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Our notation

— scalars: z, vectors: x, matrices: X, tensors: X, sets: S

— vectors are always column vectors, unless stated otherwise

— x;: i-th element of @, z;;: (i, )-th element of X, ': i-th row
of X as a row vector, x;: j-th column of X as a column
vector

— R: real numbers, R, : positive reals, R": space of
n-dimensional vectors, R™*™: space of m x n matrices,
R™*7xE: space of m x n X k tensors, etc

- [n]={1,..., n}
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Differentiability — first order

Consider f (x) : R — R™
— Definition: First-order differentiable at a point x if there exists a
matrix B € R™*"™ such that

f@+d)— f(x)— Bd
161,

—0 as 6 — 0.

te, f(x+6)=[f(x)+Bd+o(d]|],) as J—0.

— B is called the (Fréchet) derivative. When m =1, b7 (i.e., BT)
called gradient, denoted as V f (x). For general m, also called
Jacobian matrix, denoted as J s ().

— Calculation: b;; = gﬁ: ()
- J

— Sufficient condition: if all partial derivatives exist and are
continuous at x, then f (x) is differentiable at x.
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Calculus rules

Assume f,g: R™ — R™ are differentiable at a point € R".

— linearity: A1 f + A\og is differentiable at « and
VIALf + Xag] () = MV f () + X2 Vg (z)

— product: assume m =1, fg is differentiable at « and
Vifgl(x) = f (=) Vg(x) + g () Vf ()

— quotient: assume m = 1 and g (x) # 0, 7’; is differentiable at « and
v {ﬂ (z) = g(w)Vf(wy)zzg)(w)Vg(w)

— Chain rule: Let f:R™ — R" and h: R” — R*, and f is
differentiable at @ and y = f (x) and h is differentiable at y. Then,
ho f:R™ — RF is differentiable at «, and

Jihop) (@) = JIn (f () I 5 ().
When k£ =1,

Vihofl(x)=Jd; () VR (f (x)).
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Put the definition in good use!

First-order differentiable at a point x if there exists a matrix
B € R™*"™ called Jacobian, such that

fx+0)=f(x)+Bd+o(|d]],) as é—0.

— prove the chain rule for ho f (x) (whiteboard)

— derive Jacobian (white board)
* f(w) - Aw

¥ gWi, W, W)=y - W WyWsx
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Differentiability — second order

Consider f (x) : R™ — IR and assume f is 1st-order differentiable in a
small ball around =

— Write 5~ fdi? (x) = [% ((?Tflﬂ (x) provided the right side well
defined

— Symmetry: If both ax a - () and 61 Bm (x) exist and both are
continuous at x, then they are equal.

— Hessian (matrix):

v = [ (’”)LJ o)

where [agif;w (w)} € R™ ™ has its (j,i)-th element as Daf;[ ().
: G '

- V2f is symmetric.

— Sufficient condition: if all 5 0 - () exist and are continuous, f
is 2nd-order differentiable at T (not converse; we omit the definition

due to its technicality). 7/13



Taylor’s theorem

Vector version: consider f () : R" — R

— If f is 1st-order differentiable at x, then
f@+6)=[(x)+ (V[(x).0)+o(|d],) asd — 0.
— If f is 2nd-order differentiable at x, then
- | -
fl@+d)=[(z)+(Vf(z),d0)+ 6.V [(z)d)+ o(]|8]13) as & — 0.
Matrix version: consider f (X): R™*" — R
— If f is 1st-order differentiable at X, then
F(X+A)=((X)+(V(X).A)+o(]|Alp) as A — 0.
— If fis 2nd-order differentiable at X, then

A VIF(X)A) +o(|A2)

N

f(X+A)=f(X) VIi(X),A)
as A — 0.
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Put Taylor in good use!

— derive gradient and Hessian for f (z) = ||y — Az
(whiteboard)

— derive gradient (and Hessian) for
g (W1, Wa, W3) = |ly — W W, W7

(whiteboard)

before: gradient, Hessian —> Taylor expansion
now: Taylor expansion —- gradient, Hessian

But why?
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Taylor approximation — asymptotic uniqueness

Let f: R — R be k (k > 1 integer) times differentiable at a point x. If P(J) is
a k-th order polynomial satisfying f (z 4+ &) — P (8) = 0o(6%) as § — 0, then
P (8) = Pu(8) = f() + Xy i (@) 6",
Generalization to the vector version
— Assume f (x) : R™ — R is 1-order differentiable at x. If
P (6) = f (x) + (v, §) satisties that
f(@+8) = P(8) = oll8l,) 2560,
then P (8) = f () + (Vf(x),d), i.e., the 1st-order Taylor expansion.

— Assume f (x) : R™ — R is 2-order differentiable at «. If
P(8) = f(x) + (v,8) + % (6, HS) with H symmetric satisties that

f(x+8) =P (&) =o(|0]3) asd— 0,

then P (8) = f(x) + (V[ (x),8) + 5 (86, V>f (x) ), i.e., the 2nd-order
Taylor expansion. We can read off V f and V[ if we know the expansion!

Similarly for the matrix version. See Chap 5 of [Coleman, 2012] for other

forms of Taylor theorems and proofs of the asymptotic uniqueness. 10/13



Directional derivatives and curvatures

Consider f (x) :R" - R

directional derivative: D, f (z) = 4 f (x + tv)

— When f is 1-st order differentiable at x,
Dy f(x) = (V[ (x),v).
- Now D, f () : R — R, what is Dy, (D, f) (x)?

Du (Duf) (x) = (u, Vf (z)v).

When u = v,
2

Du (Duf) () = (u, V2f (@) u) = 25 f (
2
_ % is the directional curvature along u independent of
2

the norm of u

T+ tu).
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Directional curvature

<u,V2f(m)u>
[leel5
norm of u

is the directional curvature along u independent of the

flay)=a*—y°

Blue: negative curvature (bending down)
Red: positive curvature (bending up)
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