Transformers

Ju Sun Computer Science & Engineering

Nov 22, 2022

Recap

RNN: model sequences

$$egin{aligned} m{h}_t &= anh\left(m{W}_{m{h}}m{h}_{t-1} + m{W}_{m{x}}m{x}_t
ight) \ m{y}_t &= m{V}_ym{h}_t \end{aligned}$$

 ${old W}_h, {old W}_x$ and ${old V}_y$ are shared across the sequence

Vanishing/exploding gradient issue

Gated RNNs

(Credit: Stanford CS231N)

u: update gate, control state update

r: **reset gate**, control how previous state affects new content

g: new content

Gated recurrent unit (GRU)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

f, i, o are merged

Uninterrupted gradient flow!

(Credit: Stanford CS231N)

⁽Credit: Stanford CS231N)

Attention mechanism

Input: source vectors $s_1, \ldots, s_N \in \mathbb{R}^h$, and target vector t

Output: weighted summation

$$\sum_{j=1}^N w_j oldsymbol{s}_j$$
 where $w_j = ext{similarity}(oldsymbol{s}_j,oldsymbol{t})$

Many possibilities:

Attention scores

- dot-product attention: $\widehat{w_j} = \langle s_j, t \rangle$ (Is is better to normalize this or rescale it by the dimension factor?)
- multiplicative attention: $\widehat{w_j} = \langle s_j, oldsymbol{W} oldsymbol{t}
 angle$
- "additive attention": $\widehat{w_j} = \boldsymbol{v}^{\intercal} \sigma \left(\boldsymbol{W}_1 \boldsymbol{s}_j + \boldsymbol{W}_2 \boldsymbol{t} \right)$

The actual weights are attention scores passed through **softmax**

$$w_j = \frac{\exp\left(\widehat{w_j}\right)}{\sum_k \exp\left(\widehat{w_k}\right)}$$

Self-attention

RNN

- Long interaction distance
- Resistant to parallelization

Self-attention

- O(1) interaction distance
- Highly parallelizable

Each token gets a selective summary of information from all others

Self-attention

Image credit: https://jalammar.github.io/illustrated-transformer/

- Each word now encoded as (query, key, value) triple
- For an input x_i , we have:

 $\boldsymbol{q}_i = (\boldsymbol{W}^Q)^\intercal \boldsymbol{x}_i, \quad \boldsymbol{k}_i = (\boldsymbol{W}^K)^\intercal \boldsymbol{x}_i, \quad \boldsymbol{v}_i = (\boldsymbol{W}^V)^\intercal \boldsymbol{x}_i$

- Calculate attention scores between query and all keys: $e_{ij} = \langle m{q}_i, m{k}_j
 angle$
- softmax normalization $w_{ij} = \exp(e_{ij}) / \sum_k \exp(e_{ik})$
- output the weighted sum of values $\sum_j w_{ij} v_j$

In matrix notation

- Compute queries, keys, and values

$$Q = XW^Q$$
, $K = XW^K$, $V = XW^V$

- Calculate attention scores between query and all keys: $oldsymbol{E}=oldsymbol{Q}oldsymbol{K}^{\intercal}$
- softmax normalization $oldsymbol{A} = \operatorname{softmax}(oldsymbol{E})$
- output the weighted sum of values AV

output = softmax $(QK^{\mathsf{T}})V$

Question: why we need both query and key?

Equation for Feed Forward Layer

Adding in nonlinearity!

First step toward Transformers!

Attention matrices—visualizing correlations

General attention

Transformers

Attention Is All You Need

Niki Parmar*

Google Research

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones*

Google Research

llion@google.com

Noam Shazeer* Google Brain noam@google.com nikip@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Figure 1: The Transformer - model architecture.

NIPS 2017; <u>https://arxiv.org/abs/1706.03762</u>

Transformers reign in NLP!

Image credit: <u>https://medium.com/mlearning-ai/evolution-of-transformers-part-1-faac3f19d780</u>

Transformers for everything!

- Transformers have been modified to deal with almost all kinds of structured and unstructured data
- Enable multimodal data integration and interaction

Image credit: https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Starting from self-attention

Equation for Feed Forward Layer

 $m_i = MLP(\text{output}_i)$

 $= W_2 * \text{ReLU}(W_1 \times \text{output}_i + b_1) + b_2$

Three tricks to build in depth:

- Residual connection
- Layer normalization
- Scaled inner product attention

Decoder

Trick 1: Residual connection

Trick 3: Scaled inner product attention

 $output = softmax(QK^{\mathsf{T}})V$

• After Layernorm, entries of Q and K behaves like IID zero-mean, unit variance

•
$$\mathbb{E}\langle \boldsymbol{q}^i, \boldsymbol{k}^j
angle = 0$$
 but
 $\operatorname{Var}\langle \boldsymbol{q}^i, \boldsymbol{k}^j
angle = d_k$

This can blow up exp computation in the softmax normalization for large $d_k!$

Solution: normalize by standard deviation

output = softmax $(\boldsymbol{Q}\boldsymbol{K}^{\intercal}/\sqrt{d_k})\boldsymbol{V}$

Multi-head attention

Multi-Head Attention

Image credit: https://jalammar.github.io/illustrated-transformer/

[Vaswani et al. 2017]

Multiple, independent self-attention blocks in parallel

Intuition: allow the flexibility of capturing different kinds of "relevance"/correlations

Multi-head attention

1) Concatenate all the attention heads

Concatenate

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

Multiply

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

7

Output

Image credit: https://jalammar.github.io/illustrated-transformer/

Multi-head attention

Positional encoding

Does the input order matter or not?

$$Q = XW^Q$$
, $K = XW^K$, $V = XW^V$
output = softmax $(QK^{\intercal}/\sqrt{d_k})V$

Positional encoding to break the order invariance

• Idea: a positional vector to (hopefully) encode the position information

E.g.,
$$\boldsymbol{X}_p = \boldsymbol{X} + \boldsymbol{P}, \text{ or } \boldsymbol{X}_p = [\boldsymbol{X}, \boldsymbol{P}]$$

• $oldsymbol{P}$ can be pre-defined, or made learnable

Sinusoidal positional encoding

L: sequence length d: embedding dimension

$$ext{PE}(i,\delta) = egin{cases} \sin(rac{i}{10000^{2\delta'/d}}) & ext{if } \delta = 2\delta' \ \cos(rac{i}{10000^{2\delta'/d}}) & ext{if } \delta = 2\delta' + 1 \end{cases}$$

Image credit: <u>https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/</u>

Decoder

Cross-attention (to model the interaction between the encoder key-values and the current decoder query)

Self-attention (to model the interaction within itself)

- Respect the sequential nature (e.g., language modeling, assuming access to the future is cheating!)
- Masked out future tokens

Computation

Figure 1: The Transformer - model architecture.

What's the total computation?

$$oldsymbol{Q} = oldsymbol{X}oldsymbol{W}^Q, \quad oldsymbol{K} = oldsymbol{X}oldsymbol{W}^K, \quad oldsymbol{V} = oldsymbol{X}oldsymbol{W}^V$$
output = softmax $(oldsymbol{Q}oldsymbol{K}^\intercal/\sqrt{d_k})oldsymbol{V}$ $O(T^2d)$

Quadratic computation vs. linear computation in RNNs

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus
Thibault Fevry [†]	${\bf Michael}~{\bf Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	$\mathbf{Zhenzhong}\ \mathbf{Lan}^{\dagger}$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin} \ {\bf Raffel}^{\dagger}$

But not much consistent improvement so far https://arxiv.org/abs/2102.11972

Pretraining + finetuning pipeline is standard in modern NLP/CV and many applied areas

Encoder-decoder

Good for content generation (e.g., GPT-2, GPT-3)

Good for feature extraction (e.g., X-**BERT**)

Good for everything? (e.g., Transformer, T5)

Decoder pretraining

Can be pretrained on language modeling, i.e., model $\mathbb{P}\left[\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(T)}\right] \quad \mathsf{Or} \quad \mathbb{P}\left[\boldsymbol{x}^{(t+1)} \mid \boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(1)}\right]$

Encoder pretraining

Both past and future information available due to the bi-direction modeling; not ideal for language modeling

Idea: create corruption and predict the right things

- Masked out words (i.e., missing words)
- Noisy words (randomly replaced)

Self-supervised learning! (pretext tasks)

https://arxiv.org/abs/1810.04805

Encoder-decoder pretraining

Similar to pretraining encoder, **corruption removal**! (called span corruption)

https://arxiv.org/abs/1910.10683