Neural Networks: Old and New

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

September 6, 2022

Outline

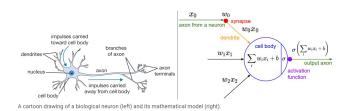
Start from neurons

Shallow to deep neural networks

A brief history of AI

Suggested reading

Model of biological neurons

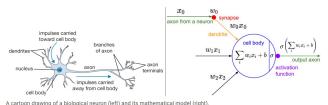


Credit: Stanford CS231N

Biologically ...

- Each neuron receives signals from its dendrites
- Each neuron outputs signals via its single axon
- The axon branches out and connects via synapese to dendrites of other neurons

Model of biological neurons



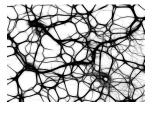
Credit: Stanford CS231N

Mathematically ...

- Each neuron receives x_i 's from its **dendrites**
- x_i 's weighted by w_i 's (synaptic strengths) and summed $\sum_i w_i x_i$
- The neuron fires only when the combined signal is above a certain threshold: $\sum_i w_i x_i + b$
- Fire rate is modeled by an **activation function** σ , i.e., outputting $\sigma\left(\sum_i w_i x_i + b\right)$

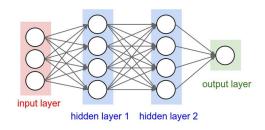
Artificial neural networks

Brain neural networks



 ~ 86 -billion neurons (Credit: Max Pixel)

Artificial neural networks



Why called artificial?

- (Over-)simplification on neural level
- (Over-)simplification on connection level

In this course, neural networks are always artificial.

Outline

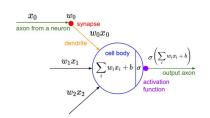
Start from neurons

Shallow to deep neural networks

A brief history of AI

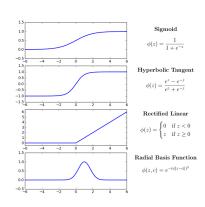
Suggested reading

Artificial neurons



$$\sigma\left(\sum_{i}w_{i}x_{i}+b\right)=\sigma\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b\right)$$

Examples of activation function σ

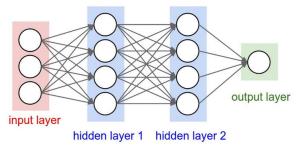


Credit: [Hughes and Correll, 2016]

Neural networks

One neuron: $\sigma(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)$

Neural networks (NN): **structured** organization of artificial neurons



 $m{w}$'s and $m{b}$'s are unknown and need to be learned Many models in machine learning $m{are}$ neural networks

Supervised learning in a nutshell

Supervised Learning

- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $m{y}_i pprox f\left(m{x}_i\right)$ for all i
- Set up a loss function ℓ to measure the approximation quality
- Find an $f \in \mathcal{H}$ to minimize the average loss

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right)$$

... known as **empirical risk minimization** (ERM) framework in learning theory

Supervised learning meets NNs

Supervised Learning from NN viewpoint

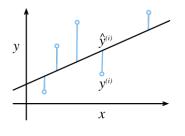
- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a NN with k neurons, so that there is a group of weights, e.g., $(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k,b_1,\ldots,b_k)$, to ensure

$$\boldsymbol{y}_i \approx \left\{ \mathsf{NN}\left(\boldsymbol{w}_1, \dots, \boldsymbol{w}_k, b_1, \dots, b_k \right) \right\} \left(\boldsymbol{x}_i\right) \quad \forall i$$

- Set up a loss function ℓ to measure the approximation quality
- Find weights $(w_1, \ldots, w_k, b_1, \ldots, b_k)$ to minimize the average loss

$$\min_{\boldsymbol{w}'s,b's} \frac{1}{n} \sum_{i=1}^{n} \ell \left[\boldsymbol{y}_{i}, \left\{ \mathsf{NN}\left(\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{k},b_{1},\ldots,b_{k}\right) \right\} \left(\boldsymbol{x}_{i}\right) \right]$$

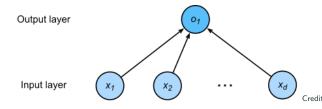
Linear regression



Credit: D2L

- Data: $({m x}_1, y_1), \ldots, ({m x}_n, y_n)$, ${m x}_i \in \mathbb{R}^d$
- Model: $y_i \approx \boldsymbol{w}^\intercal \boldsymbol{x}_i + b$
- Loss: $||y \hat{y}||_2^2$
- Optimization:

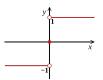
$$\min_{\boldsymbol{w},b} \ \frac{1}{n} \sum_{i=1}^{n} \|y_i - (\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b)\|_2^2$$



Perceptron

Frank Rosenblatt

- Data: $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$
- Model: $y_i \approx \sigma \left(\boldsymbol{w}^\intercal \boldsymbol{x}_i + b \right)$, σ sign function

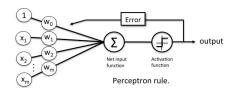


- Loss: $\mathbf{1}\{y \neq \hat{y}\}$
- Optimization:

$$\min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ y_i \neq \sigma \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \right\}$$

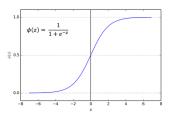
Perceptron

Perceptron is a single artificial neuron for binary classification



dominated early AI (50's - 70's)

Logistic regression is similar but with sigmoid activation



Softmax regression

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

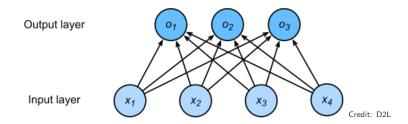
- Model: $y_i \approx \sigma (W^{\mathsf{T}} x_i + b)$, here σ is the softmax function (maps vectors to vectors): for $z \in \mathbb{R}^p$,

$$oldsymbol{z} \mapsto \left[rac{e^{z_1}}{\sum_j e^{z_j}}, \ldots, rac{e^{z_p}}{\sum_j e^{z_j}}
ight]^\intercal.$$

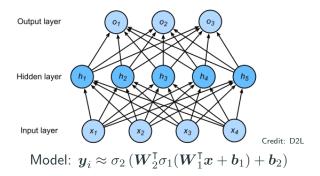
- Loss: cross-entropy loss $-\sum_j y_j \log \hat{y}_j$
- Optimization ...

Softmax regression

... for multiclass classification



Multilayer perceptrons (MLP)

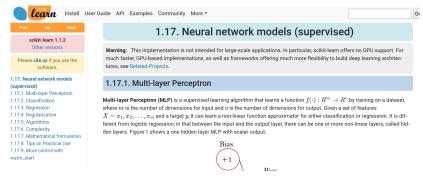


Also called fully-connected networks

Modern NNs:

- many hidden layers: deep neural networks (DNNs)
- refined/structured connection and/or activations (convolutional/recurrent/graph/... NNs)

MLP in scikit-learn



https://scikit-learn.org/stable/modules/neural_networks_supervised.html

They're all (shallow) NNs

- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)
- Support vector machines (SVM)
- PCA (autoencoder)
- Matrix factorization

see, e.g., Chapter 2 of [Aggarwal, 2018].

Outline

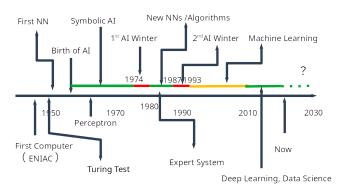
Start from neurons

Shallow to deep neural networks

A brief history of Al

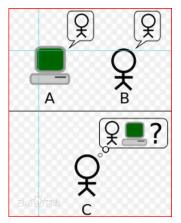
Suggested reading

Birth of Al



- Crucial precursors: first computer, Turing test
- 1956: Dartmouth Artificial Intelligence Summer Research
 Project Birth of Al

Turing test

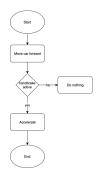


Turing Test

Alan Turing (1912-1954)

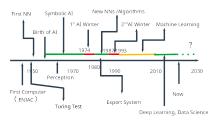
First golden age

Symbolic AI: modeling general logic and reasoning



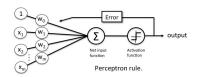
rules for recognizing dogs?

First Al winter



Gartner hype cycle

Perceptron



invented 1962

written in 1969, end of Perceptron era

Marvin Minsky (1927–2016)

Birth of computer vision

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

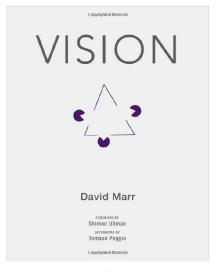
Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJE

Seymour Papert

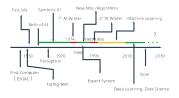
The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "matters recognition".

1966

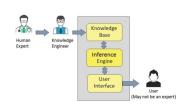


around 1980

Second golden age



expert system—building in domain-specific knowledge



Can we build comprehensive knowledge bases and know all rules?

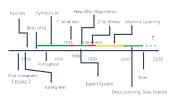
26/32

Big bang in DNNs

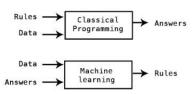
Key ingredients of DL have been in place for 25-30 years:

Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's
CTF	DARPA etc	mid 1980's

After 2nd AI winter



Machine learning takes over ...



rules learned from data, or data-driven

Golden age of Machine learning

```
Starting 1990's
```

Support vector machines (SVM)

Adaboost

Decision trees and random forests

Deep learning (2010's)

. . .

Outline

Start from neurons

Shallow to deep neural networks

A brief history of AI

Suggested reading

Suggested reading

- Chap 2, Neural Networks and Deep Learning.
- Chap 3-4, Dive into Deep Learning.
- Chap 1, Deep Learning with Python.

References i

[Aggarwal, 2018] Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer International Publishing.

[Hughes and Correll, 2016] Hughes, D. and Correll, N. (2016). **Distributed machine** learning in materials that couple sensing, actuation, computation and communication. arXiv:1606.03508.