Fundamental Belief: Universal Approximation Theorems

Ju Sun

Computer Science \& Engineering
University of Minnesota, Twin Cities

September 13, 2023

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

Recap I

A cartoon drawing of a biological neuron (left) and its mathematical model (right).
biological neuron vs. artificial neuron

Artificial NN: (over)-simplification on neuron \& connection levels

Recap II

Zoo of NN models in ML

Also:

- Support vector machines (SVM)
- PCA (autoencoder)
- Matrix factorization
- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)

Recap III

Brief history of NNs:

- 1943: first NNs invented (McCulloch and Pitts)
- 1958 -1969: perceptron (Rosenblatt)
- 1969: Perceptrons (Minsky and Papert)—end of perceptron
- 1980's-1990's: Neocognitron, CNN, back-prop, SGD—we use today
- 1990's-2010's: SVMs, Adaboosting, decision trees and random forests
- 2010's-now: DNNs and deep learning

Outline

Recap
Why should we trust NNs?
Visual proof of UAT
UAT in rigorous form
From shallow to deep NNs
Suggested reading

Supervised learning

Step	General view	NN view
1	Gather training set $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, \boldsymbol{y}_{n}\right)$	Gather training set $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, \quad \ldots$ $\left(\boldsymbol{x}_{n}, \boldsymbol{y}_{n}\right)$
2	Choose a family of func- tions, e.g., \mathcal{H}, so that there is an $f \in \mathcal{H}$ to en- sure $\boldsymbol{y}_{i} \approx f\left(\boldsymbol{x}_{i}\right), \forall i$	Choose a NN with k neurons, so that there is a group of weights $\left(w_{1}, \ldots, w_{k}, b_{1}, \ldots, b_{k}\right)$ ensuring $y_{i} \approx$ $\left\{\mathrm{NN}\left(w_{1}, \ldots, w_{k}, b_{1}, \ldots, b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right), \forall i$
3	Set up a loss function ℓ	Set up a loss function ℓ
4	Find an $f \in \mathcal{H}$ to mini- mize the average loss	Find weights $\left(w_{1}, \ldots, w_{k}, b_{1}, \ldots, b_{k}\right)$ to minimize the average loss
	$\frac{1}{n} \sum_{i=1}^{n} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right)$	$\frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i},\left\{\mathrm{NN}\left(w_{1}, \ldots, w_{k}, b_{1}, \ldots, b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]$

Why we trust NNs? They're "powerful"—encoding "large" \mathcal{H}

Three fundamental questions in DL

- k-layer NNs: with k layers of weights (along the deepest path)
- k-hidden-layer NNs: with k hidden layers of nodes (i.e., ($k+1$)-layer NNs)
- Approximation: is it powerful, i.e., the \mathcal{H} large enough for all possible weights? (now)
- Optimization: how to solve

$$
\min _{\boldsymbol{w}_{i}^{\prime} s, \boldsymbol{b}_{i}^{\prime} s} \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i},\left\{\mathrm{NN}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}, b_{1}, \ldots, b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]
$$

(later this course)

- Generalization: does the learned NN work well on "similar" data? (CSCI5525, and Deep Learning Theory)

Is NN powerful? first trial

Think of single-output (i.e., $\mathbb{R}^{n} \mapsto \mathbb{R}$) problems first

- σ identity or linear: linear functions
- σ sign function $\operatorname{sign}\left(\boldsymbol{w}^{\boldsymbol{\top}} \boldsymbol{x}+b\right)$

A single neuron
$\mathcal{H}:\left\{\boldsymbol{x} \mapsto \sigma\left(\boldsymbol{w}^{\boldsymbol{\top}} \boldsymbol{x}+b\right)\right\}$
 (perceptron): 0/1 function with hyperplane threshold

$$
\begin{aligned}
-\sigma & =\frac{1}{1+e^{-z}}:\left\{x \mapsto \frac{1}{1+e^{-\left(w^{\top} x+b\right)}}\right\} \\
-\sigma & =\max (0, z)(\operatorname{ReLU}): \\
& \left\{x \mapsto \max \left(0, w^{\top} x+b\right)\right\}
\end{aligned}
$$

Question: What cannot be done?

Is NN powerful? second trial

Think of single-output (i.e., $\mathbb{R}^{n} \mapsto \mathbb{R}$) problems first

Add depth!

> But make all hidden-nodes activations identity or linear
> $\sigma\left(\boldsymbol{w}_{L}^{\top}\left(\boldsymbol{W}_{L-1}\left(\ldots\left(\boldsymbol{W}_{1} \boldsymbol{x}+\boldsymbol{b}_{1}\right)+\ldots\right) \boldsymbol{b}_{L-1}\right)+b_{L}\right)$

No better than a single neuron! Why?

Is NN powerful? third trial

Think of single-output (i.e., $\mathbb{R}^{n} \mapsto \mathbb{R}$) problems first

Add both depth \& nonlinearity!
Surprising news: universal approximation theorem (UAT)

two-layer network, linear activation at output

- so we don't worry about limitation in the capacity

Outline

Recap
Why should we trust NNs?
Visual proof of UAT
UAT in rigorous form
From shallow to deep NNs
Suggested reading

Why could UAT hold?

Visual "proof"

(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of $\mathbb{R} \rightarrow \mathbb{R}$ functions first, $\sigma=\frac{1}{1+e^{-z}}$

- Step 1: Build "step" functions
- Step 2: Build "bump" functions
- Step 3: Sum up bumps to approximate

Step 1: build step functions

$$
y=\frac{1}{1+e^{-(w x+b)}}=\frac{1}{1+e^{-w(x-b / w)}}
$$

- Larger w, sharper transition
- Transition around $-b / w$, written as s

Step 2: build bump functions

Write h as the bump height

Step 3: sum up bumps to approximate

two bumps

five bumps

ultimate idea ... familiar?

Message: all $\mathbb{R} \mapsto \mathbb{R}$ functions can be "well" approximated using

What about high-dimensional?

Similar story

- Step 1: Build "step" functions
- Step 2: Build "bump" functions
- Step 3: Build "tower" functions
- Step 4: Sum up bumps to approximate
http://neuralnetworksanddeeplearning.com/chap4.html

Steps 1 \& 2: build step and bump functions

step in x by setting large weight for x

bump in x by diff of two steps in x

bump in y by diff of two steps in y

Step 3: build tower functions

sum up x, y bumps to obtain a stair tower

threshold to obtain a sharp tower

Step 4: sum up towers for approximation

sum up two towers

sum up many towers

Message: all $\mathbb{R}^{2} \mapsto \mathbb{R}$ functions can be "well" approximated using 3-layer NN's Question: Possible using 2-layer NNs only?

General cases?

- What about $\mathbb{R}^{n} \mapsto \mathbb{R}$ functions?

The "step \rightarrow (bump) \rightarrow tower \rightarrow tower array" construction carries over

- What about $\mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ functions?

Approximate each $\mathbb{R}^{n} \mapsto \mathbb{R}$ separately and then glue them together

Message: All $\mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ functions can be "well" approximated using 2-layer NN's

Outline

Recap
Why should we trust NNs?
Visual proof of UAT
UAT in rigorous form
From shallow to deep NNs
Suggested reading

[A] universal approximation theorem (UAT)

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_{m} denote the m-dimensional unit hypercube $[0,1]^{m}$. The space of real-valued continuous functions on I_{m} is denoted by $C\left(I_{m}\right)$. Then, given any $\varepsilon>0$ and any function $f \in C\left(I_{m}\right)$, there exist an integer N, real constants $v_{i}, b_{i} \in \mathbb{R}$ and real vectors $w_{i} \in \mathbb{R}^{m}$ for $i=1, \ldots, N$, such that we may define:

$$
F(\boldsymbol{x})=\sum_{i=1}^{N} v_{i} \sigma\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}+b_{i}\right)=\boldsymbol{v}^{\top} \sigma\left(\boldsymbol{W}^{\top} \boldsymbol{x}+\boldsymbol{b}\right)
$$

as an approximate realization of the function f; that is,

$$
|F(\boldsymbol{x})-f(\boldsymbol{x})|<\varepsilon
$$

for all $\boldsymbol{x} \in I_{m}$.

Rigorous proof?

The proof is very technical ... functional analysis

- Riesz Representation: Every linear functional on $C^{0}\left([0,1]^{k}\right)$ is given by

$$
f \mapsto \int_{[0,1]^{k}} f(x) d \mu(x), \quad \mu \in \mathcal{M}
$$

where $\mathcal{M}=\left\{\right.$ finite signed regular Borel measures on $\left.[0,1]^{k}\right\}$.
© Lemma. Suppose for each $\mu \in \mathcal{M}$, we have

$$
\begin{equation*}
\int_{[0,1]^{k}} \phi(w \cdot x+b) d \mu(x)=0 \quad \forall w, b \quad \Rightarrow \quad \mu=0 . \tag{0.1}
\end{equation*}
$$

Then $\operatorname{Nets}_{1}(\phi)$ is dense in $C^{0}\left([0,1]^{k}\right)$.
(3) Lemma. ϕ continuous, sigmoidal \Rightarrow satisfies (0.1).

Thoughts on UAT

- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a nonconstant, bounded, and continuous: what about ReLU (leaky ReLU) or sign function (as in perceptron)? We have many UAT theorem(s)
- I_{m} denote the \mathbf{m}-dimensional unit hypercube $[0,1]^{m}$: this can replaced by any compact subset of \mathbb{R}^{m}
- there exist an integer N : but how large N needs to be? (later)
- The space of real-valued continuous functions on I_{m} : two examples to ponder on
- binary classification
- learn to solve square root

Learn to take square-root

Suppose we lived in a time square-root is not defined ...

- Training data: $\left\{x_{i}, x_{i}^{2}\right\}_{i}$, where $x_{i} \in \mathbb{R}$
- Forward: if $x \mapsto y,-x \mapsto y$ also
- To invert, what to output? What if just throw in the training data?

Thoughts

- Approximate continuous functions with vector outputs, i.e., $I_{m} \rightarrow \mathbb{R}^{n}$? think of the component functions
- Map to $[0,1],\{-1,+1\},[0, \infty)$? choose appropriate activation σ at the output

$$
F(x)=\sigma\left(\sum_{i=1}^{N} v_{i} \sigma\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}+b_{i}\right)\right)
$$

... universality holds in modified form

- Get deeper? three-layer NN? change to matrix-vector notation for convenience

$$
F(x)=\boldsymbol{w}^{\boldsymbol{\top}} \sigma\left(\boldsymbol{W}_{2} \sigma\left(\boldsymbol{W}_{1} \boldsymbol{x}+\boldsymbol{b}_{1}\right)+\boldsymbol{b}_{2}\right) \quad \text { as } \sum_{k} w_{k} g_{k}(\boldsymbol{x})
$$

use w_{k} 's to linearly combine the same function

- For geeks: approximate both f and f^{\prime} ? check out [Hornik et al., 1990]

What about ReLU?

ReLU

difference of ReLU's
what happens when the slopes of the ReLU's are changed?
How general σ can be? ... enough when σ not a polynomial [Leshno et al., 1993, Gühring et al., 2020, DeVore et al., 2021]

Outline

Recap
Why should we trust NNs?
Visual proof of UAT
UAT in rigorous form
From shallow to deep NNs
Suggested reading

What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?
What happens in $1 D$?

Assume the target f is 1-Lipschitz, i.e., $|f(x)-f(y)| \leq|x-y|, \forall x, y \in \mathbb{R}$

For ε accuracy, need $\frac{1}{\varepsilon}$ bumps

What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?
What happens in $2 D$? Visual proof in 2D first

Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly ...

What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?
What happens in $2 D$?

Image Credit: CMU 11-785

Assume the target f is 1 -Lipschitz, i.e., $|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq\|\boldsymbol{x}-\boldsymbol{y}\|_{2}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{2}$
For ε accuracy, need $O\left(\varepsilon^{-2}\right)$ bumps. What about the n-D case? $O\left(\varepsilon^{-n}\right)$.

What's good about deep NNs?

- Learn Boolean functions $\left(f:\{+1,-1\}^{n} \mapsto\{+1,-1\}\right)$: DNNs can have \#nodes linear in n, whereas 2 -layer NN needs exponential nodes
- What general functions set deep and shallow NNs apart?

a

b

c

A family: compositional function [Poggio et al., 2017]

Compositional functions

$$
\begin{gather*}
f\left(x_{1}, \cdots, x_{8}\right)=h_{3}\left(h_{21}\left(h_{11}\left(x_{1}, x_{2}\right), h_{12}\left(x_{3}, x_{4}\right)\right)\right. \\
\left.h_{22}\left(h_{13}\left(x_{5}, x_{6}\right), h_{14}\left(x_{7}, x_{8}\right)\right)\right) \tag{4}
\end{gather*}
$$

W_{m}^{n} : class of n-variable functions with partial derivatives up to m-th order, $W_{m}^{n, 2} \subset W_{m}^{n}$ is the compositional subclass following binary tree structures

Theorem 1. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely differentiable, and not a polynomial. For $f \in W_{m}^{n}$ the complexity of shallow networks that provide accuracy at least ϵ is

$$
\begin{equation*}
N=\mathcal{O}\left(\epsilon^{-n / m}\right) \text { and is the best possible. } \tag{5}
\end{equation*}
$$

Theorem 2. For $f \in W_{m}^{n, 2}$ consider a deep network with the same compositonal architecture and with an activation function σ : $\mathbb{R} \rightarrow \mathbb{R}$ which is infinitely differentiable, and not a polynomial. The complexity of the network to provide approximation with accuracy at least ϵ is

$$
\begin{equation*}
N=\mathcal{O}\left((n-1) \epsilon^{-2 / m}\right) \tag{6}
\end{equation*}
$$

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound

Nonsmooth activation

A terse version of UAT
Proposition 2. Let $\sigma=: \mathbb{R} \rightarrow \mathbb{R}$ be in \mathcal{C}^{0}, and not a polynomial. Then shallow networks are dense in \mathcal{C}^{0}.

Shallow vs. deep

Theorem 4. Let f be a L-Lipshitz continuous function of n variables. Then, the complexity of a network which is a linear combination of ReLU providing an approximation with accuracy at least ϵ is

$$
N_{s}=\mathcal{O}\left(\left(\frac{\epsilon}{L}\right)^{-n}\right)
$$

wheres that of a deep compositional architecture is

$$
N_{d}=\mathcal{O}\left((n-1)\left(\frac{\epsilon}{L}\right)^{-2}\right)
$$

Width-bounded DNNs

Narrower than $n+4$ is fine

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and any $\epsilon>0$, there exists a fully-connected ReLU network \mathscr{A} with width $d_{m} \leq n+4$, such that the function $F_{\mathscr{A}}$ represented by this network satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|f(x)-F_{\mathscr{A}}(x)\right| \mathrm{d} x<\epsilon \tag{3}
\end{equation*}
$$

But no narrower than $n-1$

Theorem 3. For any continuous function $f:[-1,1]^{n} \rightarrow \mathbb{R}$ which is not constant along any direction, there exists a universal $\epsilon^{*}>0$ such that for any function F_{A} represented by a fully-connected ReLU network with width $d_{m} \leq n-1$, the L^{1} distance between f and F_{A} is at least ϵ^{*} :

$$
\begin{equation*}
\int_{[-1,1]^{n}}\left|f(x)-F_{A}(x)\right| \mathrm{d} x \geq \epsilon^{*} \tag{5}
\end{equation*}
$$

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]
Deep vs. shallow still active area of research

Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems (UATs)

Fundamental slogan of DL

Where there is a function, there is a NN... and go ahead fitting it!

Outline

Recap
Why should we trust NNs?
Visual proof of UAT
UAT in rigorous form
From shallow to deep NNs
Suggested reading

Suggested reading

- Chap 4, Neural Networks and Deep Learning (online book) http://neuralnetworksanddeeplearning.com/chap4.html
- Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. (by Poggio et al) https://arxiv.org/abs/1611.00740
- Expressivity of Deep Neural Networks (by Ingo Gühring, Mones Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759

References i

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303-314.
[DeVore et al., 2021] DeVore, R., Hanin, B., and Petrova, G. (2021). Neural network approximation. Acta Numerica, 30:327-444.
[Gühring et al., 2020] Gühring, I., Raslan, M., and Kutyniok, G. (2020). Expressivity of deep neural networks. arXiv:2007.04759.
[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251-257.
[Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3(5):551-560.
[Kidger and Lyons, 2019] Kidger, P. and Lyons, T. (2019). Universal approximation with deep narrow networks. arXiv:1905.08539.
[Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861-867.

References if

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view from the width. In Advances in neural information processing systems, pages 6231-6239.
[Poggio et al., 2017] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. (2017). Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing, 14(5):503-519.

