
Sequence Modeling: Recurrent Neural
Networks

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

November 18, 2023

1 / 44

Recap: CNNs

(Credit: [Elgendy, 2020])

– (neuro-inspired) locality and weight

sharing =⇒ reduced complexity (than

FCNN)

– conv + pooling =⇒ (approx.)

translation/deformation invariance (part of

the learning can be avoided; see

scattering transform

[Bruna and Mallat, 2013, Mallat, 2016, Zarka et al., 2019])

CNNs are not only for images: ideal for tensors where locality matters

image
video

audio (spectrogram)
time series

2 / 44

Model sequences

... where directions matter

temporal sequences

disease prognosis event analysis/video generation speech to text

lexical sequences—most tasks in Natural Language Processing (NLP)

– machine translation, e.g., English ⇆

Chinese

– typing/writing prediction (smart compose)

– semantic classification

3 / 44

Outline

Basic RNNs

Vanishing/exploding gradients

Gated RNNs

Modern RNNs

Suggested reading

4 / 44

Basic setup

A sequence: x0 → x1 → x2 → . . .xn−1

A state-space model: h denotes the state, and state transition modeled by the

recurrence formula

ht = fW (ht−1,xt)

with optional output

yt = gV (ht)

expanded form compact form

(Credit: Stanford CS231N) 5 / 44

A simple (vanilla) RNN

(Credit: Stanford CS231N)

ht = tanh (Whht−1 +W xxt)

yt = V yht

Wh,W x and V y are shared across the sequence

6 / 44

A first example: language modeling

– language modeling is the task of predicting future words

... The vaccine is effective, and COVID-19 will be .

– applications: typing prediction (smart compose), machine translation,

ChatGPT, etc

– (traditional) statistical formalism: given a sequence of words

x(1), · · · ,x(t), compute

P
[
x(t+1) | x(t), . . . ,x(1)

]
where x(t+1) can be any word from a vocabulary {w1, . . . ,wN}, or
sometimes given some text x(1), . . . ,x(T)

P
[
x(1), . . . ,x(T)

]
=

T∏
t=1

P
[
x(t) | x(t−1), . . . ,x(1)

]
7 / 44

Modern neural language modeling—1

Representing words: word embedding

– one hot encoding

I 7→ [1, 0, 0, 0, . . .], you 7→ [0, 1, 0, 0, . . .],we 7→ [0, 0, 1, 0, . . .], . . .

– word-to-vector embedding: map words into dense vectors so that certain

arithmetic operations are consistent with semantics

(Credit: https://www.adityathakker.com/

introduction-to-word2vec-how-it-works/)
(Credit: https://towardsdatascience.com/

introduction-to-word-embedding-and-word2vec-652d0c2060fa)

e.g., word2vec, BloVe, ELMo

8 / 44

https://www.adityathakker.com/introduction-to-word2vec-how-it-works/
https://www.adityathakker.com/introduction-to-word2vec-how-it-works/
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa

Modern neural language modeling—2

RNN modeling: predicting the next word each time

(Credit: adapted from Stanford CS224N)

9 / 44

Modern neural language modeling—3

Training the RNN model

(Credit: Stanford CS224N)

10 / 44

Modern neural language modeling—4

The whole training pipeline

– Step 1: collect a large corpus of text, i.e., a long sequence

T = x(1) → · · · → x(T) (e.g., a sentence, a document, etc)

– Step 2: feed T into the model, and compute output distribution ŷ(t) for

each t

– Step 3: define loss, e.g., cross entropy between ŷ(t) and y(t) (one-hot

encoding of x(t+1))

J(t) (θ) = −
∑
w∈V

y(t)
w log ŷ(t)

w = − log ŷ
(t)

x(t+1)

– Step 4: gather and average all losses:

J (θ) =
1

T

T∑
t=1

J(t) (θ)

– Step 5: optimization: SGD (are the summation terms iid in the objective?),

etc

11 / 44

Test example: generate texts

(Credit: Stanford CS224N)

starting from h(0) and my, repeat:

– compute y(t) and sample a word from the distribution

– feed the word as input to the next step

12 / 44

Outline

Basic RNNs

Vanishing/exploding gradients

Gated RNNs

Modern RNNs

Suggested reading

13 / 44

How to compute gradients?

computational graph

(Credit: Stanford CS231N)

– acyclic directed graph =⇒ auto differentiation can be applied

– W is shared across all steps!

14 / 44

Look into the gradient

(Credit: Stanford CS231N)

ht = tanh (Whht−1 +W xxt)

= tanh

(
W

[
ht−1

xt

])

where W =
[
Wh W x

]

(Credit: Stanford CS231N)

∂ht

∂ht−1
= diag

(
tanh′ (Whht−1 +W xxt)

)
W h

where

tanh′(x) = 1− tanh2(x)

15 / 44

Look into the gradient

L =
∑T

t=1 Lt =⇒ total gradient: ∂L
∂W

=
∑T

t=1
∂Lt
∂W

ht = tanh (Whht−1 +W xxt) = tanh

(
W

[
ht−1

xt

])
∂ht

∂ht−1
= diag

(
tanh′ (Whht−1 +W xxt)

)
W h

(Credit: Stanford CS231N)

∂Lt

∂W

∣∣∣∣
first block

=
∂Lt

∂ht

∂ht

∂ht−1
· · · ∂h1

W
=

∂Lt

∂ht

(
t∏

k=2

∂hk

∂hk−1

)
∂h1

∂W

=
∂Lt

∂ht

(
t∏

k=2

diag
(
tanh′ (Whhk−1 +W xxk)

)
W h

)
∂h1

∂W
16 / 44

What’s wrong with the gradient?

consider
∏t

k=2 diag (tanh
′ (Whhk−1 +W xxk))W h

– for intuition, consider identity activation first, i.e.,
∏t

k=2 W h = W t−1
h .

But
∥∥W t−1

h

∥∥, i.e., the largest singular value of W t−1
h , scales as ∥W h∥t−1

* when ∥W h∥ > 1, gradient explodes if t large

* when ∥W h∥ < 1, gradient vanishes if t large

– what happens with the tanh activation?

* tanh′(x) = 1− tanh2(x) ≤ 1—effectively always smaller

* we have ∥∥∥∥∥
t∏

k=2

diag
(
tanh′ (Whhk−1 +W xxk)

)
W h

∥∥∥∥∥
≤

t∏
k=2

∥∥diag (tanh′ (Whhk−1 +W xxk)
)∥∥ ∥W h∥

≤
t∏

k=2

∥∥diag (tanh′ (Whhk−1 +W xxk)
)∥∥

︸ ︷︷ ︸
product of many numbers < 1 when t large

∥W h∥t−1

gradient vanishing is more common 17 / 44

Gradient clipping

When the gradient is too large (exploding), rescale (i.e., clip) it. Let g be the

gradient and ξ > 0 be a threshold

ĝ = ξ
g

∥g∥

(Credit: [Goodfellow et al., 2017])

18 / 44

Problem with gradient vanishing

(Credit: Stanford CS231N)

– gradient vanishing: ∂ht
∂h1

is (exponentially) small when t is large

=⇒ earlier states have little impact on latter states, i.e., memory is short

– but we hope to use RNN to encode reasonably long-term

historical/contextual information

Solution? Modify the architecture

19 / 44

Outline

Basic RNNs

Vanishing/exploding gradients

Gated RNNs

Modern RNNs

Suggested reading

20 / 44

Long Short-Term Memory (LSTM)

key idea: introduce a cell state c to explicitly store history, besides the hidden

state h

(Credit: Stanford CS231N)

where σ denotes sigmoid

f : memory controller and i: writing controller and o: output controller learned

independently

21 / 44

Gated Recurrent Unit (GRU)

simplified version of LSTM ...

f : memory controller and i:

writing controller and o: output

controller learned independently

long-term memory when f = 1

GRU: no cell state

u: update gate, control state update

r: reset gate, control how previous state affects

new content

g: new contentur
g

 =

[
σ

σ

](
W

[
ht−1

xt

])

g = tanh (Wh (r ⊙ ht−1) +W xxt + bg)

ht = u⊙ ht−1 + (1− u)⊙ g

f , i, o are merged

long-term memory when u = 1 and r = 1

LSTM is more flexible and powerful but less efficient in speed

22 / 44

Do they save the vanishing gradient?

(Credit: Stanford CS231N)

(Credit: Stanford CS231N)

∂ct
∂ct−1

= diag (f) — no multiplication

by W

(Credit: Stanford CS231N)

23 / 44

Look familiar?

(Credit: Stanford CS231N)

a residual block (Credit: [Elgendy, 2020])

(Credit: [Huang et al., 2016])

They are all skip-connections! Similarly for GRU.

– skip connections allow better modeling of long-distance dependency

– but no guarantee of solving the grad vanishing/explosion problem

24 / 44

Do we need to modify the architecture?

problem: Wh can have singular values other than 1

solution: ensure all singular values are 1 =⇒ Wh is orthogonal

min
Wh,Wx

L (W) , s. t. W h orthogonal, i.e.,W ⊺
hW h = I

Good empirical performance, but cost is high for large-scale problems. See, e.g.,

[Arjovsky et al., 2016, Lezcano-Casado and Mart́ınez-Rubio, 2019]

(Credit: [Arjovsky et al., 2016])

(see demo based on PyGRANSO

https://ncvx.org/examples/D3_orthogonal_rnn.html)
25 / 44

https://ncvx.org/examples/D3_orthogonal_rnn.html

Outline

Basic RNNs

Vanishing/exploding gradients

Gated RNNs

Modern RNNs

Suggested reading

26 / 44

Context is important!

sentiment classification

(Credit: adapted from Stanford CS224N)

– the state vectors are contextual representation of the input words

– but to tell sentiment, “exciting”, which is to the right of “terribly” is

crucial
27 / 44

Bidirectional RNNs

(Credit: Stanford CS224N)

simplified schematic

(Credit: Stanford CS224N)

– both left and right contexts are now encoded!

– applicable when the full sequence is available

28 / 44

Deep RNNs

hidden state h can be thought of representation, and so far we only have one

layer

Go deeper for more powerful representation learning!

(Credit: Stanford CS231N)

multi-layer RNNs or stacked RNNs. Typically only few layers (much less than

that of CNNs) 29 / 44

Sequence to sequence models (Seq2Seq)

machine translation, image-to-text, speech-to-text, etc

(Credit: Stanford CS231N)

– Falls under encoder-decoder models

– Encoder RNN translate source into an encoding

– Decoder RNN is a language model generates output sentence based on the

encoding

30 / 44

Seq2Seq—training

(Credit: Stanford CS231N)

31 / 44

Seq2Seq—the information bottleneck problem

(Credit: Stanford CS231N)

Problem: the encoding has to capture all info of the source to be effective

Solution: make each target state dependent on all source states

32 / 44

Seq2Seq—the information bottleneck problem

Problem: the encoding has to capture all info of the source to be effective

Solution: make each target state dependent on all source states

Assume source state vectors s1, . . . , sN ∈ Rh, and current target state vector ti

– Idea 1: concatenate, i.e., form [s1; . . . ; sN ; ti] as the new state vector for

the current target step. What’s wrong?

– Idea 2: sum and concatenate, i.e., [1
N

∑N
j=1 sj ; ti]. What’s wrong?

– Idea 3: weighted sum and concatenate, i.e., [
∑N

j=1 wjsj ; ti]

* What weights? Emphasize those most relevant to ti

* Set wj = similarity(sj , ti): attention mechanism

Attention is about measuring (nonlinear) correlation/similarity

33 / 44

Attention in Seq2Seq models

(Credit: Stanford CS231N) (Credit: Stanford CS231N)

34 / 44

Attention in a nutshell

Assume source vectors s1, . . . , sN ∈ Rh, and target vector t, to obtain selective

summary (e.g., weighted summation) of s1, . . . , sN ∈ Rh

N∑
j=1

wjsj where wj = similarity(sj , t)

Many possibilities:

– dot-product attention: ŵj = ⟨sj , t⟩ (Is it better to normalize this or

rescale it by the dimension factor?)

– multiplicative attention: ŵj = ⟨sj ,Wt⟩
– “additive attention”: ŵj = v⊺σ (W 1sj +W 2t)

Afterward, pass the whole weight vector [w1, . . . , wN] through softmax to turn it

into a valid distribution

wj =
exp (ŵj)∑
k exp (ŵk)

Attention is not only for Seq2Seq or RNNs, it is to: calculate a weighted sum of

a bunch of (source) vectors, with the weights depedent on a target/query vector

35 / 44

Problems with RNNs

(Credit: Stanford CS231N)

– linear interaction distance: challenging to encode long-range

dependencies, even within the same sequence

– resistance to parallelization: state generation is inherently

sequential—problematic for very long sequences

36 / 44

Solution—self-attention

build connections between each other: each state vector depends on all the rest

– O(1) interaction distance

– two state vectors (query, key) to allow parallelization

37 / 44

Self-attention: a closer look

– Each word now encoded as (query, key, value) triple

– For an input xi, we have:

qi = (WQ)⊺xi, ki = (WK)⊺xi, vi = (W V)⊺xi

– Calculate attention scores between query and all keys: eij = ⟨qi,kj⟩

– softmax normalization wij = exp (eij) /
∑

k exp (eik)

– output the weighted sum of values
∑

j wijvj

38 / 44

Self-attention in matrix notation

Assume X collects all input words, each one a row:

– Compute queries, keys, and values

Q = XWQ, K = XWK , V = XW V

– Calculate attention scores between query and all keys: E = QK⊺

– softmax normalization to each row: A = softmax(E)

– output the weighted sum of values AV

output = softmax(QK⊺)V

39 / 44

Adding in nonlinearity

First step toward the Transformer!

40 / 44

Outline

Basic RNNs

Vanishing/exploding gradients

Gated RNNs

Modern RNNs

Suggested reading

41 / 44

Suggested reading

– Stanford CS224N

http://web.stanford.edu/class/cs224n/index.html#schedule

– Understanding LSTM Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

– A Guide to the Encoder-Decoder Model and the Attention Mechanism

https://medium.com/better-programming/

a-guide-on-the-encoder-decoder-model-and-the-attention-mechanism-401c836e2cdb

– Attention is all you need: Discovering the Transformer paper

https://towardsdatascience.com/

attention-is-all-you-need-discovering-the-transformer-paper-73e5ff5e0634

42 / 44

http://web.stanford.edu/class/cs224n/index.html#schedule
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/better-programming/a-guide-on-the-encoder-decoder-model-and-the-attention-mechanism-401c836e2cdb
https://medium.com/better-programming/a-guide-on-the-encoder-decoder-model-and-the-attention-mechanism-401c836e2cdb
https://towardsdatascience.com/attention-is-all-you-need-discovering-the-transformer-paper-73e5ff5e0634
https://towardsdatascience.com/attention-is-all-you-need-discovering-the-transformer-paper-73e5ff5e0634

References i

[Arjovsky et al., 2016] Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary

evolution recurrent neural networks. In International Conference on Machine

Learning, pages 1120–1128.

[Bruna and Mallat, 2013] Bruna, J. and Mallat, S. (2013). Invariant scattering

convolution networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1872–1886.

[Elgendy, 2020] Elgendy, M. (2020). Deep Learning for Vision Systems. MANNING

PUBN.

[Goodfellow et al., 2017] Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep

Learning. The MIT Press.

[Huang et al., 2016] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q.

(2016). Densely connected convolutional networks. arXiv:1608.06993.

[Lezcano-Casado and Mart́ınez-Rubio, 2019] Lezcano-Casado, M. and Mart́ınez-Rubio,

D. (2019). Cheap orthogonal constraints in neural networks: A simple

parametrization of the orthogonal and unitary group. arXiv1901.08428.

43 / 44

References ii

[Mallat, 2016] Mallat, S. (2016). Understanding deep convolutional networks.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 374(2065):20150203.

[Zarka et al., 2019] Zarka, J., Thiry, L., Angles, T., and Mallat, S. (2019). Deep

network classification by scattering and homotopy dictionary learning.

arXiv:1910.03561.

44 / 44

	Basic RNNs
	Vanishing/exploding gradients
	Gated RNNs
	Modern RNNs
	Suggested reading

