Fundamental Belief: Universal Approximation Theorems

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

September 13, 2023

Outline

Recap

Why should we trust NNs?

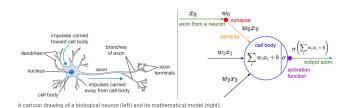
Visual proof of UAT

UAT in rigorous form

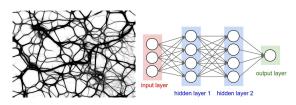
From shallow to deep NNs

Suggested reading

Recap I



biological neuron vs. artificial neuron

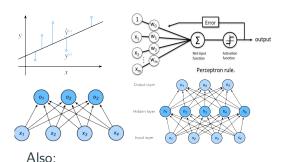


biological NN vs. artificial NN

Artificial NN: (over)-simplification on **neuron** & **connection** levels

Recap II

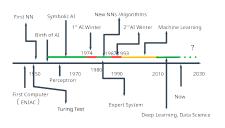
Zoo of NN models in ML



- Support vector machines (SVM)
- PCA (autoencoder)
- Matrix factorization

- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)

Recap III



Brief history of NNs:

- 1943: first NNs invented (McCulloch and Pitts)
- 1958 -1969: perceptron (Rosenblatt)
- 1969: Perceptrons (Minsky and Papert)—end of perceptron
- 1980's-1990's: Neocognitron, CNN, back-prop, SGD-we use today
- 1990's-2010's: SVMs, Adaboosting, decision trees and random forests
- 2010's-now: DNNs and deep learning

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

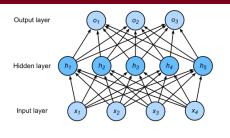
Suggested reading

Supervised learning

Step	General view	NN view
1	Gather training set	Gather training set $(oldsymbol{x}_1,oldsymbol{y}_1)$,,
	$(oldsymbol{x}_1,oldsymbol{y}_1)$,, $(oldsymbol{x}_n,oldsymbol{y}_n)$	$ig (oldsymbol{x}_n, oldsymbol{y}_n)$
2	Choose a family of func-	Choose a NN with k neurons, so
	tions, e.g., \mathcal{H} , so that	that there is a group of weights
	there is an $f \in \mathcal{H}$ to en-	$({m w}_1,\ldots,{m w}_k,b_1,\ldots,b_k)$ ensuring ${m y}_ipprox$
	sure $oldsymbol{y}_i pprox f\left(oldsymbol{x}_i ight)$, $oralli$	$\left\{NN\left(oldsymbol{w}_{1},\ldots,oldsymbol{w}_{k},b_{1},\ldots,b_{k} ight) ight\}\left(oldsymbol{x}_{i} ight)$, $orall i$
3	Set up a loss function ℓ	Set up a loss function ℓ
4	Find an $f \in \mathcal{H}$ to mini-	Find weights $({m w}_1,\ldots,{m w}_k,b_1,\ldots,b_k)$ to
	mize the average loss	minimize the average loss
	$\frac{1}{n}\sum_{i=1}^{n}\ell\left(\boldsymbol{y}_{i},f\left(\boldsymbol{x}_{i}\right)\right)$	$ \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i}, \left\{NN\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right] $

Why we trust NNs? They're "powerful"—encoding "large" $\ensuremath{\mathcal{H}}$

Three fundamental questions in DL



- k-layer NNs: with k layers of weights (along the deepest path)
- k-hidden-layer NNs: with k hidden layers of nodes (i.e., (k+1)-layer NNs)
- **Approximation**: is it powerful, i.e., the ${\mathcal H}$ large enough for all possible weights? (now)
- Optimization: how to solve

$$\min_{\boldsymbol{w}_{i}'s,\boldsymbol{b}_{i}'s} \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i},\left\{\mathsf{NN}\left(\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{k},b_{1},\ldots,b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]$$

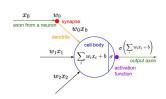
(later this course)

 Generalization: does the learned NN work well on "similar" data? (CSCI5525, and Deep Learning Theory)

Is NN powerful? first trial

Think of single-output (i.e., $\mathbb{R}^n \mapsto \mathbb{R}$) problems first

A single neuron

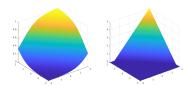


$$\mathcal{H}: \left\{ \boldsymbol{x} \mapsto \sigma \left(\boldsymbol{w}^{\intercal} \boldsymbol{x} + b \right) \right\}$$

- $-\sigma$ identity or linear: linear functions
- σ sign function sign $(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$ (perceptron): 0/1 function with hyperplane threshold

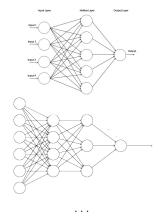
-
$$\sigma = \frac{1}{1+e^{-z}}$$
: $\left\{ \boldsymbol{x} \mapsto \frac{1}{1+e^{-(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)}} \right\}$

$$- \sigma = \max(0, z) \text{ (ReLU)}:$$
$$\{\boldsymbol{x} \mapsto \max(0, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b)\}$$



Is NN powerful? second trial

Think of single-output (i.e., $\mathbb{R}^n \mapsto \mathbb{R}$) problems first Add depth!



But make all hidden-nodes activations identity or linear

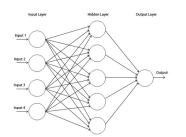
$$\sigma\left(oldsymbol{w}_{L}^{\intercal}\left(oldsymbol{W}_{L-1}\left(\ldots\left(oldsymbol{W}_{1}oldsymbol{x}+oldsymbol{b}_{1}
ight)+\ldots
ight)oldsymbol{b}_{L-1}
ight)+b_{L}
ight)$$

No better than a single neuron! Why?

Is NN powerful? third trial

Think of single-output (i.e., $\mathbb{R}^n \mapsto \mathbb{R}$) problems first

Add both depth & nonlinearity!



two-layer network, linear activation at output

Surprising news: universal approximation theorem (UAT)

The 2-layer network can approximate arbitrary continuous functions arbitrarily well, provided that the hidden layer is sufficiently wide.

— so we don't worry about limitation in the capacity

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

Why could UAT hold?

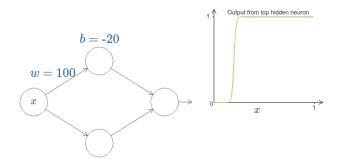
Visual "proof"

(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of $\mathbb{R} \to \mathbb{R}$ functions first, $\sigma = \frac{1}{1 + e^{-z}}$

- Step 1: Build "step" functions
- Step 2: Build "bump" functions
- Step 3: Sum up bumps to approximate

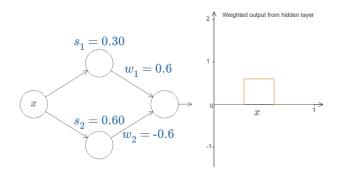
Step 1: build step functions



$$y = \frac{1}{1 + e^{-(wx+b)}} = \frac{1}{1 + e^{-w(x-b/w)}}$$

- Larger w, sharper transition
- Transition around -b/w, written as s

Step 2: build bump functions

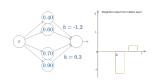


$$0.6 * step(0.3) - 0.6 * step(0.6)$$

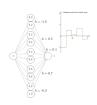
Write h as the bump height

Step 3: sum up bumps to approximate

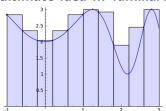
two bumps



five bumps



ultimate idea ... familiar?



Message: all $\mathbb{R} \mapsto \mathbb{R}$ functions can be "well" approximated using

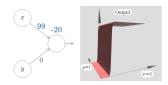
What about high-dimensional?

Similar story

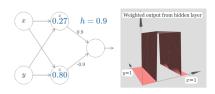
- Step 1: Build "step" functions
- Step 2: Build "bump" functions
- Step 3: Build "tower" functions
- Step 4: Sum up bumps to approximate

http://neuralnetworksanddeeplearning.com/chap4.html

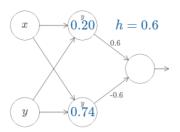
Steps 1 & 2: build step and bump functions



step in x by setting large weight for x



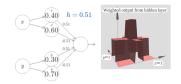
bump in x by diff of two steps in x



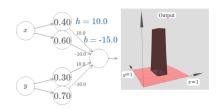
Weighted output from hidden layer y=1 x=1

bump in y by diff of two steps in y

Step 3: build tower functions

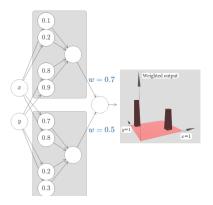


sum up x, y bumps to obtain a stair tower



threshold to obtain a sharp tower

Step 4: sum up towers for approximation



Many towers y=1x=1

sum up two towers

sum up many towers

Message: all $\mathbb{R}^2 \mapsto \mathbb{R}$ functions can be "well" approximated using 3-layer NN's Question: Possible using 2-layer NNs only?

General cases?

- What about $\mathbb{R}^n \mapsto \mathbb{R}$ functions? The "step \to (bump) \to tower \to tower array" construction carries over
- What about $\mathbb{R}^n\mapsto\mathbb{R}^m$ functions? Approximate each $\mathbb{R}^n\mapsto\mathbb{R}$ separately and then glue them together

Message: All $\mathbb{R}^n \mapsto \mathbb{R}^m$ functions can be "well" approximated using 2-layer NN's

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

[A] universal approximation theorem (UAT)

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let $\sigma: \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for $i = 1, \ldots, N$, such that we may define:

$$F(\boldsymbol{x}) = \sum_{i=1}^{N} v_i \sigma\left(\boldsymbol{w}_i^T \boldsymbol{x} + b_i\right) = \boldsymbol{v}^{\mathsf{T}} \sigma\left(\boldsymbol{W}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b}\right)$$

as an approximate realization of the function f; that is,

$$|F(\boldsymbol{x}) - f(\boldsymbol{x})| < \varepsilon$$

for all $x \in I_m$.

Rigorous proof?

The proof is very technical ... functional analysis

Q Riesz Representation: Every linear functional on $C^0([0,1]^k)$ is given by

$$f\mapsto \int_{[0,1]^k} f(x)d\mu(x), \qquad \mu\in\mathcal{M}$$

where $\mathcal{M} = \left\{ \mathsf{finite} \ \mathsf{signed} \ \mathsf{regular} \ \mathsf{Borel} \ \mathsf{measures} \ \mathsf{on} \ [0,1]^k \right\}.$

2 Lemma. Suppose for each $\mu \in \mathcal{M}$, we have

$$\int_{[0,1]^k} \phi(w \cdot x + b) d\mu(x) = 0 \quad \forall w, b \quad \Rightarrow \quad \mu = 0. \quad (0.1)$$

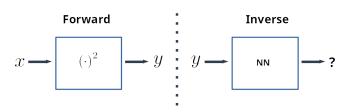
Then $Nets_1(\phi)$ is dense in $C^0([0,1]^k)$.

3 Lemma. ϕ continuous, sigmoidal \Rightarrow satisfies (0.1).

Thoughts on UAT

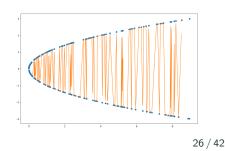
- $-\sigma: \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous: what about ReLU (leaky ReLU) or sign function (as in perceptron)? We have many UAT theorem(s)
- I_m denote the m-dimensional unit hypercube $[0,1]^m$: this can replaced by any compact subset of \mathbb{R}^m
- there exist an integer N: but how large N needs to be? (later)
- The space of real-valued continuous functions on ${\cal I}_m$: two examples to ponder on
 - binary classification
 - learn to solve square root

Learn to take square-root



Suppose we lived in a time square-root is not defined ...

- Training data: $\left\{x_i, x_i^2\right\}_i$, where $x_i \in \mathbb{R}$
- Forward: if $x \mapsto y$, $-x \mapsto y$ also
- To invert, what to output?
 What if just throw in the training data?



Thoughts

- Approximate continuous functions with vector outputs, i.e., $I_m \to \mathbb{R}^n$? think of the component functions
- Map to [0,1], $\{-1,+1\}$, $[0,\infty)$? choose appropriate activation σ at the output

$$F(x) = \sigma \left(\sum_{i=1}^{N} v_i \sigma \left(\boldsymbol{w}_i^T \boldsymbol{x} + b_i \right) \right)$$

... universality holds in modified form

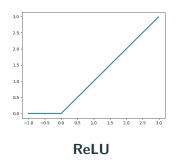
 Get deeper? three-layer NN? change to matrix-vector notation for convenience

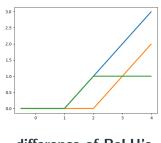
$$F\left(x\right) = \boldsymbol{w}^{\mathsf{T}} \sigma(\boldsymbol{W}_{2} \sigma(\boldsymbol{W}_{1} \boldsymbol{x} + \boldsymbol{b}_{1}) + \boldsymbol{b}_{2}) \quad \text{as } \sum_{k} w_{k} g_{k}\left(\boldsymbol{x}\right)$$

use w_k 's to linearly combine the same function

- For geeks: approximate both f and f'? check out [Hornik et al., 1990]

What about ReLU?





difference of ReLU's

what happens when the slopes of the ReLU's are changed?

How general σ **can be?** ... enough when σ not a polynomial [Leshno et al., 1993, Gühring et al., 2020, DeVore et al., 2021]

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

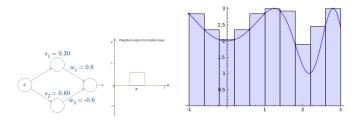
From shallow to deep NNs

Suggested reading

What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?

What happens in 1D?



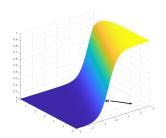
Assume the target f is 1-Lipschitz, i.e., $|f(x)-f(y)|\leq |x-y|\,,\forall\;x,y\in\mathbb{R}$

For ε accuracy, need $\frac{1}{\varepsilon}$ bumps

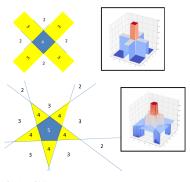
What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?

What happens in 2D? Visual proof in 2D first



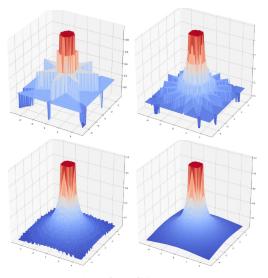
 $\sigma(oldsymbol{w}^{\intercal}oldsymbol{x}+oldsymbol{b})$, σ sigmod approach 2D step function when making $oldsymbol{w}$ large



Credit: CMU 11-785

Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly \dots



What's bad about shallow NNs?

From UAT, "... there exist an interger N, ...", but how large?

What happens in 2D?

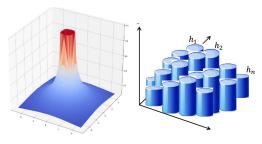


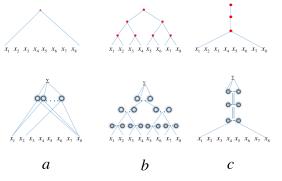
Image Credit: CMU 11-785

Assume the target f is 1-Lipschitz, i.e., $|f(x) - f(y)| \leq \|x - y\|_2$, $\forall \ x, y \in \mathbb{R}^2$

For ε accuracy, need $O\left(\varepsilon^{-2}\right)$ bumps. What about the n-D case? $O(\varepsilon^{-n})$.

What's good about deep NNs?

- Learn Boolean functions $(f : \{+1, -1\}^n \mapsto \{+1, -1\})$: DNNs can have #nodes linear in n, whereas 2-layer NN needs exponential nodes
- What general functions set deep and shallow NNs apart?



A family: compositional function [Poggio et al., 2017]

Compositional functions

$$f(x_1, \dots, x_8) = h_3(h_{21}(h_{11}(x_1, x_2), h_{12}(x_3, x_4)), h_{22}(h_{13}(x_5, x_6), h_{14}(x_7, x_8)))$$
(4)

 W_m^n : class of n-variable functions with partial derivatives up to m-th order, $W_m^{n,2}\subset W_m^n$ is the compositional subclass following binary tree structures

Theorem 1. Let $\sigma: \mathbb{R} \to \mathbb{R}$ be infinitely differentiable, and not a polynomial. For $f \in W_m^n$ the complexity of shallow networks that provide accuracy at least ϵ is

$$N = \mathcal{O}(\epsilon^{-n/m})$$
 and is the best possible. (5)

Theorem 2. For $f \in W_m^{n,2}$ consider a deep network with the same compositonal architecture and with an activation function $\sigma : \mathbb{R} \to \mathbb{R}$ which is infinitely differentiable, and not a polynomial. The complexity of the network to provide approximation with accuracy at least ϵ is

$$N = \mathcal{O}((n-1)\epsilon^{-2/m}). \tag{6}$$

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound

Nonsmooth activation

A terse version of UAT

Proposition 2. Let $\sigma =: \mathbb{R} \to \mathbb{R}$ be in C^0 , and not a polynomial. Then shallow networks are dense in C^0 .

Shallow vs. deep

Theorem 4. Let f be a L-Lipshitz continuous function of n variables. Then, the complexity of a network which is a linear combination of ReLU providing an approximation with accuracy at least ϵ is

$$N_s = \mathcal{O}\left(\left(\frac{\epsilon}{L}\right)^{-n}\right),$$

wheres that of a deep compositional architecture is

$$N_d = \mathcal{O}\left(\left(n-1\right)\left(\frac{\epsilon}{L}\right)^{-2}\right).$$

Width-bounded DNNs

Narrower than n+4 is fine

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\epsilon > 0$, there exists a fully-connected ReLU network \mathscr{A} with width $d_m \leq n+4$, such that the function $F_{\mathscr{A}}$ represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_{\mathscr{A}}(x)| \mathrm{d}x < \epsilon. \tag{3}$$

But no narrower than n-1

Theorem 3. For any continuous function $f: [-1,1]^n \to \mathbb{R}$ which is not constant along any direction, there exists a universal $\epsilon^* > 0$ such that for any function F_A represented by a fully-connected ReLU network with width $d_m \le n-1$, the L^1 distance between f and F_A is at least ϵ^* :

$$\int_{[-1,1]^n} |f(x) - F_A(x)| dx \ge \epsilon^*.$$
 (5)

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]

Deep vs. shallow still active area of research

Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems (UATs)

Fundamental slogan of DL

Where there is a function, there is a NN... and go ahead fitting it!

Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

Suggested reading

- Chap 4, Neural Networks and Deep Learning (online book)
 http://neuralnetworksanddeeplearning.com/chap4.html
- Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. (by Poggio et al) https://arxiv.org/abs/1611.00740
- Expressivity of Deep Neural Networks (by Ingo Gühring, Mones Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759

References i

- [Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303–314.
- [DeVore et al., 2021] DeVore, R., Hanin, B., and Petrova, G. (2021). Neural network approximation. Acta Numerica, 30:327–444.
- [Gühring et al., 2020] Gühring, I., Raslan, M., and Kutyniok, G. (2020). Expressivity of deep neural networks. arXiv:2007.04759.
- [Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257.
- [Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3(5):551–560.
- [Kidger and Lyons, 2019] Kidger, P. and Lyons, T. (2019). Universal approximation with deep narrow networks. arXiv:1905.08539.
- [Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).
 Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–867.

References ii

- [Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view from the width. In Advances in neural information processing systems, pages 6231–6239.
- [Poggio et al., 2017] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. (2017). Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing, 14(5):503–519.