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Recommended references

[Munkres, 1997, Coleman, 2012, Zorich, 2015]
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Our notation

– scalars: x, vectors: x, matrices: X, tensors: X , sets: S

– vectors are always column vectors, unless stated otherwise

– xi: i-th element of x, xij : (i, j)-th element of X, xi: i-th row

of X as a row vector, xj : j-th column of X as a column

vector

– R: real numbers, R+: positive reals, Rn: space of

n-dimensional vectors, Rm×n: space of m× n matrices,

Rm×n×k: space of m× n× k tensors, etc

– [n]
.
= {1, . . . , n}
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Differentiability — first order

Consider f (x) : Rn → Rm

– Definition: First-order differentiable at a point x if there exists a

matrix B ∈ Rm×n such that

f (x+ δ)− f (x)−Bδ

∥δ∥2
→ 0 as δ → 0.

i.e., f (x+ δ) = f (x) +Bδ + o(∥δ∥2) as δ → 0.

– B is called the (Fréchet) derivative. When m = 1, b⊺ (i.e., B⊺)

called gradient, denoted as ∇f (x). For general m, also called

Jacobian matrix, denoted as Jf (x).

– Calculation: bij =
∂fi
∂xj

(x)

– Sufficient condition: if all partial derivatives exist and are

continuous at x, then f (x) is differentiable at x.
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Calculus rules

Assume f, g : Rn → Rm are differentiable at a point x ∈ Rn.

– linearity: λ1f + λ2g is differentiable at x and

∇ [λ1f + λ2g] (x) = λ1∇f (x) + λ2∇g (x)

– product: assume m = 1, fg is differentiable at x and

∇ [fg] (x) = f (x)∇g (x) + g (x)∇f (x)

– quotient: assume m = 1 and g (x) ̸= 0, f
g is differentiable at x and

∇
[
f
g

]
(x) = g(x)∇f(x)−f(x)∇g(x)

g2(x)

– Chain rule: Let f : Rm → Rn and h : Rn → Rk, and f is

differentiable at x and y = f (x) and h is differentiable at y. Then,

h ◦ f : Rm → Rk is differentiable at x, and

J [h◦f ] (x) = Jh (f (x))Jf (x) .

When k = 1,

∇ [h ◦ f ] (x) = J⊤
f (x)∇h (f (x)) .
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Put the definition in good use!

First-order differentiable at a point x if there exists a matrix

B ∈ Rm×n, called Jacobian, such that

f (x+ δ) = f (x) +Bδ + o(∥δ∥2) as δ → 0.

– prove the chain rule for h ◦ f (x) (whiteboard)

– derive Jacobian (white board)

* f (x) = Ax

* g (W 1,W 2,W 3) = y −W 1W 2W 3x
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Differentiability — second order

Consider f (x) : Rn → R and assume f is 1st-order differentiable in a

small ball around x

– Write ∂f2

∂xj∂xi
(x)

.
=

[
∂

∂xj

(
∂f
∂xi

)]
(x) provided the right side well

defined

– Symmetry: If both ∂f2

∂xj∂xi
(x) and ∂f2

∂xi∂xj
(x) exist and both are

continuous at x, then they are equal.

– Hessian (matrix):

∇2f (x)
.
=

[
∂f2

∂xj∂xi
(x)

]
j,i

, (1)

where
[

∂f2

∂xj∂xi
(x)

]
j,i

∈ Rn×n has its (j, i)-th element as ∂f2

∂xj∂xi
(x).

– ∇2f is symmetric.

– Sufficient condition: if all ∂f2

∂xj∂xi
(x) exist and are continuous, f

is 2nd-order differentiable at x (not converse; we omit the definition

due to its technicality). 7 / 13



Taylor’s theorem

Vector version: consider f (x) : Rn → R

– If f is 1st-order differentiable at x, then

f (x+ δ) = f (x) + ⟨∇f (x) , δ⟩+ o(∥δ∥2) as δ → 0.

– If f is 2nd-order differentiable at x, then

f (x+ δ) = f (x) + ⟨∇f (x) , δ⟩+ 1

2

〈
δ,∇2f (x) δ

〉
+ o(∥δ∥22) as δ → 0.

Matrix version: consider f (X) : Rm×n → R

– If f is 1st-order differentiable at X, then

f (X +∆) = f (X) + ⟨∇f (X) ,∆⟩+ o(∥∆∥F ) as ∆ → 0.

– If f is 2nd-order differentiable at X, then

f (X +∆) = f (X) + ⟨∇f (X) ,∆⟩+ 1

2

〈
∆,∇2f (X)∆

〉
+ o(∥∆∥2F )

as ∆ → 0.
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Put Taylor in good use!

– derive gradient and Hessian for f (x) = ∥y −Ax∥22
(whiteboard)

– derive gradient (and Hessian) for

g (W 1,W 2,W 3) = ∥y −W 1W 2W 3x∥2F

(whiteboard)

before: gradient, Hessian =⇒ Taylor expansion

now: Taylor expansion =⇒ gradient, Hessian

But why?
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Taylor approximation — asymptotic uniqueness

Let f : R → R be k (k ≥ 1 integer) times differentiable at a point x. If P (δ) is

a k-th order polynomial satisfying f (x+ δ)− P (δ) = o(δk) as δ → 0, then

P (δ) = Pk(δ)
.
= f(x) +

∑k
i=1

1
k!
f (k) (x) δk.

Generalization to the vector version

– Assume f (x) : Rn → R is 1-order differentiable at x. If

P (δ)
.
= f (x) + ⟨v, δ⟩ satisties that

f (x+ δ)− P (δ) = o(∥δ∥2) as δ → 0,

then P (δ) = f (x) + ⟨∇f (x) , δ⟩, i.e., the 1st-order Taylor expansion.

– Assume f (x) : Rn → R is 2-order differentiable at x. If

P (δ)
.
= f (x) + ⟨v, δ⟩+ 1

2
⟨δ,Hδ⟩ with H symmetric satisties that

f (x+ δ)− P (δ) = o(∥δ∥22) as δ → 0,

then P (δ) = f (x) + ⟨∇f (x) , δ⟩+ 1
2

〈
δ,∇2f (x) δ

〉
, i.e., the 2nd-order

Taylor expansion. We can read off ∇f and ∇2f if we know the expansion!

Similarly for the matrix version. See Chap 5 of [Coleman, 2012] for other

forms of Taylor theorems and proofs of the asymptotic uniqueness. 10 / 13



Directional derivatives and curvatures

Consider f (x) : Rn → R

– directional derivative: Dvf (x)
.
= d

dtf (x+ tv)

– When f is 1-st order differentiable at x,

Dvf (x) = ⟨∇f (x) ,v⟩ .

– Now Dvf (x) : Rn → R, what is Du (Dvf) (x)?

Du (Dvf) (x) =
〈
u,∇2f (x)v

〉
.

– When u = v,

Du (Duf) (x) =
〈
u,∇2f (x)u

〉
=

d2

dt2
f (x+ tu) .

–
⟨u,∇2f(x)u⟩

∥u∥2
2

is the directional curvature along u independent of

the norm of u
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Directional curvature

⟨u,∇2f(x)u⟩
∥u∥2

2

is the directional curvature along u independent of the

norm of u

Blue: negative curvature (bending down)

Red: positive curvature (bending up)
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