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Recap
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RNN: model sequences 

Vanishing/exploding gradient issue



Gated RNNs
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Gated recurrent unit (GRU) 



Modern RNNs
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Bidirectional RNN Deep RNN

Seq2Seq model

Bottleneck problem 



Attention mechanism 
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Input:

Output: weighted summation 

Attention scores

The actual weights are attention scores passed through 
softmax 



Self-attention
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RNN
● Long interaction distance 
● Resistant to parallelization

Self-attention
● O(1)  interaction distance 
● Highly parallelizable 

Each token gets a selective summary of 
information from all others 



Self-attention
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Image credit: https://jalammar.github.io/illustrated-transformer/ 

In matrix notation

Question: why we need both query and key? 

Adding in 
nonlinearity!

First step 
toward 
Transformers!  

https://jalammar.github.io/illustrated-transformer/


Attention matrices—visualizing correlations 
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General attention Self-attention 



Transformers
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NIPS 2017; https://arxiv.org/abs/1706.03762 

encoder decoder

https://arxiv.org/abs/1706.03762


Transformers reign in NLP! 

10Image credit: https://medium.com/mlearning-ai/evolution-of-transformers-part-1-faac3f19d780 

https://medium.com/mlearning-ai/evolution-of-transformers-part-1-faac3f19d780


Transformers for everything! 
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Image credit: https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/ 

● Transformers have been 
modified to deal with almost 
all kinds of structured and 
unstructured data 

● Enable multimodal data 
integration and interaction

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/


Starting from self-attention
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(Credit: Stanford CS231N)

(Credit: Stanford CS231N)

Three tricks to build in depth: 
● Residual connection 
● Layer normalization 
● Scaled inner product attention 



Trick 1: Residual connection
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● Mitigating vanishing gradient 
● Smoothing out landscape 

https://arxiv.org/abs/1712.09913 

https://arxiv.org/abs/1712.09913


Trick 2: Layer normalization
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Why not batchnorm? 



Trick 3: Scaled inner product attention
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● After Layernorm, entries of Q 
and K behaves like IID 
zero-mean, unit variance

●                             but 

This can blow up exp 
computation in the softmax 
normalization for large       ! 

Solution: normalize by standard deviation 



Multi-head attention
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Multiple, independent self-attention 
blocks in parallel 

Image credit: https://jalammar.github.io/illustrated-transformer/ 

Intuition: allow the flexibility of capturing different 
kinds of “relevance”/correlations  

https://jalammar.github.io/illustrated-transformer/


Multi-head attention
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Image credit: https://jalammar.github.io/illustrated-transformer/ 

Concatenate Multiply  

Output 

https://jalammar.github.io/illustrated-transformer/


Multi-head attention

18Image credit: https://jalammar.github.io/illustrated-transformer/ 

https://jalammar.github.io/illustrated-transformer/


Positional encoding
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Does the input order matter or not? 

Positional encoding to break the order invariance 

● Idea: a positional vector to (hopefully) encode the 
position information 

E.g., 

●         can be pre-defined, or made learnable 



Sinusoidal positional encoding 

20Image credit: https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/ 

L: sequence length 
d: embedding dimension 

https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/


Decoder 
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Self-attention (to model the 
interaction within itself)

● Respect the sequential 
nature (e.g., language 
modeling, assuming 
access to the future is 
cheating! ) 

● Masked out future tokens 

Attention matrix 

Cross-attention (to model the 
interaction between the encoder 
key-values and the current 
decoder query)



Computation 

22

What’s the total computation? 

Quadratic computation vs. linear computation in 
RNNs 



Computation
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Idea; building in sparsity   https://arxiv.org/abs/2007.14062 

But not much consistent improvement so far   
https://arxiv.org/abs/2102.11972 

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2102.11972


Pretraining
Pretraining + finetuning pipeline is standard in modern NLP/CV and many 
applied areas 
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Decoder Encoder Encoder-decoder

Good for content generation
(e.g., GPT-2, GPT-3)  

Good for feature extraction
(e.g., X-BERT)   

Good for everything?
(e.g., Transformer, T5)   



Decoder pretraining
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Can be pretrained on language modeling, 
i.e., model                          or 

E.g., add prediction 
header for sentiment 
classification after 
pretraining 



Encoder
pretraining 
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Both past and future information 
available due to the bi-direction 
modeling; not ideal for language 
modeling 

Idea: create corruption and predict the 
right things 

● Masked out words (i.e., missing 
words) 

● Noisy words (randomly replaced) 

Self-supervised learning! (pretext tasks) 

https://arxiv.org/abs/1810.04805 

https://arxiv.org/abs/1810.04805


Encoder-decoder pretraining
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https://arxiv.org/abs/1910.10683 

Similar to pretraining encoder, 
corruption removal! (called span 
corruption)

https://arxiv.org/abs/1910.10683

