
From Fully Connected to Convolutional
Neural Networks

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

November 1, 2022

1 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

2 / 68



Digital images

(Credit: [Elgendy, 2020]) (Credit: Wikipedia)

– pixels: entries in the matrix or tensors

– bit/pixel-depth 2n (typical 28, i.e., ranging from 0 to 28 − 1 = 255)

– compression formats: PNG, JPEG (JPG), SVG, GIF, JPEG2000, etc

– Normalization: /(2n − 1), zero-mean unit-variance (over a batch of

images), min-max

3 / 68



How to find a pattern in images?

– Each time inner product of the original (red) and overlapped (green)

patches (i.e., matrices) are taken

– The output matrix is the correlation

– Position(s) with the largest magnitude is candidate match—detection

– Care about the largest magnitude only if only interested in Yes/No—max

pooling

BTW, anything wrong with this?

4 / 68



Template matching prevails in (classic) image processing

edge detection image sharpening

x′ = x+ β(x− k ∗ x) k: blur kernel

(Credit: scikit-image)

5 / 68



Problem with template matching

It handles the uncertainty about location (i.e., translation), but not

– not rotation or scaling

– local deformation

6 / 68



Do we have a template at all?

7 / 68



Feature-based approach!

see the survey

[Jin et al., 2020]

8 / 68



Transition to representation learning

traditional learning pipeline

modern learning pipeline

9 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

10 / 68



Complexity

Input sizes

image

∼ 106

video

∼ 108(10s)

audio (spectrogram)

∼ 108(10s)

time series

1/resol

100 hidden nodes at layer 1 =⇒ 10 billions variables in the first layer!

– storage: 80 billion bytes ∼ 80GB!

– computation

– data: need enough data to fit

complex models

11 / 68



Locality and ordering

spatial features are mostly localized! Can we learn spatial features easily?

– FCNN treats the input as a vector

– FCNN is insensitive to any

universal permutation of the

coordinates to all inputs

– implication: ordering and locality

are lost together

12 / 68



Invariance

where the pattern is found shouldn’t matter much

– For FCNN, all possible translated copies should be available for training

– Similarly for rotation, scaling, local deformation

13 / 68



Ideal neural networks for spatial data

Problems with FCNNs: high complexity and lack of locality and invariance

Goal: build these into the architecture directly

(Credit: [Elgendy, 2020])

– Extracted features invariant to

translation, rotation, local

deformation

– Low complexity

14 / 68



A quick preview of convolutional neural networks (CNN)

(Credit: [Elgendy, 2020])

– Input layer

– Convolutional layers for feature extraction

– FC layers for classification

– Output layer for prediction

15 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

16 / 68



A closer look at CNNs

(Credit: [Elgendy, 2020])

– convolutional layers

– pooling layers

– fully-connected layers

17 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

18 / 68



Convolution is a misnomer!

2D Correlation 2D Convolution

– The only difference is the flipped template

– People actually implement correlation (not convolution; they’re equivalent

from learning perspective—the template is to be learned!)

– Math notations: ∗ for convolution, and ⋆ for (cross)-correlation

Is correlation/convolution a surprise? locality and translation invariance (when

coupled with max pooling)

19 / 68



More on convolution/correlation

(Credit: [Elgendy, 2020])
https://github.com/vdumoulin/conv_arithmetic

Key concepts:

– filter/kernel

– inner product ⟨·, ·⟩ at each location

– (zero)-padding—dealing with boundaries

– strides/steps

20 / 68

https://github.com/vdumoulin/conv_arithmetic


Connection to fully-connected NN

(Credit: [Elgendy, 2020])

input: a whole matrix output: neuron outputs organized into a matrix

– local/sparse connectivity: each neuron connects only to its receptive field

– weight sharing: all neurons share the same weight pattern

21 / 68



Multiple filters each layer

(Credit: [Elgendy, 2020])

for the first conv layer:

– each filter generates an output,

called feature map

– k filters will generate k feature

maps/channels

what happens in later conv layers?

– input: tensor with C1 channels

– output: tensor with C2 channels

what are the operations?

(Credit: https:

//cs231n.github.io/convolutional-networks/)

22 / 68

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/


Multiple-channel convolution

(Credit: https://cs231n.github.io/

convolutional-networks/)

C1 input channels(X ), C2 output channels

– each filter Fi is a size w× h×C1 tensor, i.e., with

C1 channels

– all channels of the filters get convolved with the

corresponding channels of X , and then summed

up (plus an optional bias)∑C1−1
i=0 Fi[:, :, i] ⋆ X [:, :, i] + b

– so each filter generates a 2D map, and there are

C2 filters to generate C2 output channels

23 / 68

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/


Do we reduce the complexity?

Suppose C1 input channels and C2 output channels of size H ×W

– # parameters if implementing fully connected layer? O(C1C2H
2W 2)

– # parameters if implementing convolution of h× w? O(C1C2hw)

h,w often small constants, e.g., 3 in practice

24 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

25 / 68



Pooling

Convolution helps to achieve locality, and (much) reduced complexity, what

about invariance?

(Credit: Stanford CS231N)

– max pooling (i.e., max within the receptive field)

– average pooling (i.e., weighted average within the receptive field)

– strides and receptive field size (often 2/2 or 2/3)

26 / 68



Why pooling?

reduce complexity (with stride ≥ 2)

(Credit: [Elgendy, 2020])

– deeper layer: more filters =⇒ subsampling avoids explosion in computation

– subsampling keep important features

(Credit: [Elgendy, 2020]) 27 / 68



Why pooling?

(approximate) local translation/distortion invariance

(Credit: [Goodfellow et al., 2017])
28 / 68



Combine convolution and pooling—convolution with strides

idea: convolution with stride ≥ 2 ≈ convolution + subsampling

https://github.com/vdumoulin/conv_arithmetic

So use all convolution (with large strides) layers only, no pooling

[Springenberg et al., 2014]

29 / 68

https://github.com/vdumoulin/conv_arithmetic


Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

30 / 68



Why not single layer?

using a one-layer CNN ...

– efficiency: one kernel for each variation of 8? for each variation of every

object?

– better: share kernels across digits or all object categories, but low-level

features (edges, corners, etc) likely shareable =⇒ form hierarchy

31 / 68



Hierarchical scan

– Later neurons have increasingly large effective receptive fields on the

input image, i.e., scanning using composition of the filters

kL ∗ · · · ∗ k1 ∗ x = k ∗ x

where the effective k is much larger in spatial extent

– composition (with pooling layers or strides) allows local translation and

distortion

32 / 68



Examples of learned features

33 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

34 / 68



How to compute convolution?

(Credit: [Elgendy, 2020])

– convolution layer is locally connected, weight-sharing fully connected

layer

– if we vectorize both input and output, the opetation can be represented as

a matrix multiplication

so we don’t worry about forward and backward pass 35 / 68



More on computation

To compute the convolution

– use (sparse) matrix-vector multiplication (early versions of cuDNN)

– use fast Fourier transform (introduced in later versions of cuDNN)

F (w ⊛ x) = F (w)⊙F (x)

[known as the convolution theorem; linear conv converted into circular

conv by zero-padding]

To compute the max-pooling

– forward: simple

– backward? what’s ∇x max (x1, . . . , xn)?

36 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

37 / 68



A brief history of CNN

Hubel and Wiesel 1959 [Hubel and Wiesel, 1959]

focused on the primary visual

cortex (V1)

main discovery: directional selectivity of the

neurons inside V1, and local responsiveness per

cell

38 / 68



A brief history of CNN

Hubel and Wiesel 1962 [Hubel and Wiesel, 1962]

Two types of cells: simple S-cells and complex C-cells

– correspond to two levels of processing

– C-cells robust to distortion, but S-cells not

S-cells: conv kernels C-cells: max pooling

39 / 68



A brief history of CNN

Fukushima 1980: Neocognitron [Fukushima, 1980]—unsupervised

– multi-layers of S-C cells compositions

– only S-cells are learnable

cell planes get smaller but number of

planes increase going deeper

S cells have ReLU-like activitation, C

cells have ReLU+Max like activation40 / 68



A brief history of CNN

Lecun 1989: supervision added [LeCun et al., 1989, Lecun et al., 1998]

back-propagation used for supervised training for digit recognition

41 / 68



Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

42 / 68



Typical design patterns

– feature extraction (CONV) + classification (fully connected)

– depth increases (more filters), dimension decreases (subsampling) when

moving deeper

(Credit: [Elgendy, 2020])

– one or two fully-connected layers for classification

43 / 68



LeNet-5 (1998)

(Credit: [Elgendy, 2020])

– tanh used for activation

– 5× 5 filters

(Credit: [Elgendy, 2020])

44 / 68



AlexNet (2012)

breakthrough on ImageNet competition in 2012 and impressed the computer

vision community

(Credit: [Elgendy, 2020])

– ReLU used for activation

– large filters: 11× 11, 5× 5, 3× 3 filters

– dropout used for regularization

– weight decay/regularization 45 / 68



VGG-net (2014)

VGG — Visual Geometry Group (Oxford U.)

(Credit: [Elgendy, 2020])

– smaller filters (3× 3) to make up for large ones in AlexNet. A nice

property of convolution:

a ∗ (b ∗ c) = (a ∗ b) ∗ c

composition of filters covers larger receptive fields

46 / 68



Inception and GoogLeNet (2014)

(Credit: [Elgendy, 2020])

pack things into inception modules

47 / 68



Inception module—basic version

(Credit: [Elgendy, 2020])

idea: apply all filters together and (hopefully) the training process performs the

suitable selection/combination itself

– filters can be short-circuited when the values are set to 0

48 / 68



Inception module with dimension reduction

1× 1 convolution helps to reduce the #channels =⇒ saves computation

(Credit: [Elgendy, 2020])

(Credit: [Elgendy, 2020])

49 / 68



ResNet (2015)

going really deep...sees performance degradation

a solution:

(Credit: [Elgendy, 2020])

a residual block (Credit: [Elgendy, 2020])

– skip connection

* allows short-circuit unnecessary layers—e.g., setting the kernels to

zero—and thus avoids performance degradation when adding more

layers

* mitigates gradient explosion or vanishing—-Jf+I (x) = Jf (x) + I

– batch normalization

50 / 68



Comparison with previous models

(Credit: [Elgendy, 2020])

51 / 68



Inside a residual block

(Credit: [Elgendy, 2020])

– no pooling layers

– 1× 1 conv before and after 3× 3 conv to control #channels and hence

computation

– batch normalization (BN) after each conv layer

– 1× 1 conv and BN added to the skip connection also to match dim for

summation

full details see: https://pytorch.org/hub/pytorch_vision_resnet/

52 / 68

https://pytorch.org/hub/pytorch_vision_resnet/


DenseNet (2016)

(Credit: [Huang et al., 2016])

– inside the same dense block, any feature

map “connected” to all subsequent feature

maps—dense

– “connected” here means concatenation vs.

the summation in ResNet

– concatenation enables feature reusing and

hence higher efficiency

(Credit: [Huang et al., 2016])

transition layers adjust the sizes of the feature maps
53 / 68



Other models to watch

on accuracy:

– EfficientNet (2019) [Tan and Le, 2019]

https://github.com/tensorflow/tpu/tree/master/models/

official/efficientnet

– ResNeXt https://arxiv.org/abs/1611.05431

on compact models:

– SqueezeNet https://arxiv.org/abs/1602.07360

– ShuffleNet https://arxiv.org/abs/1807.11164

– MobileNet https://arxiv.org/abs/1801.04381

Pytorch official classification models

https://pytorch.org/vision/stable/models.html#classification

54 / 68

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1807.11164
https://arxiv.org/abs/1801.04381
https://pytorch.org/vision/stable/models.html#classification


Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

55 / 68



Transfer learning

Recall: (we hope) CNNs learn increasingly complex and semantically meaningful

features

(Credit: [Elgendy, 2020])

So: early layers trained on a large and diverse dataset, e.g., ImageNet, can be

reused. This part is called a pretrained model
56 / 68



Transfer learning

source domain: training data for a pre-trained model

target domain: training data for the current model

indicates

trainable part

(Credit:

[Elgendy, 2020])

Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Stanford notes: https://cs231n.github.io/transfer-learning/

For domains that only need low-level features: [Peng et al., 2021]
57 / 68

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://cs231n.github.io/transfer-learning/


Transposed convolution

convolution with strides: downsampling

transposed convolution: upsampling

(Credit: https://naokishibuya.medium.com/)

often used for segmentation, generation, or other regression—outputs are

structured objects such as images, videos, time series, speech, etc

– traditional methods: e.g., nearest neighbor/bilinear/bicubic interpolation

– here: interpolation with a learnable filter

58 / 68

https://naokishibuya.medium.com/


Transposed convolution

also called fractionally strided convolutions or deconvolution (misnomer): zero

padding, zero interleaving (when forward stride > 1), and then convolution

forward stride = 1

forward stride = 2

more details see https://github.com/vdumoulin/conv_arithmetic

59 / 68

https://github.com/vdumoulin/conv_arithmetic


Normalization

Credit: [Wu and He, 2018]

normalization in different directions/groups of the data tensors

– N is the batch axis

– C is the channel axis

– WH is the per output dimension (1 for fully connected, but 2D for CNNs)

batch normalization is popular, but with layer/group normalization:

– small N (batch size) is possible

– simplicity: training/test normalizations are consistent
60 / 68



Data augmentation

– More relevant data always

help!

– Fetch more external data

– Generate more internal

data: generate based on

whatever you want to be

robust to

* vision: translation,

rotation,

background, noise,

deformation,

flipping, blurring,

occlusion, etc

Credit: https://github.com/aleju/imgaug

See one example here https:

//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
61 / 68

https://github.com/aleju/imgaug
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html


Are CNNs only for images?

Recall why CNN? complexity, locality/ordering, translation-invariance

These are desired also when processing video, text sequence, times series data,

speech data, etc Examples:

– WaveNet for text-to-speech system

https://en.wikipedia.org/wiki/WaveNet

– text classification https://arxiv.org/abs/1408.5882

– video analysis [Ji et al., 2013, Karpathy et al., 2014, Huang et al., 2018]

– time series analysis [Yu and Koltun, 2015, Borovykh et al., 2017]

see also An Empirical Evaluation of Generic Convolutional and Recurrent

Networks for Sequence Modeling [Bai et al., 2018]

62 / 68

https://en.wikipedia.org/wiki/WaveNet
https://arxiv.org/abs/1408.5882


Outline

Find patterns in an image

Problems with fully connected networks

Components of CNNs

Convolutional layers

Pooling layers

Why multilayers?

Computation

Thanks to the cats

Architectures for classification

Practical tips

Suggested reading

63 / 68



Suggested reading

– Deep Learning for Vision Systems [Elgendy, 2020]

– Convolutional Networks for Images, Speech, and Time-Series

[LeCun et al., 1995]

– A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

– Gradient-based learning applied to document

recognition [Lecun et al., 1998]

– https://cs231n.github.io/transfer-learning/

64 / 68

https://arxiv.org/abs/1603.07285
https://cs231n.github.io/transfer-learning/


References i

[Bai et al., 2018] Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical

evaluation of generic convolutional and recurrent networks for sequence modeling.

arXiv:1803.01271.

[Borovykh et al., 2017] Borovykh, A., Bohte, S., and Oosterlee, C. W. (2017).

Conditional time series forecasting with convolutional neural networks.

arXiv:1703.04691.

[Elgendy, 2020] Elgendy, M. (2020). Deep Learning for Vision Systems. MANNING

PUBN.

[Fukushima, 1980] Fukushima, K. (1980). Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition unaffected by shift in

position. Biological Cybernetics, 36(4):193–202.

[Goodfellow et al., 2017] Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep

Learning. The MIT Press.

[Huang et al., 2016] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q.

(2016). Densely connected convolutional networks. arXiv:1608.06993.

65 / 68



References ii

[Huang et al., 2018] Huang, J., Zhou, W., Zhang, Q., Li, H., and Li, W. (2018).

Video-based sign language recognition without temporal segmentation.

arXiv:1801.10111.

[Hubel and Wiesel, 1959] Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of

single neurones in the cat's striate cortex. The Journal of Physiology,

148(3):574–591.

[Hubel and Wiesel, 1962] Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields,

binocular interaction and functional architecture in the cat's visual cortex. The

Journal of Physiology, 160(1):106–154.

[Ji et al., 2013] Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3d convolutional neural

networks for human action recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(1):221–231.

[Jin et al., 2020] Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M., and

Trulls, E. (2020). Image matching across wide baselines: From paper to practice.

International Journal of Computer Vision, 129(2):517–547.

66 / 68



References iii

[Karpathy et al., 2014] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,

R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural

networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition.

IEEE.

[LeCun et al., 1995] LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for

images, speech, and time series. The handbook of brain theory and neural networks,

3361(10):1995.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,

R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to

handwritten zip code recognition. Neural Computation, 1(4):541–551.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324.

[Peng et al., 2021] Peng, L., Liang, H., Luo, G., Li, T., and Sun, J. (2021). Rethinking

transfer learning for medical image classification. arXiv:2106.05152.

67 / 68



References iv

[Springenberg et al., 2014] Springenberg, J. T., Dosovitskiy, A., Brox, T., and

Riedmiller, M. (2014). Striving for simplicity: The all convolutional net.

arXiv:1412.6806.

[Tan and Le, 2019] Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv:1905.11946.

[Wu and He, 2018] Wu, Y. and He, K. (2018). Group normalization. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 3–19.

[Yu and Koltun, 2015] Yu, F. and Koltun, V. (2015). Multi-scale context aggregation

by dilated convolutions. arXiv:1511.07122.

68 / 68


	Find patterns in an image
	Problems with fully connected networks
	Components of CNNs
	Convolutional layers
	Pooling layers
	Why multilayers?
	Computation

	Thanks to the cats
	Architectures for classification
	Practical tips
	Suggested reading

