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Our roadmap

Covered: Fundamentals

Fundamental belief: universal approximation theorem

Basics of numerical optimization

Training DNNs: basic methods and tricks

Covered: Structured data: images, sequences, graphs

Work with images: convolutional neural networks & applications

Work with sequences: recurrent neural networks & applications

Working with graphs: graph neural networks & applications

Transformers, large-language models, and foundation models

Now Generative/unsupervised/self-supervised/reinforcement learning

Learning representation without labels: dictionary learning, autoencoders,

self-supervised learning

Learning probability distributions: generative models

(won’t cover) Gaming time: deep reinforcement learning
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Structured vs. unstructured data

Credit: https://lawtomated.com/

structured-data-vs-unstructured-data-what-are-they-and-why-care/

– structured data also called

tabular data

– structured data often

directly fed into classical

ML tools

– the success of DL mostly

lies at learning useful

features/patterns from

unstructured data, i.e.,

representation learning
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Feature engineering for unstructured data: old and new

Credit: [Elgendy, 2020]

Feature engineering: derive

features for efficient learning

Traditional learning pipeline

– feature extraction is “independent” of the learning models and tasks

– features are handcrafted and/or learned

Modern learning pipeline

– end-to-end DNN learning
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Unsupervised representation learning

Learning feature/representation without task information (e.g., labels)

(ICLR — International Conference on Learning Representation)

– Historical: Unsupervised representation learning key to the revival of deep

learning (i.e., layerwise pretraining, [Hinton et al., 2006, Hinton, 2006])

– Practical: Numerous advanced models built on top of the ideas in

unsupervised representation learning (e.g., encoder-decoder networks,

Transformers, U-Net in segmentation)
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Outline

PCA for linear data

Autoencoder: extensions of PCA for nonlinear data

Applications of autoencoder

Self-supervised learning (SSL)
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PCA: the geometric picture

Principal component analysis (PCA)

– x1, . . . ,xn ∈ RD zero-centered and write X = [x1, . . . ,xm]⊺ ∈ Rm×D

– Compact SVD X = USV ⊺, where V ∈ RD×r spans the row space of X

– Take top right singular vectors B from V , and obtain XB

PCA is effectively to identify the

best-fit subspace to x1, . . . ,xm

– B has orthonormal columns, i.e.,

B⊺B = I (BB⊺ ̸= I when

D ̸= d)

– sample to representation:

x 7→ x′ .
= B⊺x (RD → Rd,

dimension reduction)

– representation to sample:

x′ 7→ x̂
.
= Bx′ (Rd → RD)

– x̂ = BB⊺x ≈ x
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Autoencoders

story in digital communications ...

– Encoding:

x 7→ x′ = B⊺x

– Decoding:

x′ 7→ BB⊺x = x̂

autoencoder: [Bourlard and Kamp, 1988,

Hinton and Zemel, 1994]

To find the basis B, solve (d ≤ D)

min
B∈RD×d

m∑
i=1

∥xi −BB⊺xi∥22

or:

min
B∈RD×d

∥X −XBB⊺∥2F
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Autoencoders

autoencoder:
To find the basis B, solve

min
B∈RD×d

m∑
i=1

∥xi −BB⊺xi∥22

So the autoencoder is performing PCA!

One can even relax the weight tying:

min
B∈RD×d,A∈RD×d

m∑
i=1

∥xi −BA⊺xi∥22 ,

which finds a basis (not necessarily orthonormal) B that spans the top singular

space also [Baldi and Hornik, 1989], [Kawaguchi, 2016],

[Lu and Kawaguchi, 2017].
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Factorization

To perform PCA,

min
B∈RD×d

m∑
i=1

∥xi −BB⊺xi∥22

min
B∈RD×d,A∈RD×d

m∑
i=1

∥xi −BA⊺xi∥22 ,

But: the basis B and the representations/codes zi’s are all we care about

Factorization: (or autoencoder without encoder)

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22 .

All three formulations will find three different B’s that span the same principal

subspace [Tan and Mayrovouniotis, 1995, Li et al., 2020b, Li et al., 2020a,

Valavi et al., 2020]. They’re all doing PCA!
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Sparse coding

Factorization: (or autoencoder without encoder)

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22 .

What happens when we allow d ≥ D? Underdetermined even if B is known.

Sparse coding (i.e., dictionary learning): assuming zi’s are sparse and d ≥ D

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22 + λ
m∑
i=1

Ω(zi)

where Ω promotes sparsity, e.g., Ω = ∥·∥1.
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More on sparse coding (dictionary learning)

References: [Olshausen and Field, 1996, Mairal, 2014, Sun et al., 2017,

Bai et al., 2018, Qu et al., 2019]
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Outline

PCA for linear data

Autoencoder: extensions of PCA for nonlinear data

Applications of autoencoder

Self-supervised learning (SSL)
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Quick summary of the linear models

PCA is effectively to identify

the best-fit subspace to

x1, . . . ,xm

– B from V of X = USV ⊺

– autoencoder:

minB∈RD×d

∑m
i=1 ∥xi −BB⊺xi∥22

– autoencoder:

minB∈RD×d,A∈RD×d

∑m
i=1 ∥xi −BA⊺xi∥22

– factorization:

minB∈RD×d,z′
is∈Rd

∑m
i=1 ∥xi −Bzi∥22

– when d ≥ D, sparse coding/dictionary

learning

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22 + λ

m∑
i=1

Ω(zi)

e.g., Ω = ∥·∥1
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What about nonlinear data?

– Manifold, but not mathematically (i.e., differential geomety sense) rigorous

– (No. 1?) Working hypothesis for high-dimensional data: practical data

lie (approximately) on union of low-dimensional “manifolds”. Why?

* data generating processes often controlled by very few parameters
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Manifold learning

Classic methods (mostly for visualization): e.g.,

– ISOMAP [Tenenbaum, 2000]

– Locally-linear embedding [Roweis, 2000]

– Laplacian eigenmap [Belkin and Niyogi, 2001]

– t-distributed stochastic neighbor embedding

(t-SNE) [van der Maaten and Hinton, 2008]

Nonlinear dimension reduction and representation learning
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From autoencoders to deep autoencoders

min
B∈RD×d

m∑
i=1

∥xi −BB⊺xi∥22

min
B∈RD×d,A∈RD×d

m∑
i=1

∥xi −BA⊺xi∥22

nonlinear generalization of the linear mappings:
deep autoencoders

min
V ,W

m∑
i=1

∥xi − gV ◦ fW (xi)∥22

simply A⊺ → fW and B → gV

A side question: why not calculate “nonlinear basis”?
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Deep autoencoders

min
V ,W

m∑
i=1

∥xi − gV ◦ fW (xi)∥22

the landmark paper [Hinton, 2006] ... that introduced pretraining
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From factorization to deep factorization

factorization

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22

nonlinear generalization of the linear mappings:
deep factorization

min
V ,z′

is∈Rd

m∑
i=1

∥xi − gV (zi)∥22

simply B → gV

[Tan and Mayrovouniotis, 1995, Fan and Cheng, 2018, Bojanowski et al., 2017,

Park et al., 2019, Li et al., 2020b], also known as deep decoder.
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From sparse coding to deep sparse coding

– when d ≥ D, sparse coding/dictionary

learning

min
B∈RD×d,z′

is∈Rd

m∑
i=1

∥xi −Bzi∥22 + λ

m∑
i=1

Ω(zi)

e.g., Ω = ∥·∥1

nonlinear generalization of the linear mappings: (d ≥ D)

deep sparse coding/dictionary learning

min
V ,z′

is∈Rd

m∑
i=1

∥xi − gV (zi)∥22 + λ

m∑
i=1

Ω(zi)

min
V ,W

m∑
i=1

∥xi − gV ◦ fW (xi)∥22 +
m∑
i=1

Ω(fW (xi))

the 2nd also called sparse autoencoder [Ranzato et al., 2006].
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Quick summary of linear vs nonlinear models

linear models nonlinear models

autoencoder
minB

∑m
i=1 ℓ (xi,BB⊺xi)

minB,A

∑m
i=1 ℓ (xi,BA⊺xi)

minV ,W

∑m
i=1 ℓ (xi, gV ◦ fW (xi))

factorization minB,Z

∑m
i=1 ℓ (xi,Bzi) minV ,Z

∑m
i=1 ℓ (xi, gV (zi))

sparse coding
minB,Z

∑m
i=1 ℓ (xi,Bzi)

+λ
∑m

i=1 Ω(zi)

minV ,Z

∑m
i=1 ℓ (xi, gV (zi))

+λ
∑m

i=1 Ω(zi)

minV ,W

∑m
i=1 ℓ (xi, gV ◦ fW (xi))

+λ
∑m

i=1 Ω(fW (xi))

ℓ can be general loss functions other than ∥·∥2
Ω promotes sparsity, e.g., Ω = ∥·∥1
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Outline

PCA for linear data

Autoencoder: extensions of PCA for nonlinear data

Applications of autoencoder

Self-supervised learning (SSL)
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Nonlinear dimension reduction

autoencoder vs. PCA vs. logistic PCA

[Hinton, 2006]
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Representation learning

Traditional learning pipeline

– feature extraction is “independent” of the learning models and tasks

– features are handcrafted and/or learned

Use the low-dimensional codes as features/representations

– task agnostic

– less overfitting

– semi-supervised (rich unlabeled data + little labeled data) learning
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Outlier detection

(Credit: towardsdatascience.com)

– idea: outliers don’t obey the manifold assumption — the reconstruction

error ℓ (xi, gV ◦ fW (xi)) is large after autoencoder training

– for effective detection, better use ℓ that penalizes large errors less harshly

than ∥·∥22, e.g., ℓ (xi, gV ◦ fW (xi)) = ∥xi − gV ◦ fW (xi)∥2
[Lai et al., 2019]
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Deep generative prior

– inverse problems: given f and y ≈ f (x),

estimate x

– often ill-posed, i.e., y doesn’t contain

enough info for recovery

– regularized data-fitting formulation:

min
x

ℓ (y, f (x)) + λΩ(x)

where Ω contains extra info about x

Suppose x1, . . . ,xm come from the same manifold as x

– train a deep factorization model on x1, . . . ,xm:

minV ,Z

∑m
i=1 ℓ (xi, gV (zi))

– x ≈ gV (z) for a certain z so: minz ℓ (y, f ◦ gV (z)) . Some recent work

even uses random V , i.e., without training

See: [Pan et al., 2020, Ulyanov et al., 2018, Bora et al., 2017,

Wang et al., 2021, Zhuang et al., 2022] 26 / 37



Outline

PCA for linear data

Autoencoder: extensions of PCA for nonlinear data

Applications of autoencoder

Self-supervised learning (SSL)

27 / 37



SSL: marriage of supervised and unsupervised learning

Why not supervised learning?

– labeling is expensive

– unlabeled data can be abundant

– supervised learning are task-specific (despite transfer learning)

What’s self-supervised learning?

– like unsupervised learning: no task-specific labels

– like supervised learning: trained on tasks defined on the unlabeled data
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SSL: contrastive learning

learning embedding/representation that respects certain predefined

constraints/goals

Image credit:

https://www.v7labs.com/blog/self-supervised-learning-guide
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SSL: sequential prediction

Language modeling is a special case

Image credit:

https://www.v7labs.com/blog/self-supervised-learning-guide
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More about self-supervised learning

– Awesome Self-Supervised Learning

https://github.com/jason718/awesome-self-supervised-learning

– A Cookbook of Self-Supervised Learning

https://arxiv.org/abs/2304.12210

– Know Your Self-supervised Learning: A Survey on Image-based Generative

and Discriminative Training https://arxiv.org/abs/2305.13689

– https://cs229.stanford.edu/notes2021spring/notes2021spring/

cs229_lecture_selfsupervision_final.pdf

– Self-Supervised Representation Learning https:

//lilianweng.github.io/posts/2019-11-10-self-supervised/
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