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Our roadmap

Covered: Fundamentals

Fundamental belief: universal approximation theorem
Basics of numerical optimization

Training DNNs: basic methods and tricks
Now: Structured data: images, sequences, graphs

Work with images: convolutional neural networks & applications
Work with sequences: recurrent neural networks & applications
Working with graphs: graph neural networks & applications

Transformers, large-language models, and foundation models
Generative/unsupervised/self-supervised /reinforcement learning

Learning probability distributions: generative models
Learning representation without labels: dictionary learning, autoencoders,
self-supervised learning

Gaming time: deep reinforcement learning /
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Structured vs. unstructured data

Structured Data Q) Unstructured Data

Cannot be displayed
inrows, columns and
relational databases

Can be displayed
in rows, columns and
relational databases

— structured data also called
Images, audio, video, tabular data

word processing files,
e-mails, spreadsheets

Numbers, dates
and strings

— structured data often

Estimated 80% of directly fed into classical

enterprise data (Gartner)
ML tools

Estimated 20% of 80%
enterprise data (Gartner) P

Requires less storage E Requires more storage the success Of DL mOStly

lies at learning useful
More difficuit to features/patterns from

manage and protect
with legacy solutions

Easier to manage
and protect with
legacy solutions

©00

unstructured data, i.e.,
representation learning

Credit: https://lawtomated.com/

structured-data-vs-unstructured-data-what-are-they-and-why-care/
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Feature engineering for unstructured data: old and new

Feature
+++ 2| extraction
@ algorithm

Credit: [Elgendy, 2020]

Feature engineering: derive

features for efficient learning

Traditional learning pipeline

EIE R g Feature Extraction Learning Models Decision

— feature extraction is “independent” of the learning models and tasks

— features are handcrafted and/or learned

Modern learning pipeline

Data  se— Feature Extraction & Learning Models m— Decision

— end-to-end DNN learning
4/72



Find patterns in an image
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Digital images

2828
=784 pixels

(Credit: [Elgendy, 2020]) (Credit: Wikipedia)
— pixels: entries in the matrix or tensors
— bit/pixel-depth 2" (typical 25, i.e., ranging from 0 to 2° — 1 = 255)
— compression formats: PNG, JPEG (JPG), SVG, GIF, JPEG2000, etc

— Normalization: /(2" — 1), zero-mean unit-variance (over a batch of
images), min-max
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How to find a pattern in images?

— Each time inner product of the original (red) and overlapped (green)
patches (i.e., matrices) are taken

The output matrix is the correlation

Position(s) with the largest magnitude is candidate match—detection

Care about the largest magnitude only if only interested in Yes/No—max
pooling

BTW, anything wrong with this?
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Template matching prevails in (classic) image processing

edge detection image sharpening

Enhanc

Enhanced image, radius=>5, amount=2.0 Enhanced image, radius=20, amount=1.0

0|o|o|w|10]10 [l . w’Zw"l_ﬁ(w_k*w) k: bIUr kel’nel

I] (Credit: scikit-image)
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Problem with template matching

3

In? E

It handles the uncertainty about location (i.e., translation), but not

— not rotation or scaling

— local deformation
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Feature-based approach!

[MACHNE LEARNING

Before 2010’ @f_ S

carv

TRUCK X

BICYCLE X

key-patd feature histogram
detection Sraction computation

classification

3 o] Il

Method NLT SRT RCT TL" mAA(5°)" mAA(10°)T ATE' Rank
CV-SIFT 25776 967 94.1 3.95 .5309 14
VL-SIFT 30307 979 954 4.17 .5273 13
VL-Hessian-SIFT 3209.1 974 941 4.13 4857 16
VL-DoGAff-SIFT 3061.5 98.0 962 4.11 5263 12
VL-HesAffNet-SIFT ~ 3327.7 97.7 952 4.08 5049 15
CV-V/SIFT 96.6 4.13 5778 9
CV-SURF 92.6 3.47 3897 18
CV-AKAZE 95.4 3.88 4516 17
& 91.1 345 2697 22
CV-FREAK 91.7 3.53 3735 20
L2-Net .6 96.2 421 5661 10
DoG-HardNet .5 97.7 4.34 6090 1
DoG-HardNetAmos+ .8 96.9 4.28 5879 6
Key.Net-HardNet .9 96.7 4.32 5391 11
Key.Net-SOSNet .0 98.7 4.46 5989 2
oDesc 3 .1 97.2 426 5782 8
ContextDesc 37325 993 97.6 4.22 6036 3
DoG-SOSNet 37960 99.3 974 4.32 6032 4
LogPolarDesc 4054.6 99.0 96.4 4.32 .5928 5
D2-Net (SS) 5893.8 99.8 975 3.62 3435 21
D2-Net (MS) 6759.3 99.7 98.2 339 3524 19
R2D2 (wasf-n8-big) 44329 99.7 972 4.59 5775 7
DoG-AffNet-HardNet 4671.3  99.9 98.1 4.56 6296 1*
DoG-MKD-Concat 35074 98.5 96.1 4.17 5461 11*
DoG-TFeat 29053 97.1 948 4.04 .5270 14*

see the survey
[Jin et al., 2020]
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Transition to representation learning

traditional learning pipeline

DEIER g Feature Extraction Learning Models Decision

modern learning pipeline

Data  e— Feature Extraction & Learning Models m— Decision

| hidden layer 1  hidden layer 2 I
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Problems with fully connected networks (FCNNs)
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Complexity

Input sizes

) time series
audio (spectrogram)

1/resol

— storage: 80 billion bytes ~ 80GB!

— computation

| [
| oumuuaylbr — data: need enough data to fit
| input layer

[

hidden layer 1 _hidden layer 2 COmpIeX models
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Locality and ordering

Hidden layers
Output layer

Input layer

P

N N\

784 nodes 512 nodes 512 nodes 10 nodes

Fully-connected neural network

spatial features are mostly localized! Can we learn spatial features easily?

/ %l‘_if_' At N B - — FCNN treats the input as a vector
\ . \ 7] — FCNN is insensitive to any

universal permutation of the

DAISY BRIEF

coordinates to all inputs
— implication: ordering and locality
are lost together
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Invariance

where the pattern is found shouldn’t matter much

— For FCNN, all possible translated copies should be available for training

— Similarly for rotation, scaling, local deformation
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Ideal neural networks for spatial data

Problems with FCNNs: high complexity and lack of locality and invariance

Goal: build these into the architecture directly

Later layers learn
more complex features
like ear, nose, and eye.

o] -

Output prediction

— Extracted features invariant to
translation, rotation, local

E deformation
AN — Low complexity

\
Earlier layers learn
simple features like
curves and edges.

(Credit: [Elgendy, 2020])
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A quick preview of convolutional neural networks (CNN)

Feature extraction Classification Prediction

Feature maps Feature maps

Feature

~N/ A

N V \
Convolutional layers Fully connected layers Output layer

(Credit: [Elgendy, 2020])

Input layer

Convolutional layers for feature extraction

FC layers for classification

— Output layer for prediction
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Components of CNNs
Convolutional layers
Pooling layers
Why multilayers?

Computation
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A closer look at CNNs

Feature leamning Classification
1T 1
Flatten  Fully connected  Softmax

Input Convolution Pooling R " 0.01
(28 x 28) layer (24 x 24) layer
(12 x 12) Convolution Pooling ° to P(.WO, 0.2
layer o lo
o \\e Piree) [+ 0.18
° lo
o fo
o of [ N Proun |~ 0.002
° °
o o \
el \ om0
° ° \
o o
° lo 0.008
[ | | [
Convolution Max pooling  Convolution Max pooling  Fully connected layers

(5 X 5 kernel) @x2) (5% Skernel) (2% 2)

(Credit: [Elgendy, 2020])

— convolutional layers
— pooling layers

— fully-connected layers
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Components of CNNs

Convolutional layers
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Convolution is a misnomer!

2D Correlation 2D Convolution
< Initial position forw  Correlation result Full correlation result 20 fipped c ion result Full ion result
TERE] 07877
45 6l 16 5 4
7.8 9! 987 987 321 123 123
1 654 654 1 456 45
321 321 789 789

— The only difference is the flipped template

— People actually implement correlation (not convolution; they're equivalent
from learning perspective—the template is to be learned!)

— Math notations: * for convolution, and * for (cross)-correlation

Is correlation/convolution a surprise? locality and translation invariance (when
coupled with max pooling)

H E 22/72



More on convolution/correlation

Receptive —_
field N

*

No padding, no strides  Arbitrary padding, no strides  Half padding, no strides ~ Full padding, no strides

’ 2 £ %
Convolution N 5
filter (3 X 3) | . - i -
Destination < s
pixel ~
Convolved—
image No padding, strides  Padding, strides Padding, strides (odd)

(Credit: [Elgendy, 2020]) https://github.com/vdumoulin/conv_arithmetic

Key concepts:

— filter/kernel
— inner product (-, -) at each location
— (zero)-padding—dealing with boundaries

— strides/steps
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Connection to fully-connected NN

Receptive
field

(Credit: [Elgendy, 2020])

input: a whole matrix  output: neuron outputs organized into a matrix

— local/sparse connectivity: each neuron connects only to its receptive field

— weight sharing: all neurons share the same weight pattern

24 /72



Multiple filters each layer

Feature leaming

Input Convolution Pooling
(28 % 28) layer (24 x 24) layer
(12x12) Convolution Pooling
layer

{ | f
Convolution Max pooling  Convolution Max pooling ~ Full
(5 X 5 kernel) @x2) (5% Skernel)  (2x2)

(Credit: [Elgendy, 2020])

for the first conv layer:

— each filter generates an output,
called feature map

— k filters will generate k feature
maps/channels

what happens in later conv layers?
— input: tensor with C; channels
— output: tensor with C2 channels
what are the operations?

Input Volume (+pad 1) (7x7x3) Fil
P w

(3x3x3) Output Volume (3x3x2)
o

ol 1,01
40
276
01
oli 1]
00 1
52 1
51 4
gl
El
Bias b1 (1x1x1)
BLlss,0
0
toggle movemett

(Credit: https:

//cs231n.github.io/convolutional-networks/)
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Demo of multi-channel (spatial) convolutions

https://animatedai.github.io/
(Thanks to Sasha Hydrie!)
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Multiple-channel convolution

)47 B PO ) it e C4 input channels(X’), C2 output channels

Vi - T

B Ll ) — each filter F; is a size w x h x C7 tensor, i.e., with
; she ik C4 channels

. B — all channels of the filters get convolved with the

; o corresponding channels of X', and then summed

3 ek . .

- up (plus an optional bias)

o Ci1—1 . .

: Yoide Fils, i) % X[ i 4+ b

— so each filter generates a 2D map, and there are

Credit: https://cs231n.github.io/ .
( C> filters to generate C'> output channels

convolutional—networks/)

CLASS torch.nn.Convad(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T1],
stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, TI] = 0, dilation: Union[T, [SOURCE
Tuple[T, T]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros')

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciyy, H, W ) and output (N, Cont, Hout, Wont ) can be
precisely described as:

Cum1
0ut(N;, Cout,) = bias(Couy,) + Z weight(Cou,, k) * input(N;, k)

where * is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H s a height of input planes
in pixels, and W' is width in pixels.
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Do we reduce the complexity?

Suppose C1 input channels and Cy output channels of size H x W

— # parameters if implementing fully connected layer? O(CyCoH?*W?)

— # parameters if implementing convolution of h x w? O(C1Czhw)

h,w often small constants, e.g., 3 in practice
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Components of CNNs

Pooling layers
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Pooling

Convolution helps to achieve locality, and (much) reduced complexity, what
about invariance?

224x224x64

112x112x64 Single depth slice
“ Jlr]1]2]4
max pool with 22 filters
5|6 |78 and stride 2 6|8
[ 3|2]1]o0 .
1234

T ——— ! 12
downsampling
12

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example,
the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that
the volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here
shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

(Credit: Stanford CS231N)

— max pooling (i.e., max within the receptive field)
— average pooling (i.e., weighted average within the receptive field)

— strides and receptive field size (often 2/2 or 2/3)
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Why pooling?

reduce complexity (with stride > 2)

Feature learning Classification
1

Flatten  Fully connected  Softmax

Input Convoluon Poaiing
@oe2) layer(2dx20) tayer
(12x12) i

kY

i
Pioine) [ 0.008

| | |
Convolution Max pooling  Convolution Max pooling  Fully connected layers
2)

(5x5Skemel) (2 x2) (5% Skernel) (2%

(Credit: [Elgendy, 2020])

— deeper layer: more filters = subsampling avoids explosion in computation

— subsampling keep important features

I \ J k Figure 3.25 Pooling layers reduce image
resolution and keep the image’s

Original Downsampled ~ important features.

(Credit: [Elgendy, 2020]) 31 / 72



Why pooling?

(approximate) local translation/distortion invariance

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top) A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinear: The top
row shows the outputs of max pooling, with a stride of one pixel between poohug regions
and a pooling region width of three pixels. (Bottom) A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.

(Credit: [Goodfellow et al., 2017])
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Combine convolution and pooling—convolution with strides

idea: convolution with stride > 2 & convolution + subsampling

. ® © ®

No padding, no strides  Arbitrary padding, no strides  Half padding, no strides  Full padding, no strides

No padding, strides Padding, strides Padding, strides (odd)

https://github.com/vdumoulin/conv_arithmetic

So use all convolution (with large strides) layers only, no pooling
[Springenberg et al., 2014]
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Components of CNNs

Why multilayers?

3472



Why not single layer?

using a one-layer CNN ...

— efficiency: one kernel for each variation of 87 for each variation of every
object?
— better: share kernels across digits or all object categories, but low-level

features (edges, corners, etc) likely shareable = form hierarchy
high-level features

low-level features mid-level features
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Hierarchical scan

— Later neurons have increasingly large effective receptive fields on the
input image, i.e., scanning using composition of the filters

krp*---xkixx=kxx

where the effective k is much larger in spatial extent

— composition (with pooling layers or strides) allows local translation- and

distortion-invariance
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Examples of learned features

Elephants

l
¥ ‘\\""“‘1

"‘lll..l1




Components of CNNs

Computation

38/72



How to compute convolution?

\
Receptive
field

(Credit: [Elgendy, 2020])

— convolution layer is locally connected, weight-sharing fully connected
layer

— if we vectorize both input and output, the opetation can be represented as
a matrix multiplication

x1
x2

x1 xZ x3 k]k20k3k40000x4

[x4 x5 x6] k1 k2) e [g kol k02 ko] :; k: ko3 ko4 g | s
8 » (k3 k

x7 x8 x9 4 0 0

0 x6

0 k1 k2 0 k3 k4

x8
x9

so we don't worry about forward and backward pass 39/72



More on computation

To compute the convolution

— use (sparse) matrix-vector multiplication (early versions of cuDNN)

— use fast Fourier transform (introduced in later versions of cuDNN)
Flwez)=F(w)OF(x)

[known as the convolution theorem; linear conv converted into circular
conv by zero-padding]

To compute the max-pooling

— forward: simple

— backward? what's Vi max (z1,...,2n)?
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Thanks to the cats
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A brief history of CNN

Hubel and Wiesel 1959 [Hubel and Wiesel, 1959]

Left Visual @@ @ Right Visual
Fed ., e Fed N N

e
%{ * + ———

S —— ——
S - —

Visual Cortex =
% E———— 4% ———
Visual
Screen Baroflight _ Retina_ cortex  Electrode  Oscilloscope /
———————— e ——

Optcnerve | LoteralGencuate Nuceus main discovery: directional selectivity of the

. . neurons inside V1, and local responsiveness per
focused on the primary visual

cortex (V1) cell
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A brief history of CNN

Hubel and Wiesel 1962 [Hubel and Wiesel, 1962]

Two types of cells: simple S-cells and complex C-cells

— correspond to two levels of processing

— C-cells robust to distortion, but S-cells not

Composition of complex receptive
fields from simple cells. The C-cell
responds to the largest output froma * Complex C-cells build from similarly oriented simple cells

bank of S-cells to achieve oriented e . R
response that is robust to distortion — They “fine-tune” the response of the simple cell

t * Show complex buildup - building more complex patterns
by composing early neural responses
Transform from circular retinal — Successive transformation through Simple-Complex
receptive fields to elongated fields for o
combination layers

simple cells. The simple cells are
susceptible to fuzziness and noise

S-cells: conv kernels  C-cells: max pooling
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A brief history of CNN

Fukushima 1980: Neocognitron [Fukushima, 1980]—unsupervised

visual area * area
LGB Sl _ lower-order __ higher-order _,, ___grandmother
retina —=LGB = simple — complex — Ol — D™ oy
] et T St 1 c—mmm— s — modifiable synapses
. 1 i
Yo i Usy U N Us, U, [y Uss U ——> unmodifiable synapses
,,,,,,, [t S S e

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

— multi-layers of S-C cells compositions

— only S-cells are learnable

S cells have RelLU-like activitation, C
cells have ReLU+Max like activatiQQ/n

cell planes get smaller but number of
planes increase going deeper



A brief history of CNN

Lecun 1989: supervision added [LeCun et al., 1989, Lecun et al., 1998]

Output
> class
label(s)

back-propagation used for supervised training for digit recognition
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Architectures for classification
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Typical design patterns

— feature extraction (CONV) + classification (fully connected)

— depth increases (more filters), dimension decreases (subsampling) when

moving deeper

Input image = H X W X channel Image volume = H X W X feature maps
Channel = {R,G,B,} =3 Feature maps = 96

o /

13
224 ‘
B[S s
I > -~ o7 13
5 3
55 384
256
224 29 pt’;f)a\i)r(\g p(’)\fj:g
Stride

of4

(Credit: [Elgendy, 2020])

one or two fully-connected layers for classification
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LeNet-5 (1998)

3 SA
feature maps  feature maps

I N Fo
layer
10x10x16  5x5x16
[ s, 120 fayer Output
feature maps  feature maps 10
Input 28%x28x6  14x14x6
28%28
= _
Convolutions Ful Ful Gaussian
c ' connection  connection

(Credit: [Elgendy, 2020])
— tanh used for activation

— 5 x 5 filters

Avg Avg

CONV pool CONV pool CONV FC FC
5x5 f=2 5x5 f=2

s=1 s=2 =

s=1 s=2
28x28x6

28 x28x1

14 x14 x6 10x10x 16 5x5x16

120

(Credit: [Elgendy, 2020])
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AlexNet (2012)

FC6 FC7 FC8

CONV5

Dense Dense
Dense

breakthrough on ImageNet competition in 2012 and impressed the computer

vision community
Input CONV1
CONV2
CONV3 CONV4
27
13 13 13
224
‘ B (5 B Kl S K S Shb
= & 13 13 13 —
5 3 3 3
/ = 384 384 256
/ 256 1000
MT}" 4006 4096
[ % Max pooling
[ pooling
Input MT‘.X
image 3 pooling
(RGB)  Stide
of 4
L J L I L |
Image input 5 convolution layers 3 fully connected
layers
(Credit: [Elgendy, 2020])

49 /72

— RelLU used for activation
— large filters: 11 x 11, 5 x 5, 3 x 3 filters

— dropout used for regularization

— weight decay/regularization



VGG-net (2014)

VGG — Visual Geometry Group (Oxford U.)

3 x3 CONV, 64
3 x3 CONV, 64
3x3CONV, 128
3x3CONV, 128
3 x 3CONV, 256
3 x 3CONV, 256
3 x 3CONV, 256
3x3CONV, 512
3x3CONV, 512
3 x 3CONV, 512
3x 3CONV, 512
3x3CONV, 512
3x3CONV, 512

FC 4096

FC 4096

Softmax 1000

Figure 5.8 VGGNet-16 architecture

(Credit: [Elgendy, 2020])

— smaller filters (3 x 3) to make up for large ones in AlexNet. A nice
property of convolution:

ax(bxc)=(axb)xc

composition of filters covers larger receptive fields
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Inception and GooglLeNet (2014)

Classical CNN architecture Inception modules
Dense Dense
classifiers classifiers
Classical CNN Inception
feature extractors modules feature
extractors
POOL POOL
CONV CONV

(Credit: [Elgendy, 2020])

pack things into inception modules
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Inception module—basic version

Inception module 32 x 32 x 256

Filter concatenation

32 x 32 x 64

32><32><128| 32><32X32| |32><32><32

[ 1 x 1 convolutions 3 x 3 convolutions ] [ 5 x 5 convolutions ] [ 3 x 3 max pooling ]

| | | |

32 x 32 x 200

(Credit: [Elgendy, 2020])

idea: apply all filters together and (hopefully) the training process performs the
suitable selection/combination itself

— filters can be short-circuited when the values are set to 0
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Inception module with dimension re

1 x 1 convolution helps to reduce the #channels = saves computation

Bottleneck layer

/

N
CONV 1x1 CONV5x5
16 filters 32 filters i

32 %32 % 200 32x32x16

32x32 %32 [ [ | Inception
1 : o : ] CONV 1 %11(5) ] [ conva s | [ CONVE x5+ 1(5) ] CONV1 % 141(8) ] module
Computational cost Computational cost: i 1 | i
(82 % 32 % 16) (1 % 1% 200) = 32 million (32 x 32 % 32) x (5 x § x 16) = 13.1 millon [ cowero® | [ [ J P
L I
Total computational cost
DepthConcat
Inception module with dimensionality reduction i
[cowvixtoi@ | [[cowararie | [(cowsxser | [[comvixioim |
T Inception
I l modale

[[eowixivns) | [(comini-1 | [eecasxssiol|
[ <3 comotuions

[[575 convabtons

(171 comottons

FES— i I |

(11 cmotaons

[[1 <1 omottons

DepthConcat
[ 3% 3 max pooling epthConcat

| x w )
(Credit: [Elgendy, 2020])

(Credit: [Elgendy, 2020]) 53/72



ResNet (2015)

going really deep...sees performance degradation

a solution:
Without skip With skip
connection —\\\ connection \\

Shorteut path =
- Add both paths = f(x) +x

a residual block (Credit: [Elgendy, 2020])

(Credit: [Elgendy, 2020])
— skip connection

* allows short-circuit unnecessary layers—e.g., setting the kernels to
zero—and thus avoids performance degradation when adding more
layers

* mitigates gradient explosion or vanishing—J i1 (x) = J; () + I

— batch normalization
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Comparison with previous models

Classical CNN architecture Inception modules

Softmax Softmax Softmax

(9]
(9]
n
(9]

POOL

Inception modules

POOL

POOL

POOL

Residual block

Residual block

Residual block

POOL

CONV

CONV

POOL

CONV

CONV

CONV

B L L
R

Sl

(Credit: [Elgendy, 2020])
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Inside a residual block

Bottleneck residual block with reduce shortcut

Shortcut path = x + 1 x 1 conv + BN

Batch
it o

- paths
-
11 conv 3% 3 conv 1% 1 conv VY
X Batch Batch Batch
—-[couvzn[ orm | Retu convzp | T8EE | Relu CONv2D | T8 ®—~ ReLu
Main path £(x)

(Credit: [Elgendy, 2020])

— no pooling layers

— 1 x 1 conv before and after 3 x 3 conv to control #channels and hence

computation

batch normalization (BN) after each conv layer

— 1 x 1 conv and BN added to the skip connection also to match dim for

summation

full details see: https://pytorch.org/hub/pytorch_vision_resnet/
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DenseNet (2016)

— inside the same dense block, any feature
map “connected” to all subsequent feature

maps—dense

— "“connected” here means concatenation vs.

the summation in ResNet

— concatenation enables feature reusing and
Figure 1: A S-layer dense block with a growth rate of k = 4.

Each layer takes all preceding featurc-maps as input. hence h igher efficien cy

(Credit: [Huang et al., 2016])
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Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

(Credit: [Huang et al., 2016])

transition layers adjust the sizes of the feature maps
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Other models to watch

on accuracy:

— EfficientNet (2019) [Tan and Le, 2019]
https://github.com/tensorflow/tpu/tree/master/models/

official/efficientnet

— ResNeXt https://arxiv.org/abs/1611.05431
on compact models:

— SqueezeNet https://arxiv.org/abs/1602.07360
— ShuffleNet https://arxiv.org/abs/1807.11164

— MobileNet https://arxiv.org/abs/1801.04381

Pytorch official classification models

https://pytorch.org/vision/stable/models.html#classification
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Practical tips

59 /72



Transfer learning

Recall: (we hope) CNNs learn increasingly complex and semantically meaningful
features

Faces Cars Elephants Chairs

(Credit: [Elgendy, 2020])

So: early layers trained on a large and diverse dataset, e.g., ImageNet, can be

reused. This part is called a pretrained model
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Deep transfer learning as feature reuse

source domain: task domain of the pre-trained model
target domain: current task domain

Size ofthe  Similarity of the original
Seenarlo yarget data and new datasets bR
1 small similar Pretrained network as a feature extractor
2 Large Similar Fine-tune through the full network
3 Small Very different Finetune from activations earlier in the

network
4 Large Very different Finetune through the entire network . .
indicates

trainable part
(Credit:

Scenario #1: You have a smalldataset [Elgendy, 2020])

thatis similar to the source dataset.

Scenario #2: You have a large dataset
that is similar o the source dataset

Scenario #3: You have a small dataset
that s different from the source dataset.

Scenario #4: You have a arge dataset
that i different from the source dataset.

Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Stanford notes: https://cs231n.github.io/transfer-learning/

For domains that only need low-level features: [Peng et al., 2021] 61,72
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https://cs231n.github.io/transfer-learning/

Transposed convolution

convolution with strides: downsampling
transposed convolution: upsampling

(Credit: https://naokishibuya.medium.com/)

often used for segmentation, generation, or other regression—outputs are
structured objects such as images, videos, time series, speech, etc

— traditional methods: e.g., nearest neighbor/bilinear/bicubic interpolation
— here: interpolation with a learnable filter
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Transposed convolution

also called fractionally strided convolutions or deconvolution (misnomer): zero

padding, zero interleaving (when forward stride > 1), and then convolution

—

forward stride = 1

seee

forward stride = 2

more details see https://github.com/vdumoulin/conv_arithmetic
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https://github.com/vdumoulin/conv_arithmetic

Normalization

Layer Norm Instance Norm

Normalization methods. Each subplot shows a feature map tensor, with IV as the batch axis, C' as the channel axis, and (H, W)
as we spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

— N is the batch axis
— (' is the channel axis

— WH is the per output dimension (1 for fully connected, but 2D for CNNs)
batch normalization is popular, but with layer/group normalization:
— small N (batch size) is possible

— simplicity: training/test normalizations are consistent 6472



augmentation

— More relevant data always
help!

— Fetch more external data

— Generate more internal
data: generate based on
whatever you want to be
robust to

* vision: translation,
rotation,
background, noise,
deformation,
flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning _tutorial.html g /72
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Are CNNs only for images?

Recall why CNN? complexity, locality/ordering, translation-invariance

These are desired also when processing video, text sequence, times series data,
speech data, etc Examples:

WaveNet for text-to-speech system
https://en.wikipedia.org/wiki/WaveNet

text classification https://arxiv.org/abs/1408.5882

video analysis [Ji et al., 2013, Karpathy et al., 2014, Huang et al., 2018]

time series analysis [Yu and Koltun, 2015, Borovykh et al., 2017]

see also An Empirical Evaluation of Generic Convolutional and Recurrent

Networks for Sequence Modeling [Bai et al., 2018]
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Suggested reading
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Suggested reading

— Deep Learning for Vision Systems [Elgendy, 2020]

— Convolutional Networks for Images, Speech, and Time-Series
[LeCun et al., 1995]

— A guide to convolution arithmetic for deep learning
https://arxiv.org/abs/1603.07285

— Gradient-based learning applied to document
recognition [Lecun et al., 1998]

— https://cs231n.github.io/transfer-learning/
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