(\boldsymbol{x})$
- quotient: assume $m=1$ and $g(\boldsymbol{x}) \neq 0, \frac{f}{g}$ is differentiable at \boldsymbol{x} and $\nabla\left[\frac{f}{g}\right](\boldsymbol{x})=\frac{g(\boldsymbol{x}) \nabla f(\boldsymbol{x})-f(\boldsymbol{x}) \nabla g(\boldsymbol{x})}{g^{2}(\boldsymbol{x})}$
- Chain rule: Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. If f is differentiable at \boldsymbol{x}, and h is differentiable at \boldsymbol{y} where $\boldsymbol{y}=f(\boldsymbol{x})$.
Then, $h \circ f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is differentiable at \boldsymbol{x}, and

$$
\boldsymbol{J}_{[h \circ f]}(\boldsymbol{x})=\boldsymbol{J}_{h}(f(\boldsymbol{x})) \boldsymbol{J}_{f}(\boldsymbol{x}) .
$$

When $k=1$,

$$
\nabla[h \circ f](\boldsymbol{x})=\boldsymbol{J}_{f}^{\top}(\boldsymbol{x}) \nabla h(f(\boldsymbol{x})) .
$$

Put the definition in good use!

First-order differentiable at a point \boldsymbol{x} if there exists a matrix $\boldsymbol{B} \in \mathbb{R}^{m \times n}$, called Jacobian, such that

$$
f(\boldsymbol{x}+\boldsymbol{\delta})=f(\boldsymbol{x})+\boldsymbol{B} \boldsymbol{\delta}+o\left(\|\boldsymbol{\delta}\|_{2}\right) \quad \text { as } \quad \boldsymbol{\delta} \rightarrow \mathbf{0}
$$

- prove the chain rule for $h \circ f(\boldsymbol{x})$ (whiteboard)
- derive Jacobian (white board)

$$
\begin{aligned}
& * f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x} \\
& * g\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \boldsymbol{W}_{3}\right)=\boldsymbol{y}-\boldsymbol{W}_{1} \boldsymbol{W}_{2} \boldsymbol{W}_{3} \boldsymbol{x}
\end{aligned}
$$

Differentiability - second order

Consider $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and assume f is 1 st-order differentiable in a small ball around \boldsymbol{x}

- Write $\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x}) \doteq\left[\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)\right](\boldsymbol{x})$ provided the right side well defined
- Symmetry: If both $\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})$ and $\frac{\partial f^{2}}{\partial x_{i} \partial x_{j}}(\boldsymbol{x})$ exist and both are continuous at \boldsymbol{x}, then they are equal.
- Hessian (matrix):

$$
\begin{equation*}
\nabla^{2} f(\boldsymbol{x}) \doteq\left[\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})\right]_{j, i}, \tag{1}
\end{equation*}
$$

where $\left[\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})\right]_{j, i} \in \mathbb{R}^{n \times n}$ has its (j, i)-th element as $\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})$.

- $\nabla^{2} f$ is symmetric.
- Sufficient condition: if all $\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}}(\boldsymbol{x})$ exist and are continuous, f is 2 nd-order differentiable at \boldsymbol{x} (not converse; we omit the definition due to its technicality).

Taylor's theorem

Vector version: consider $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$

- If f is 1 st-order differentiable at \boldsymbol{x}, then

$$
f(\boldsymbol{x}+\boldsymbol{\delta})=f(x)+\langle\nabla f(x), \delta\rangle+o\left(\|\boldsymbol{\delta}\|_{2}\right) \text { as } \boldsymbol{\delta} \rightarrow \mathbf{0} .
$$

- If f is 2 nd-order differentiable at \boldsymbol{x}, then

$$
f(\boldsymbol{x}+\boldsymbol{\delta})=f(x)+\langle\nabla f(x), \delta\rangle+\frac{1}{2}\left\langle\delta, \nabla^{2} f(x) \delta\right\rangle+o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right) \text { as } \boldsymbol{\delta} \rightarrow \mathbf{0}
$$

Matrix version: consider $f(\boldsymbol{X}): \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$

- If f is 1 st-order differentiable at \boldsymbol{X}, then

$$
f(\boldsymbol{X}+\boldsymbol{\Delta})=f(\boldsymbol{X})+\langle\nabla f(\boldsymbol{X}), \boldsymbol{\Delta}\rangle+o\left(\|\boldsymbol{\Delta}\|_{F}\right) \text { as } \boldsymbol{\Delta} \rightarrow \mathbf{0} .
$$

- If f is 2 nd-order differentiable at \boldsymbol{X}, then

$$
\begin{array}{r}
f(\boldsymbol{X}+\boldsymbol{\Delta})=f(\boldsymbol{X})+\langle\nabla f(\boldsymbol{X}), \boldsymbol{\Delta}\rangle+\frac{1}{2}\left\langle\boldsymbol{\Delta}, \nabla^{2} f(\boldsymbol{X}) \boldsymbol{\Delta}\right\rangle+o\left(\|\boldsymbol{\Delta}\|_{F}^{2}\right) \\
\text { as } \boldsymbol{\Delta} \rightarrow \mathbf{0}
\end{array}
$$

Put Taylor in good use!

- derive gradient and Hessian for $f(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$ (whiteboard)
- derive gradient (and Hessian) for

$$
g\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \boldsymbol{W}_{3}\right)=\left\|\boldsymbol{y}-\boldsymbol{W}_{1} \boldsymbol{W}_{2} \boldsymbol{W}_{3} \boldsymbol{x}\right\|_{F}^{2}
$$

(whiteboard)
before: gradient, Hessian \Longrightarrow Taylor expansion now: Taylor expansion \Longrightarrow gradient, Hessian

But why?

Taylor approximation - asymptotic uniqueness

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be k ($k \geq 1$ integer) times differentiable at a point x. If $P(\delta)$ is a k-th order polynomial satisfying $f(x+\delta)-P(\delta)=o\left(\delta^{k}\right)$ as $\delta \rightarrow 0$, then $P(\delta)=P_{k}(\delta) \doteq f(x)+\sum_{i=1}^{k} \frac{1}{k!} f^{(k)}(x) \delta^{k}$.

Generalization to the vector version

- Assume $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is 1 -order differentiable at \boldsymbol{x}. If $P(\boldsymbol{\delta}) \doteq f(\boldsymbol{x})+\langle\boldsymbol{v}, \boldsymbol{\delta}\rangle$ satisties that

$$
f(\boldsymbol{x}+\boldsymbol{\delta})-P(\boldsymbol{\delta})=o\left(\|\boldsymbol{\delta}\|_{2}\right) \quad \text { as } \boldsymbol{\delta} \rightarrow \mathbf{0}
$$

then $P(\boldsymbol{\delta})=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{\delta}\rangle$, i.e., the 1st-order Taylor expansion.

- Assume $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is 2 -order differentiable at \boldsymbol{x}. If $P(\boldsymbol{\delta}) \doteq f(\boldsymbol{x})+\langle\boldsymbol{v}, \boldsymbol{\delta}\rangle+\frac{1}{2}\langle\boldsymbol{\delta}, \boldsymbol{H} \boldsymbol{\delta}\rangle$ with \boldsymbol{H} symmetric satisties that

$$
f(\boldsymbol{x}+\boldsymbol{\delta})-P(\boldsymbol{\delta})=o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right) \quad \text { as } \boldsymbol{\delta} \rightarrow \mathbf{0}
$$

then $P(\boldsymbol{\delta})=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{\delta}\rangle+\frac{1}{2}\left\langle\boldsymbol{\delta}, \nabla^{2} f(\boldsymbol{x}) \boldsymbol{\delta}\right\rangle$, i.e., the 2nd-order Taylor expansion. We can read off ∇f and $\nabla^{2} f$ if we know the expansion!

Similarly for the matrix version. See Chap 5 of [Coleman, 2012] for other forms of Taylor theorems and proofs of the asymptotic uniqueness.

Directional derivatives and curvatures

Consider $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}} f(\boldsymbol{x}) \doteq \frac{d}{d t} f(\boldsymbol{x}+\boldsymbol{v})$
- When f is 1 -st order differentiable at \boldsymbol{x},

$$
D_{\boldsymbol{v}} f(\boldsymbol{x})=\langle\nabla f(\boldsymbol{x}), \boldsymbol{v}\rangle .
$$

- Now $D_{\boldsymbol{v}} f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$, what is $D_{u}\left(D_{\boldsymbol{v}} f\right)(\boldsymbol{x})$?

$$
D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}} f\right)(\boldsymbol{x})=\left\langle\boldsymbol{u}, \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v}\right\rangle .
$$

- When $\boldsymbol{u}=\boldsymbol{v}$,

$$
D_{u}\left(D_{u} f\right)(\boldsymbol{x})=\left\langle\boldsymbol{u}, \nabla^{2} f(\boldsymbol{x}) \boldsymbol{u}\right\rangle=\frac{d^{2}}{d t^{2}} f(\boldsymbol{x}+t \boldsymbol{u}) .
$$

$-\frac{\left\langle u, \nabla^{2} f(x) u\right\rangle}{\|u\|_{2}^{2}}$ is the directional curvature along \boldsymbol{u} independent of the norm of u

Directional curvature

$\frac{\left\langle\boldsymbol{u}, \nabla^{2} f(x) u\right\rangle}{\|\boldsymbol{u}\|_{2}^{2}}$ is the directional curvature along \boldsymbol{u} independent of the norm of \boldsymbol{u}

$$
f(x, y)=x^{2}-y^{2}
$$

Blue: negative curvature (bending down)
Red: positive curvature (bending up)

References i

[Coleman, 2012] Coleman, R. (2012). Calculus on Normed Vector Spaces. Springer New York.
[Munkres, 1997] Munkres, J. R. (1997). Analysis On Manifolds. Taylor \& Francis Inc.
[Zorich, 2015] Zorich, V. A. (2015). Mathematical Analysis I. Springer Berlin Heidelberg.

