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High-dimensional calculus is typically not covered in basic calculus course series, but it is
the language of modern machine learning—we almost always express quantities of interest as
vectors, matrices, or even tensors. In this set of notes, we quickly go over some basics of high-
dimensional calculus that are most useful for machine learning, and especially highlight certain
computational techniques that are not often taught elsewhere. Two recommended sources for
picking up high-dimensional calculus are [Mun97, Col12]. [Zor15, Zor16] is another set of useful
references. There is also an interesting online tool for computing symbolic matrix derivatives
https://www.matrixcalculus.org/.

1 Our notations
• scalars: x (small letters) vectors: x (bold small) matrices: X (bold capital) tensors: X

(script capital) sets: S (capital)
• vectors are always column vectors, unless stated otherwise
• xi: i-th element of x xij : (i, j)-th element of X xi: i-th row of X as a row vector xj :

j-th column of X as a column vector

• R: real numbers R+: positive reals Rn: space of n-dimensional vectors Rm×n: space of
m × n matrices Rm×n×k: space of m × n × k tensors, etc

• [n] .= {1, . . . , n} (a notation often used by theoretical computer scientists)

2 Differentiability

2.1 First-order differentiability

Definition 2.1 (First-order derivative or Jacobian). Consider f(x) : Rn → Rm. f is (Fréchet) differen-
tiable at a point x if there exists a matrix B ∈ Rm×n such that

∥f(x + δ) − f(x) − Bδ∥2
∥δ∥2

→ 0 as δ → 0, (2.1)

or equivalently,

f(x + δ) = f(x) + Bδ + o(∥δ∥2) as δ → 0. (2.2)
Here B is called the (Fréchet) derivative, or the Jacobian of f at x, denoted as Jf (x).
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Here, a vector-valued function h(δ) is o(∥δ∥2) if ∥h(δ)∥2
∥δ∥2

→ 0 as δ → 0.

Definition 2.2 (Gradient). For function f(x) : Rn → R. The gradient ∇f(x) ∈ Rn×1, which is a column
vector, is the transpose of the Jacobian Jf (x) ∈ R1×n.

According to this convention, for f(X) : Rm×n → R, the gradient should be R(m×n)×1, which
is a length-(m × n) vector. This is inconvenient for many purposes. So in practice, the vector is
shaped into an m × n matrix, i.e., having the same shape as X . We will use this convention, i.e.,
∇f(X) =

[
∂f

∂xi,j
(X)

]
i,j

∈ Rm×n.1
For computation of Jacobian Jf (x) for f(x) : Rn → Rm, we have

Jf (x) =
[

∂fi

∂xj
(x)

]
i,j

, (2.3)

i.e., Jf (x) is the collection of all the first-order partial derivatives ∂fi
∂xj

(x) for all i, j.

Theorem 2.3 (A sufficient condition for first-order differentiability). If all first-order partial derivatives
exist and are continuous at x, then f(x) is first-order differentiable at x.

But the condition is not necessary for first-order differentiability.

Theorem 2.4 (A sufficient and necessary condition for first-order differentiability). Consider f(x) :
Rn → Rm and let fi(x) : Rm → R be the i-th component function of f , i.e.,

f(x) =

 f1(x)
...

fm(x)

 . (2.4)

Then f is differentiable at a point x if and only if each component function fi is differentiable at x, and if so
its derivative is the m × n matrix whose i-th row is the derivative of fi.

Theorem 2.5 (Calculus rules of Jacobian). Assume f, g : Rn → Rm are differentiable at a point x ∈ Rn.

• linearity: λ1f + λ2g is differentiable at x and Jλ1f+λ2g(x) = λ1Jf (x) + λ2Jg(x).

• product: assume m = 1, fg is differentiable at x and ∇[fg](x) = f(x)∇g(x) + g(x)∇f(x).

• quotient: assume m = 1 and g(x) ̸= 0, f
g is differentiable at x and ∇

[
f
g

]
(x) = g(x)∇f(x)−f(x)∇g(x)

g2(x) .

• Chain rule: Let f : Rm → Rn and h : Rn → Rk. If f is differentiable at x, and h is differentiable at
y where y = f(x). Then, h ◦ f : Rm → Rk is differentiable at x, and

J[h◦f ](x) = Jh(f(x))Jf (x). (2.5)

When k = 1,

∇[h ◦ f ](x) = J⊤
f (x)∇h(f(x)). (2.6)

1We write M = [mij ]i,j to mean M is a matrix in which the (i, j)-th entry takes the form mij .
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2.2 Derive the Jacobian

There are two major methods. One is by invoking Eq. (2.3) and the calculus rules in Theorem 2.5.
The other is by perturbation-expansion method based on Definition 2.1, as explained below.

Let’s take an example f(x) = Ax − b for A ∈ Rn×m and b ∈ Rn and try to derive the Jacobian.
• Elementwise calculation and calculus rules. Obviously Jb(x) = 0 so we can focus on the

Ax term. Now
∂(Ax)i

∂xj
= ∂

(
aix

)
∂xj

= ∂
∑

k aikxk

∂xj
= aij . (2.7)

So JAx(x) = A, and by linearity Jf (x) = A.
• Perturbation-expansion method. We make a sufficiently small perturbation δ to x, so

f(x + δ) = A(x + δ) − b = (Ax − b) + Aδ = f(x) + Aδ. (2.8)
Comparing this to Eq. (2.2) in Definition 2.1, we easily obtain that Jf (x) = A.

In the perturbation-expansion method, after the infinitesimal perturbation, we rearrange the terms
to match the form of Eq. (2.2), i.e.,

f(x) + linear term in δ + lower-order term in ∥δ∥2 (2.9)
so that we can read off the Jacobian from the linear term.
Example 2.6. Consider the least-squares objective f(x) = ∥Ax − b∥2

2. We will derive the Jacobian, which
is the transpose of the gradient.

• Chain rule. We can view f as composition of g(x) = Ax − b and h(y) = ∥y∥2
2 so that f = h ◦ g(x).

From our last example, Jg(x) = A. For h, it is easy to check that Jh(y) = 2y⊺. Applying the chain
rule, we obtain that

Jf (x) = Jh(Ax − b)Jg(x) = 2(Ax − b)⊺A. (2.10)

• Perturbation-expansion method. Making an infinitesimal perturbation δ to x, we obtain

f(x + δ) = ∥A(x + δ) − b∥2
2 (2.11)

= ∥(Ax − b) + Aδ∥2
2 (2.12)

= ∥(Ax − b)∥2
2 + ∥Aδ∥2

2 + 2 ⟨Ax − b, Aδ⟩ . (2.13)
Let us make some clarification before proceeding. We use ⟨·, ·⟩ to mean inner product for vectors, i.e.,
for u, v ∈ Rn, ⟨u, v⟩ .=

∑
i uivi. For all p ≥ 1, the ℓp norm of the vector u ∈ Rn is defined as

∥u∥p
.= (

∑
i |ui|p)1/p. For p = 2, the norm is also called the Euclidean norm and it can be easily

verified that ∥u∥2 =
√

⟨u, u⟩. So for u, v ∈ Rn,

∥u + v∥2
2 = ⟨u + v, u + v⟩ = ⟨u, u⟩ + ⟨v, v⟩ + 2 ⟨u, v⟩ = ∥u∥2

2 + ∥v∥2
2 + 2 ⟨u, v⟩ . (2.14)

We have used this identity to arrive at Eq. (2.13). In Eq. (2.13), ∥(Ax − b)∥2
2 = f(x), and ∥Aδ∥2

2 ∈
O

(
∥δ∥2

2

)
=⇒ ∥Aδ∥2

2 ∈ o(∥δ∥2) which we do not care. The linear term is 2 ⟨Ax − b, Aδ⟩. We now
invoke another identity ⟨u, v⟩ = u⊺v to obtain that

2 ⟨Ax − b, Aδ⟩ = 2(Ax − b)⊺Aδ. (2.15)
Comparing this with Eq. (2.2), we conclude that

Jf (x) = 2(Ax − b)⊺A. (2.16)
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The chain rule is fine for simple compositions. But it quickly leads to fatigue when there are
many compositions. On other other hand, when the intermediate variables involve matrices, often
tensors will be involved. An example is when deriving gradients for functions involving deep neural
networks, e.g.,

f(W ) =
∑

i

∥yi − Wkσ(Wk−1 . . . σ(W2σ(W1xi)))∥2
2. (2.17)

Example 2.7 (Chain rule follows from perturbation-expansion). The chain rule in Theorem 2.5 can
be easily derived from the perturbation-expansion method. Consider an infinitesimal perturbation δ to x in
h ◦ f :

h ◦ f(x + δ) = h(f(x + δ)) = h(f(x) + Jf (x)δ + o(∥δ∥2)), (2.18)

where we expanded f(x + δ) as is because f is differentiable at x. Now h(f(x) + Jf (x)δ + o(∥δ∥2)) is h
at the point f(x) perturbed by the infinitesimal quantity Jf (x)δ + o(∥δ∥2). Since h is differentiable at the
point f(x), we can invoke Eq. (2.2) again and obtain that

h(f(x) + Jf (x)δ + o(∥δ∥2))
= h(f(x)) + Jh(f(x))(Jf (x)δ + o(∥δ∥2)) + o

(
∥Jf (x)δ + o(∥δ∥2)∥2

)︸ ︷︷ ︸
o(∥δ∥2)

(2.19)

= h(f(x)) + Jh(f(x))Jf (x)δ + o(∥δ∥2). (2.20)

So h ◦ f is differentiable at x, and Jh◦f (x) = Jh(f(x))Jf (x).

2.3 Second-order differentiability

It is possible to define second-order or even higher-order differentiability for general f(x) : Rn → Rm.
For our purposes, it is sufficient to consider real-valued functions f(x) : Rn → R, which we focus
exclusively on here. Assume f is first-order differentiable in a small ball around x.

• Write ∂f2

∂xj∂xi
(x) .=

[
∂

∂xj

(
∂f
∂xi

)]
(x) provided the right side is well defined.

• Symmetry: If both ∂f2

∂xj∂xi
(x) and ∂f2

∂xi∂xj
(x) exist and both are continuous at x, then they are

equal.

• Hessian (matrix):

∇2f(x) .=
[

∂f2

∂xj∂xi
(x)

]
j,i

.

∇2f is symmetric due to the symmetry property above.

• Sufficient condition: if all ∂f2

∂xj∂xi
(x) exist and are continuous near x, f is 2nd-order differen-

tiable at x (the converse is not true; we omit the precise definition of 2nd-order differentiability
due to its technicality).
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3 Taylor’s theorems
Taylor’s theorems take several forms. Here we focus on the form useful for gradient and Hessian
derivation.

Theorem 3.1 (Taylor’s theorem—scalar version). Consider f(x) : R → R.

• If f is 1st-order differentiable at x, then

f(x + δ) = f(x) + δ∇f(x)︸ ︷︷ ︸
first-order Taylor expansion

+o(|δ|) as δ → 0. (3.1)

• If f is 2nd-order differentiable at x, then

f(x + δ) = f(x) + δ∇f(x) + 1
2δ2∇2f(x)︸ ︷︷ ︸

second-order Taylor expansion

+o(|δ|2) as δ → 0. (3.2)

The result can be easily generalized to real-valued vector- and matrix-variable functions.

Theorem 3.2 (Taylor’s theorem—vector version). Consider f(x) : Rn → R.

• If f is 1st-order differentiable at x, then

f(x + δ) = f(x) + ⟨∇f(x), δ⟩︸ ︷︷ ︸
first-order Taylor expansion

+o(∥δ∥2) as δ → 0. (3.3)

• If f is 2nd-order differentiable at x, then

f(x + δ) = f(x) + ⟨∇f(x), δ⟩ + 1
2

〈
δ, ∇2f(x)δ

〉
︸ ︷︷ ︸

second-order Taylor expansion

+o(∥δ∥2
2) as δ → 0. (3.4)

To present the matrix version, we need to clarify the definitions of inner product and Euclidean
norm for matrices, both natural generalization of those for vectors. For U , V ∈ Rm×n,

⟨U , V ⟩ =
∑
i,j

uijvij and ∥U∥F =
√∑

i,j

u2
ij =

√
⟨U , U⟩. (3.5)

In other words, let vec (U) be the vectorized version of U by sequentially stacking its columns into
a long vector. We have

⟨U , V ⟩ = ⟨vec (U), vec (V )⟩ and ∥U∥F = ∥vec (U)∥2. (3.6)

Theorem 3.3 (Taylor’s theorem—matrix version). Consider f(X) : Rm×n → R.

– If f is 1st-order differentiable at X , then

f(X + ∆) = f(X) + ⟨∇f(X), ∆⟩︸ ︷︷ ︸
first-order Taylor expansion

+o(∥∆∥F ) as ∆ → 0. (3.7)
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– If f is 2nd-order differentiable at X , then

f(X + ∆) = f(X) + ⟨∇f(X), ∆⟩ + 1
2

〈
∆, ∇2f(X)∆

〉
︸ ︷︷ ︸

second-order Taylor expansion

+o(∥∆∥2
F ) as ∆ → 0. (3.8)

Nowwewant to put Taylor’s theorems into good use. But before that, we need another important
property of Taylor expansion. In short, Taylor expansion is unique.
Theorem 3.4 (Asymptotic uniqueness of Taylor expansion—scalar version). Let f : R → R be k
(k ≥ 1 integer) times differentiable at a point x. If P (δ) is a k-th order polynomial satisfying f(x + δ) −
P (δ) = o(δk) as δ → 0, then P (δ) = f(x) +

∑k
i=1

1
k!f

(k)(x)δk, i.e., k-th order Taylor expansion.

Why is this useful? Typically, we calculate derivatives to obtain the Taylor expansion. This
theorem enables the converse path. Suppose we somehow obtain a k-th order polynomial P (δ)
satisfying f(x + δ) = P (δ) + o(|δ|)—e.g., by the perturbation-expansion technique described above,
we can compare it to the standard Taylor expansion form and read off the derivatives.
Example 3.5. Consider f(x) = x3 and let us calculate ∇f(x) and ∇2f(x). For any infinitesimal perturba-
tion δ,

f(x + δ) = (x + δ)3 = x3 + 3x2δ + 3xδ2 + δ3. (3.9)
First-order term in δ is 3x2δ and so ∇f(x) = 3x2. Second-order term in δ is 3xδ2 and so ∇2f(x) = 6x.

The uniqueness property also holds for the vector and matrix versions.
Theorem 3.6 (Asymptotic uniqueness of Taylor expansion—vector version). Consider f(x) : Rn →
R.

• Assume f(x) : Rn → R is 1st-order differentiable at x. If P (δ) .= f(x) + ⟨v, δ⟩ satisties that

f(x + δ) − P (δ) = o(∥δ∥2) as δ → 0,

then P (δ) = f(x) + ⟨∇f(x), δ⟩, i.e., the 1st-order Taylor expansion, and ∇f(x) = v.

• Assume f(x) : Rn → R is 2nd-order differentiable at x. If P (δ) .= f(x) + ⟨v, δ⟩ + 1
2 ⟨δ, Hδ⟩ with

H symmetric satisfies that

f(x + δ) − P (δ) = o(∥δ∥2
2) as δ → 0,

thenP (δ) = f(x)+⟨∇f(x), δ⟩+ 1
2

〈
δ, ∇2f(x)δ

〉
, i.e., the 2nd-order Taylor expansion, and∇f(x) =

v, ∇2f(x) = H .

The matrix version, as well as proofs of the asymptotic uniqueness properties and other forms
of Taylor’s theorems can be found in Chapter 5 of [Col12].

Now we provide a couple of examples on how the perturbation-expansion technique can help
us to move from Taylor expansion to derivatives.
Example 3.7. Let’s consider f(x) = ∥Ax − b∥2

2 again and try to derive ∇f(x) and ∇2f(x). From
Example 2.6, we know that

f(x + δ) = ∥Ax − b∥2
2 + 2 ⟨Ax − b, Aδ⟩︸ ︷︷ ︸

1st-order in δ

+ ∥Aδ∥2
2︸ ︷︷ ︸

2nd-order in δ

. (3.10)

To read off the gradient, we need to rearrange the 1-st order term into the form ⟨♣, δ⟩ for some ♣. Now we
need a useful rule for manipulating vector/matrix inner products.
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Any leading matrix can be transposed and moved to leading position of the other side of the inner
product; similarly, any trailing matrix can be transposed and moved to the trailing position of
the other side of the inner product. For example, consider matrices A, B, C, D with compatible
dimensions so that ⟨AB, CD⟩ is well defined. Then

⟨AB, CD⟩ = ⟨B, A⊺CD⟩ = ⟨C⊺AB, D⟩ = ⟨A, CDB⊺⟩ = ⟨ABD⊺, C⟩ . (3.11)

This property can be derived from the cyclic property of matrix traces, as we illustrate inHomework
Set 1.

So we can rearrange the 1st order term as

2 ⟨Ax − b, Aδ⟩ = ⟨2A⊺(Ax − b), δ⟩ , (3.12)

implying that ∇f(x) = 2A⊺(Ax − b). For the 2nd order term,

∥Aδ∥2
2 = ⟨Aδ, Aδ⟩ = ⟨δ, A⊺Aδ⟩ , (3.13)

which is to be compared to 1
2

〈
δ, ∇2f(x)δ

〉
, implying that ∇2f(x) = 2A⊺A.

Example 3.8. We now consider a matrix-variable problem with two blocks of variables

f(W1, W2) =
∑

i

∥yi − W2W1xi∥2
2 = ∥Y − W2W1X∥2

F (3.14)

and try to derive the gradient. This is an objective corresponding to a two-layer linear neural network. Making
infinitesimal perturbation to W1, W2, we obtain

f(W1 + ∆1, W2 + ∆2) = ∥Y − (W2 + ∆2)(W1 + ∆1)X∥2
F (3.15)

= ∥(Y − W2W1X) − W2∆1X − ∆2W1X − ∆1∆2X∥2
F . (3.16)

Now we need the identity: for matrices U , V of the same size, ∥U + V ∥2
F = ∥U∥2

F + ∥V ∥2
F + 2 ⟨U , V ⟩,

which can be derived similarly to the vector version. First,

∥(Y − W2W1X) − W2∆1X − ∆2W1X − ∆1∆2X∥2
F (3.17)

= ∥(Y − W2W1X) − W2∆1X − ∆2W1X∥2
F + ∥∆1∆2X∥2

F︸ ︷︷ ︸
o(∥∆∥F )

−2 ⟨(Y − W2W1X) − W2∆1X − ∆2W1X, ∆1∆2X⟩︸ ︷︷ ︸
o(∥∆∥F )

, (3.18)

where we use o(∥∆∥F ) to mean min (o(∥∆1∥F ), o(∥∆2∥F )). So we only need to focus on

∥(Y − W2W1X) − W2∆1X − ∆2W1X∥2
F = ∥Y − W2W1X∥2

F︸ ︷︷ ︸
f(W1,W2)

+ ∥W2∆1X + ∆2W1X∥2
F︸ ︷︷ ︸

o(∥∆∥F )
− 2 ⟨Y − W2W1X, W2∆1X + ∆2W1X⟩ . (3.19)

We now only need to compare the linear term −2 ⟨Y − W2W1X, W2∆1X + ∆2W1X⟩ with〈[
∇W1f
∇W2f

]
,

[
∆1
∆2

]〉
= ⟨∇W1f, ∆1⟩ + ⟨∇W2f, ∆2⟩ . (3.20)
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We have that

−2 ⟨Y − W2W1X, W2∆1X⟩ = −2 ⟨W ⊺
2 (Y − W2W1X)X⊺, ∆1⟩ , (3.21)

−2 ⟨Y − W2W1X, ∆2W1X⟩ = −2 ⟨(Y − W2W1X)X⊺W ⊺
1 , ∆2⟩ , (3.22)

implying that

∇W1f = −2W ⊺
2 (Y − W2W1X)X⊺, (3.23)

∇W2f = −2(Y − W2W1X)X⊺W ⊺
1 . (3.24)

Note that in this example, due to Eq. (3.20), one can also perturb W1 only (i.e., ∆2 = 0) to
obtain ∇W1f and similarly perturb W2 only to obtain ∇W2f . This tends to make the process less
messy. Similarly, for functions with multiple blocks, one can take turns to perturb one block each
time to derive block-wise gradients (this does NOT work for higher-order derivatives!).

Final words on this: we have discussed two or three techniques for deriving derivatives. For
practical problems, it is often that a mixture of these techniques works the best. So stay flexible!

4 Directional derivatives and curvatures

Figure 1: Blue: neg-
ative curvature (bend-
ing down); Red: posi-
tive curvature (bending
up)

Consider f(x) : Rn → R.

• directional derivative: Dvf(x) .= d
dtf(x + tv)

∣∣∣
t=0

, i.e.,
rate of change at x along v

• When f is 1-st order differentiable at x,

Dvf(x) = ⟨∇f(x), v⟩ .

• Now Dvf(x) : Rn → R is another function. What is
Du(Dvf)(x)? If f is 2nd-order differentiable at x,

Du(Dvf)(x) =
〈
u, ∇2f(x)v

〉
.

When u = v,

Du(Duf)(x) =
〈
u, ∇2f(x)u

〉
= d2

dt2 f(x + tu)
∣∣∣∣∣
t=0

,

which is the directional curvature along u and grows
quadratically with respect to ∥u∥2. To make it independent of the norm ∥u∥2, one can consider
⟨u,∇2f(x)u⟩

∥u∥2
2

.

Obviously, the spectral property (i.e., distribution of eigenvalues and eigenvectors) of ∇2f(x)
determines directional curvatures. Particularly, eigenvector directions corresponding to negative
(positive) eigenvalues of ∇2f(x) have negative (positive) curvatures.

Further reading
Chapters 3 & 5 of [DFO20] are particularly relevant and you are encouraged to go over the materials
there.
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Disclaimer
This set of notes is preliminary and has not been thoroughly proofread. Typos and factual errors
are well expected and hence use it with caution. Bug reports are very welcome and should be sent
to Prof. Ju Sun via jusun@umn.edu.
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