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Our roadmap

Covered: Fundamentals

Fundamental belief: universal approximation theorem

Basics of numerical optimization

Training DNNs: basic methods and tricks

Now: Structured data: images, sequences, graphs

Work with images: convolutional neural networks & applications

Work with sequences: recurrent neural networks & applications

Working with graphs: graph neural networks & applications

Transformers, large-language models, and foundation models

Generative/unsupervised/self-supervised/reinforcement learning

Learning probability distributions: generative models

Learning representation without labels: dictionary learning, autoencoders,

self-supervised learning

Gaming time: deep reinforcement learning
2 / 72



Structured vs. unstructured data

Credit: https://lawtomated.com/

structured-data-vs-unstructured-data-what-are-they-and-why-care/

– structured data also called

tabular data

– structured data often

directly fed into classical

ML tools

– the success of DL mostly

lies at learning useful

features/patterns from

unstructured data, i.e.,

representation learning
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Feature engineering for unstructured data: old and new

Credit: [Elgendy, 2020]

Feature engineering: derive

features for efficient learning

Traditional learning pipeline

– feature extraction is “independent” of the learning models and tasks

– features are handcrafted and/or learned

Modern learning pipeline

– end-to-end DNN learning
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Digital images

(Credit: [Elgendy, 2020]) (Credit: Wikipedia)

– pixels: entries in the matrix or tensors

– bit/pixel-depth 2n (typical 28, i.e., ranging from 0 to 28 − 1 = 255)

– compression formats: PNG, JPEG (JPG), SVG, GIF, JPEG2000, etc

– Normalization: /(2n − 1), zero-mean unit-variance (over a batch of

images), min-max
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How to find a pattern in images?

– Each time inner product of the original (red) and overlapped (green)

patches (i.e., matrices) are taken

– The output matrix is the correlation

– Position(s) with the largest magnitude is candidate match—detection

– Care about the largest magnitude only if only interested in Yes/No—max

pooling

BTW, anything wrong with this?
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Template matching prevails in (classic) image processing

edge detection image sharpening

x′ = x+ β(x− k ∗ x) k: blur kernel

(Credit: scikit-image)
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Problem with template matching

It handles the uncertainty about location (i.e., translation), but not

– not rotation or scaling

– local deformation
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Do we have a template at all?
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Feature-based approach!

see the survey

[Jin et al., 2020]
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Transition to representation learning

traditional learning pipeline

modern learning pipeline
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Complexity

Input sizes

image

∼ 106

video

∼ 108(10s)

audio (spectrogram)

∼ 108(10s)

time series

1/resol

100 hidden nodes at layer 1 =⇒ 10 billions variables in the first layer!

– storage: 80 billion bytes ∼ 80GB!

– computation

– data: need enough data to fit

complex models
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Locality and ordering

spatial features are mostly localized! Can we learn spatial features easily?

– FCNN treats the input as a vector

– FCNN is insensitive to any

universal permutation of the

coordinates to all inputs

– implication: ordering and locality

are lost together
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Invariance

where the pattern is found shouldn’t matter much

– For FCNN, all possible translated copies should be available for training

– Similarly for rotation, scaling, local deformation
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Ideal neural networks for spatial data

Problems with FCNNs: high complexity and lack of locality and invariance

Goal: build these into the architecture directly

(Credit: [Elgendy, 2020])

– Extracted features invariant to

translation, rotation, local

deformation

– Low complexity
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A quick preview of convolutional neural networks (CNN)

(Credit: [Elgendy, 2020])

– Input layer

– Convolutional layers for feature extraction

– FC layers for classification

– Output layer for prediction
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A closer look at CNNs

(Credit: [Elgendy, 2020])

– convolutional layers

– pooling layers

– fully-connected layers
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Convolution is a misnomer!

2D Correlation 2D Convolution

– The only difference is the flipped template

– People actually implement correlation (not convolution; they’re equivalent

from learning perspective—the template is to be learned!)

– Math notations: ∗ for convolution, and ⋆ for (cross)-correlation

Is correlation/convolution a surprise? locality and translation invariance (when

coupled with max pooling)
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More on convolution/correlation

(Credit: [Elgendy, 2020])
https://github.com/vdumoulin/conv_arithmetic

Key concepts:

– filter/kernel

– inner product ⟨·, ·⟩ at each location

– (zero)-padding—dealing with boundaries

– strides/steps
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Connection to fully-connected NN

(Credit: [Elgendy, 2020])

input: a whole matrix output: neuron outputs organized into a matrix

– local/sparse connectivity: each neuron connects only to its receptive field

– weight sharing: all neurons share the same weight pattern
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Multiple filters each layer

(Credit: [Elgendy, 2020])

for the first conv layer:

– each filter generates an output,

called feature map

– k filters will generate k feature

maps/channels

what happens in later conv layers?

– input: tensor with C1 channels

– output: tensor with C2 channels

what are the operations?

(Credit: https:

//cs231n.github.io/convolutional-networks/)
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Demo of multi-channel (spatial) convolutions

https://animatedai.github.io/

(Thanks to Sasha Hydrie!)
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Multiple-channel convolution

(Credit: https://cs231n.github.io/

convolutional-networks/)

C1 input channels(X ), C2 output channels

– each filter Fi is a size w× h×C1 tensor, i.e., with

C1 channels

– all channels of the filters get convolved with the

corresponding channels of X , and then summed

up (plus an optional bias)∑C1−1
i=0 Fi[:, :, i] ⋆ X [:, :, i] + b

– so each filter generates a 2D map, and there are

C2 filters to generate C2 output channels
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Do we reduce the complexity?

Suppose C1 input channels and C2 output channels of size H ×W

– # parameters if implementing fully connected layer? O(C1C2H
2W 2)

– # parameters if implementing convolution of h× w? O(C1C2hw)

h,w often small constants, e.g., 3 in practice
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Pooling

Convolution helps to achieve locality, and (much) reduced complexity, what

about invariance?

(Credit: Stanford CS231N)

– max pooling (i.e., max within the receptive field)

– average pooling (i.e., weighted average within the receptive field)

– strides and receptive field size (often 2/2 or 2/3)
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Why pooling?

reduce complexity (with stride ≥ 2)

(Credit: [Elgendy, 2020])

– deeper layer: more filters =⇒ subsampling avoids explosion in computation

– subsampling keep important features

(Credit: [Elgendy, 2020]) 31 / 72



Why pooling?

(approximate) local translation/distortion invariance

(Credit: [Goodfellow et al., 2017])
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Combine convolution and pooling—convolution with strides

idea: convolution with stride ≥ 2 ≈ convolution + subsampling

https://github.com/vdumoulin/conv_arithmetic

So use all convolution (with large strides) layers only, no pooling

[Springenberg et al., 2014]
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Why not single layer?

using a one-layer CNN ...

– efficiency: one kernel for each variation of 8? for each variation of every

object?

– better: share kernels across digits or all object categories, but low-level

features (edges, corners, etc) likely shareable =⇒ form hierarchy
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Hierarchical scan

– Later neurons have increasingly large effective receptive fields on the

input image, i.e., scanning using composition of the filters

kL ∗ · · · ∗ k1 ∗ x = k ∗ x

where the effective k is much larger in spatial extent

– composition (with pooling layers or strides) allows local translation- and

distortion-invariance

36 / 72



Examples of learned features
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How to compute convolution?

(Credit: [Elgendy, 2020])

– convolution layer is locally connected, weight-sharing fully connected

layer

– if we vectorize both input and output, the opetation can be represented as

a matrix multiplication

so we don’t worry about forward and backward pass 39 / 72



More on computation

To compute the convolution

– use (sparse) matrix-vector multiplication (early versions of cuDNN)

– use fast Fourier transform (introduced in later versions of cuDNN)

F (w ⊛ x) = F (w)⊙F (x)

[known as the convolution theorem; linear conv converted into circular

conv by zero-padding]

To compute the max-pooling

– forward: simple

– backward? what’s ∇x max (x1, . . . , xn)?
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A brief history of CNN

Hubel and Wiesel 1959 [Hubel and Wiesel, 1959]

focused on the primary visual

cortex (V1)

main discovery: directional selectivity of the

neurons inside V1, and local responsiveness per

cell
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A brief history of CNN

Hubel and Wiesel 1962 [Hubel and Wiesel, 1962]

Two types of cells: simple S-cells and complex C-cells

– correspond to two levels of processing

– C-cells robust to distortion, but S-cells not

S-cells: conv kernels C-cells: max pooling
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A brief history of CNN

Fukushima 1980: Neocognitron [Fukushima, 1980]—unsupervised

– multi-layers of S-C cells compositions

– only S-cells are learnable

cell planes get smaller but number of

planes increase going deeper

S cells have ReLU-like activitation, C

cells have ReLU+Max like activation44 / 72



A brief history of CNN

Lecun 1989: supervision added [LeCun et al., 1989, Lecun et al., 1998]

back-propagation used for supervised training for digit recognition
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Typical design patterns

– feature extraction (CONV) + classification (fully connected)

– depth increases (more filters), dimension decreases (subsampling) when

moving deeper

(Credit: [Elgendy, 2020])

– one or two fully-connected layers for classification
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LeNet-5 (1998)

(Credit: [Elgendy, 2020])

– tanh used for activation

– 5× 5 filters

(Credit: [Elgendy, 2020])
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AlexNet (2012)

breakthrough on ImageNet competition in 2012 and impressed the computer

vision community

(Credit: [Elgendy, 2020])

– ReLU used for activation

– large filters: 11× 11, 5× 5, 3× 3 filters

– dropout used for regularization

– weight decay/regularization 49 / 72



VGG-net (2014)

VGG — Visual Geometry Group (Oxford U.)

(Credit: [Elgendy, 2020])

– smaller filters (3× 3) to make up for large ones in AlexNet. A nice

property of convolution:

a ∗ (b ∗ c) = (a ∗ b) ∗ c

composition of filters covers larger receptive fields
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Inception and GoogLeNet (2014)

(Credit: [Elgendy, 2020])

pack things into inception modules
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Inception module—basic version

(Credit: [Elgendy, 2020])

idea: apply all filters together and (hopefully) the training process performs the

suitable selection/combination itself

– filters can be short-circuited when the values are set to 0
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Inception module with dimension reduction

1× 1 convolution helps to reduce the #channels =⇒ saves computation

(Credit: [Elgendy, 2020])

(Credit: [Elgendy, 2020])
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ResNet (2015)

going really deep...sees performance degradation

a solution:

(Credit: [Elgendy, 2020])

a residual block (Credit: [Elgendy, 2020])

– skip connection

* allows short-circuit unnecessary layers—e.g., setting the kernels to

zero—and thus avoids performance degradation when adding more

layers

* mitigates gradient explosion or vanishing—-Jf+I (x) = Jf (x) + I

– batch normalization
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Comparison with previous models

(Credit: [Elgendy, 2020])
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Inside a residual block

(Credit: [Elgendy, 2020])

– no pooling layers

– 1× 1 conv before and after 3× 3 conv to control #channels and hence

computation

– batch normalization (BN) after each conv layer

– 1× 1 conv and BN added to the skip connection also to match dim for

summation

full details see: https://pytorch.org/hub/pytorch_vision_resnet/
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DenseNet (2016)

(Credit: [Huang et al., 2016])

– inside the same dense block, any feature

map “connected” to all subsequent feature

maps—dense

– “connected” here means concatenation vs.

the summation in ResNet

– concatenation enables feature reusing and

hence higher efficiency

(Credit: [Huang et al., 2016])

transition layers adjust the sizes of the feature maps
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Other models to watch

on accuracy:

– EfficientNet (2019) [Tan and Le, 2019]

https://github.com/tensorflow/tpu/tree/master/models/

official/efficientnet

– ResNeXt https://arxiv.org/abs/1611.05431

on compact models:

– SqueezeNet https://arxiv.org/abs/1602.07360

– ShuffleNet https://arxiv.org/abs/1807.11164

– MobileNet https://arxiv.org/abs/1801.04381

Pytorch official classification models

https://pytorch.org/vision/stable/models.html#classification
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Transfer learning

Recall: (we hope) CNNs learn increasingly complex and semantically meaningful

features

(Credit: [Elgendy, 2020])

So: early layers trained on a large and diverse dataset, e.g., ImageNet, can be

reused. This part is called a pretrained model
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Deep transfer learning as feature reuse

source domain: task domain of the pre-trained model

target domain: current task domain

indicates

trainable part

(Credit:

[Elgendy, 2020])

Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Stanford notes: https://cs231n.github.io/transfer-learning/

For domains that only need low-level features: [Peng et al., 2021]
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Transposed convolution

convolution with strides: downsampling

transposed convolution: upsampling

(Credit: https://naokishibuya.medium.com/)

often used for segmentation, generation, or other regression—outputs are

structured objects such as images, videos, time series, speech, etc

– traditional methods: e.g., nearest neighbor/bilinear/bicubic interpolation

– here: interpolation with a learnable filter

62 / 72

https://naokishibuya.medium.com/


Transposed convolution

also called fractionally strided convolutions or deconvolution (misnomer): zero

padding, zero interleaving (when forward stride > 1), and then convolution

forward stride = 1

forward stride = 2

more details see https://github.com/vdumoulin/conv_arithmetic
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Normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

– N is the batch axis

– C is the channel axis

– WH is the per output dimension (1 for fully connected, but 2D for CNNs)

batch normalization is popular, but with layer/group normalization:

– small N (batch size) is possible

– simplicity: training/test normalizations are consistent
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Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html65 / 72

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html


Are CNNs only for images?

Recall why CNN? complexity, locality/ordering, translation-invariance

These are desired also when processing video, text sequence, times series data,

speech data, etc Examples:

– WaveNet for text-to-speech system

https://en.wikipedia.org/wiki/WaveNet

– text classification https://arxiv.org/abs/1408.5882

– video analysis [Ji et al., 2013, Karpathy et al., 2014, Huang et al., 2018]

– time series analysis [Yu and Koltun, 2015, Borovykh et al., 2017]

see also An Empirical Evaluation of Generic Convolutional and Recurrent

Networks for Sequence Modeling [Bai et al., 2018]
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Suggested reading

– Deep Learning for Vision Systems [Elgendy, 2020]

– Convolutional Networks for Images, Speech, and Time-Series

[LeCun et al., 1995]

– A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

– Gradient-based learning applied to document

recognition [Lecun et al., 1998]

– https://cs231n.github.io/transfer-learning/
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