Relationship Modeling: Graph Neural Networks

Ju Sun Computer Science & Engineering

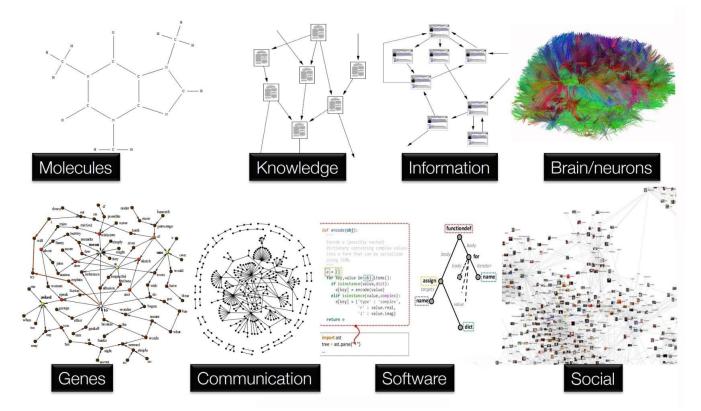
Dec 13, 2022

Outline

- Why graphs?
- Graphs: basic notions
- Graph neural networks
- Scaling up training

Why graphs?

Graphs are everywhere!



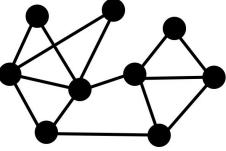


Image credit: Stanford CS224W

Graphs model relationships/interactions

Image credit: https://blogs.nvidia.com/blog/2022/10/24/what-are-graph-neural-networks/

Different tasks on graphs

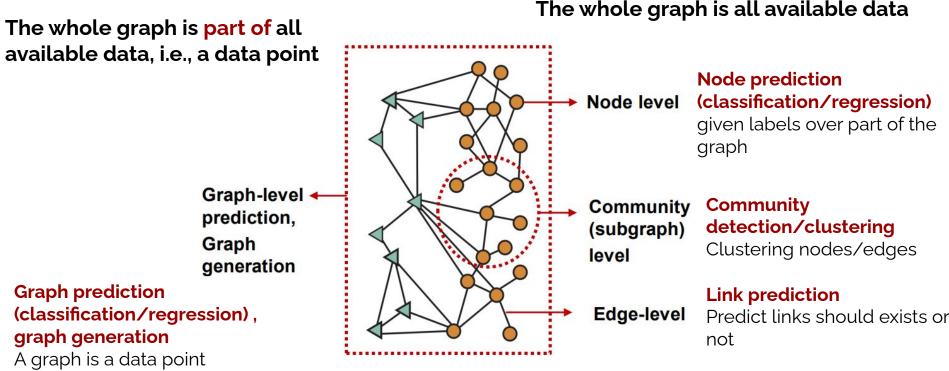


Image credit: Stanford CS224W

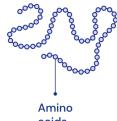
Example task 1: Protein folding

Every protein is made up of a sequence of amino acids bonded together

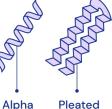
These amino acids interact locally to form shapes like helices and sheets

These shapes fold up on larger scales to form the full three-dimensional protein structure

Proteins can interact with other proteins, performing functions such as signalling and transcribing DNA



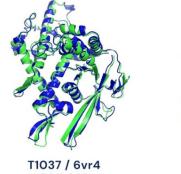
acids



Pleated sheet

Alpha helix

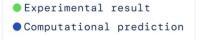
Protein folding: predict a protein's 3D structure based on its amino acid sequence



90.7 GDT (RNA polymerase domain)

T1049 / 6y4f 93.3 GDT (adhesin tip)

Image credit: Deep Mind



Example task 1: Protein folding

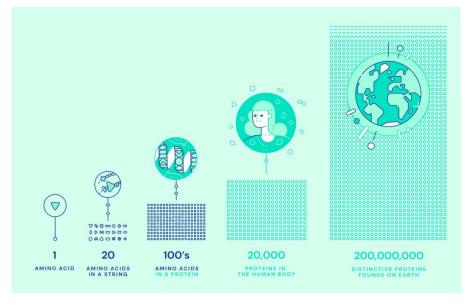
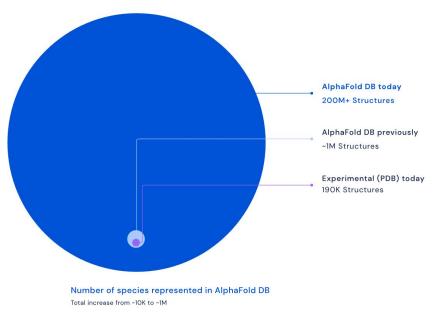
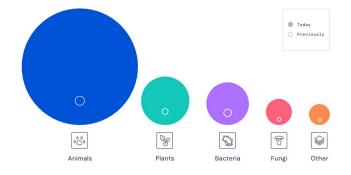
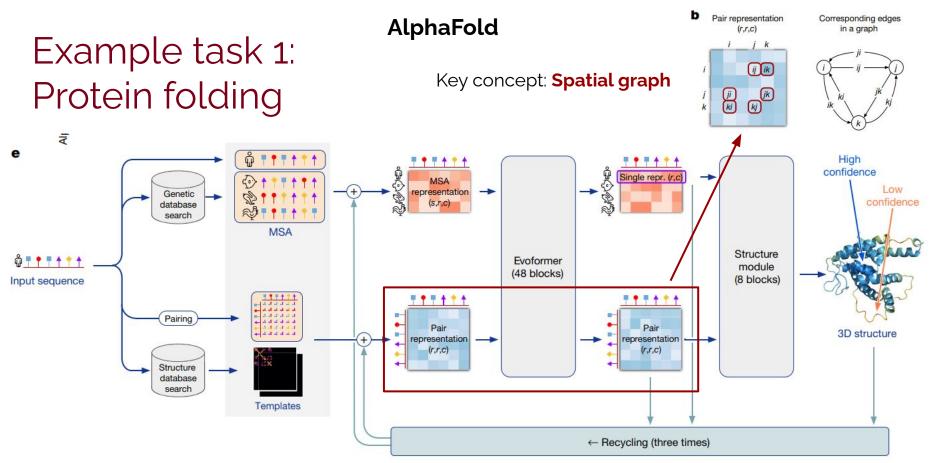


Image credit: Deep Mind

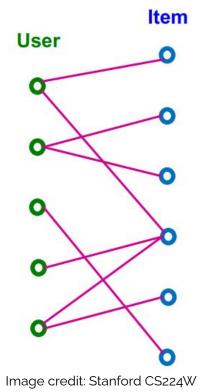






Complete story: <u>https://www.deepmind.com/research/highlighted-research/alphafold</u> Paper: <u>https://www.nature.com/articles/s41586-021-03819-2</u>

Example task 2: Recommendation systems



online shopping, music/movie recommendation

Nodes: Users, items Edges: User-item interactions

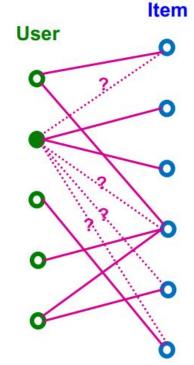
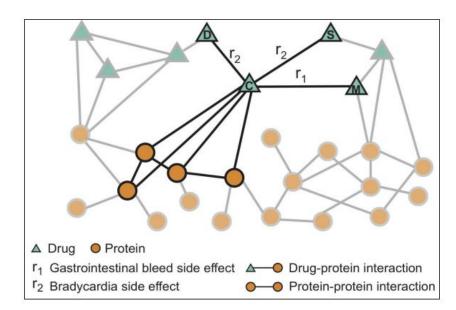


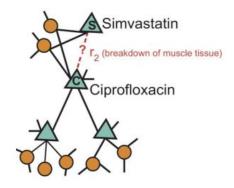
Image credit: Stanford CS224W

Example task 3: Drug adverse effect discovery

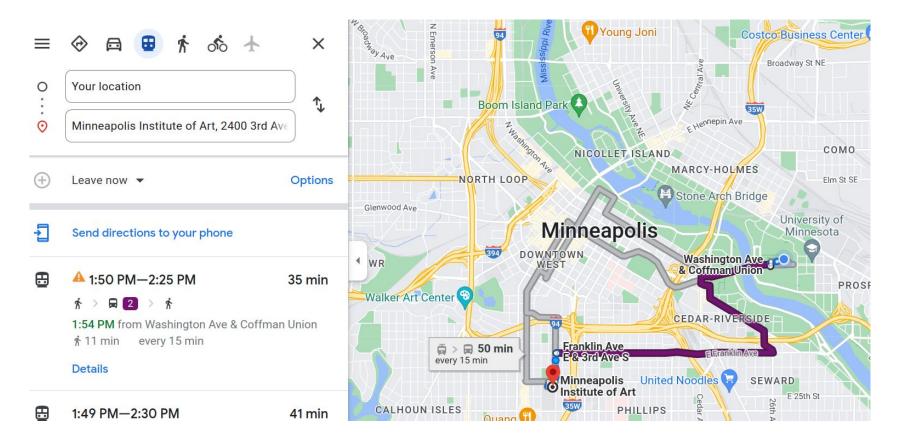
Nodes: Drugs & Proteins
 Edges: Interactions



Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

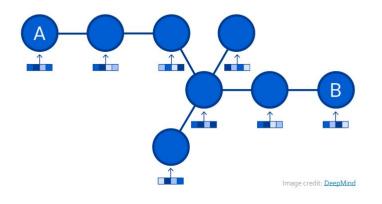


Example task 4: Traffic prediction



Example task 4: Traffic prediction

- Nodes: Road segments
- Edges: Connectivity between road segments
- Prediction: Time of Arrival (ETA)



Predicting Time of Arrival with Graph Neural

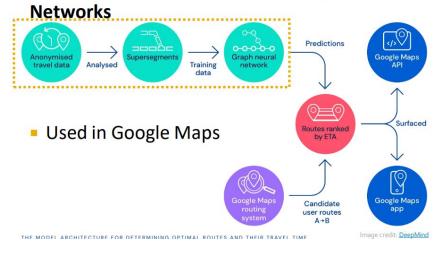
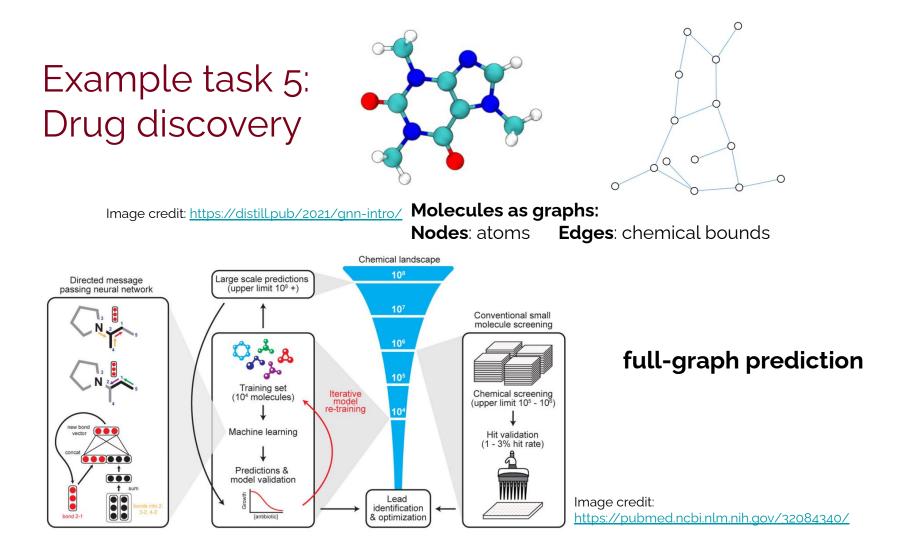


Image credit: Stanford CS224W

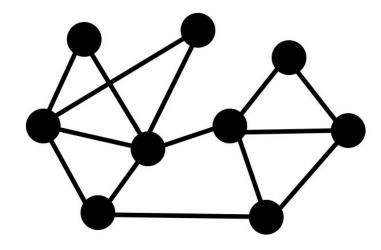
Image credit: Stanford CS224W

Subgraph discovery



Graphs: basic notions

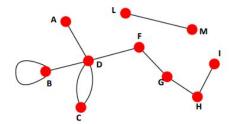
Basic objects



- ullet N : Nodes (also vertices)
- \bullet E : Edges (also links)
- G(N, E): Graph

Undirected

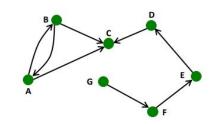
 Links: undirected (symmetrical, reciprocal)



- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

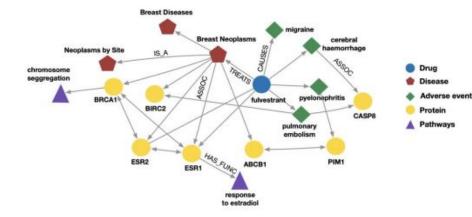
 Links: directed (arcs)



- Examples:
 - Phone calls
 - Following on Twitter

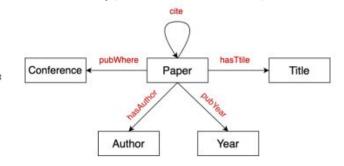
Image credit: Stanford CS224W

Heterogeneous graphs



• Nodes/Edges are multi-typed

 $\begin{array}{c} G(N,E,T,R) \\ \text{T: types of nodes} \\ \text{R: types of relationships} \end{array}$



Biomedical Knowledge Graphs

Example node: Migraine Example edge: (fulvestrant, Treats, Breast Neoplasms) Example node type: Protein Example edge type (relation): Causes

Academic Graphs

Example node: ICML Example edge: (GraphSAGE, NeurIPS) Example node type: Author Example edge type (relation): pubYear Image credit: Stanford CS224W

Graph representation

Undirected graphs

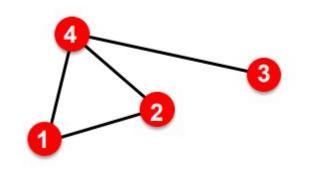
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

(1, 4), (1, 2)1: 2, 4(2, 1), (2, 4)2: 1, 4(3, 4)3: 4(4, 1), (4, 2), (4, 3)4: 1, 2, 3

Adjacency matrix

Edge list

Adjacency list



Graph representation

Directed graphs

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
(1, 4)
(2, 1)
(4, 2), (4, 3)
(1, 4)
(2, 1)
(1, 4)
(2, 1)
(2, 1)
(4, 2), (4, 3)
(4, 2), (4, 3)

Adjacency matrix

Edge list

Adjacency list

2

3

Adjacency matrix is often inefficient

. . . .

. . .

NETWOR Internet WWW Power G Phone C Email Science

т

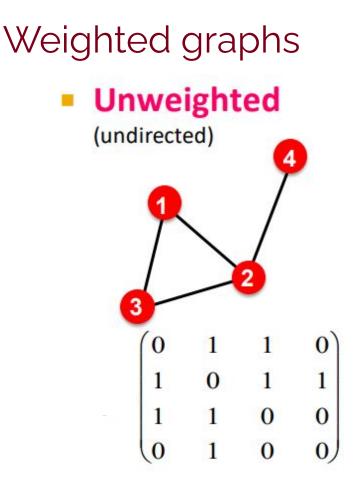
NETWORK	NODES	LINKS	DIRECTED/ UNDIRECTED	N	E
Internet	Routers	Internet connections	Undirected	192,244	609,066
www	Webpages	Links	Directed	325,729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594
Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email Addresses	Emails	Directed	57,194	103,731
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908
Citation Network	Paper	Citations	Directed	449,673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930

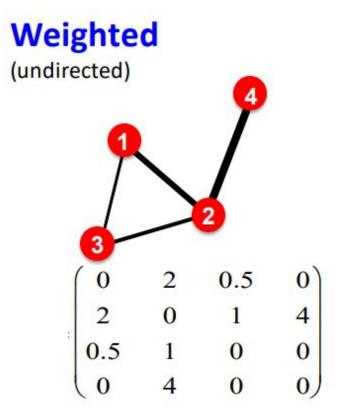
L

1

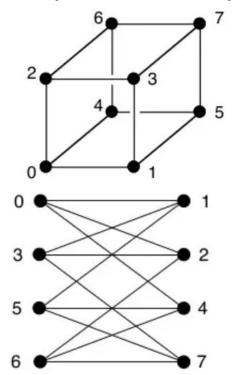
Т

Density = $|E|/|N|^2$





Graph isomorphism/equivalence



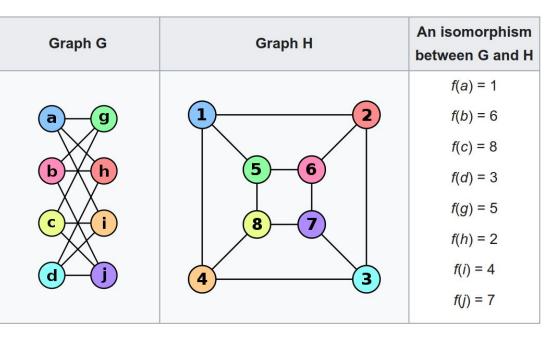
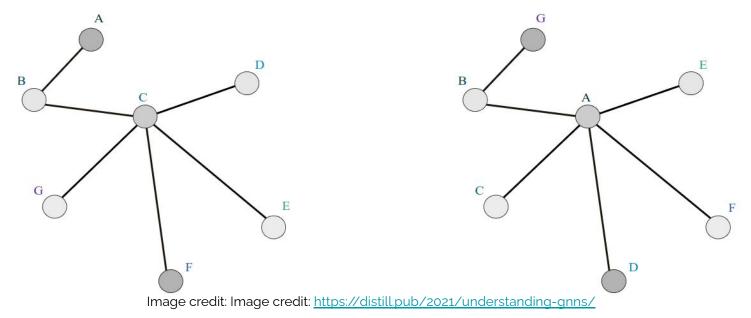


Image credit: Image credit: https://en.wikipedia.org/wiki/Graph_isomorphism

Image credit: https://tonicanada.medium.com/brute-force-code-for-iso morphisms-1241ef180570

Isomorphism: there exists a bi-injective mapping, i.e., **permutation**, results in the same neighborhood structure

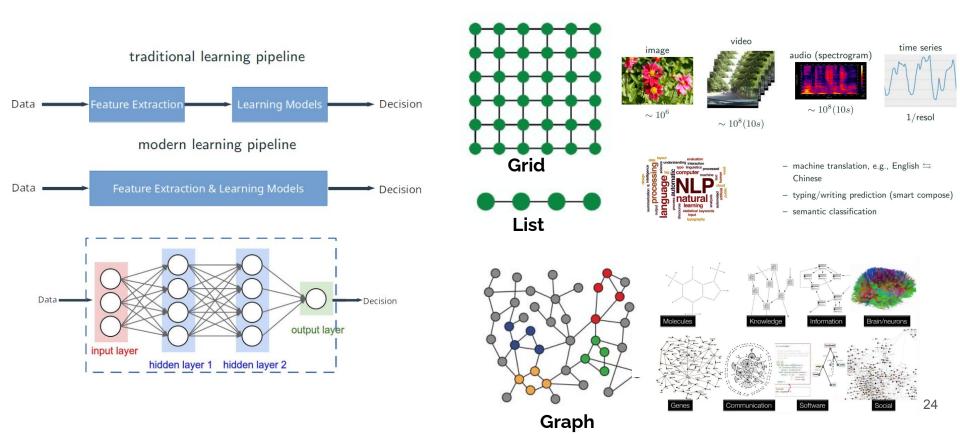
Permutation invariance



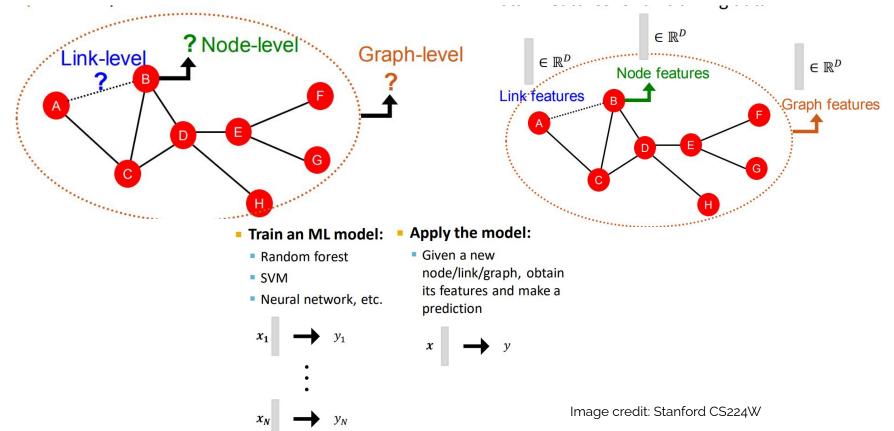
Permutation invariance: permuting the names of the nodes doesn't change the graph, as graph nodes are intrinsically orderless

Graph neural networks

Representation learning for graphs

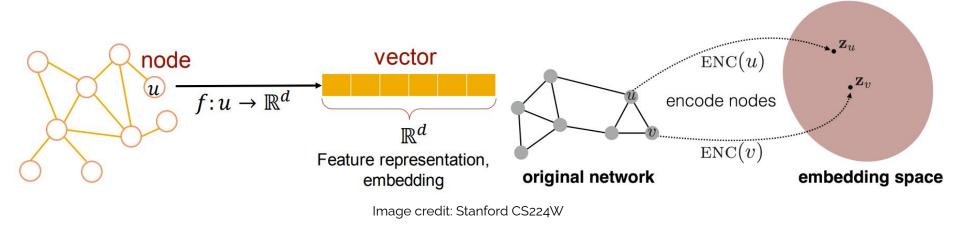


Where to put the features?



25

Node embedding



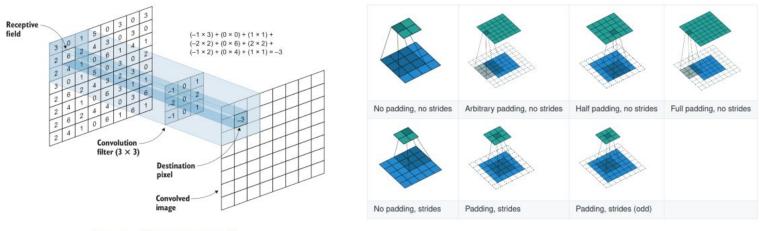
N : set of nodes A : adjacency matrix $oldsymbol{X} \in \mathbb{R}^{|N| imes d}$: node (raw) features u, v : nodes in N $\mathcal{N}(u)$: neighbors of $oldsymbol{\mathcal{U}}$

Node raw features: e.g.,

- Biomedical graphs: patient's EHR
- Social network graphs: user profile and images
- When no features: node indicator vector, constant vector

How to define the f ?

We'll bypass fully connected networks directly



https://github.com/vdumoulin/conv_arithmetic

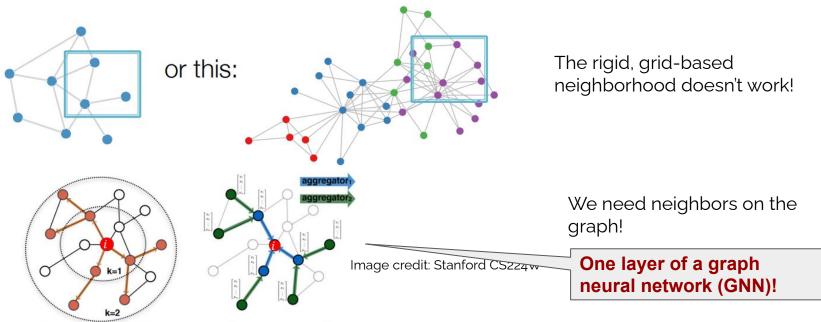
Convolution as performing local info aggregation (or message passing):

- Each time, the conv window focus on a local neighborhood of the current pixel
- Conv effectively aggregates the local info by weighted summation

How to define the f?

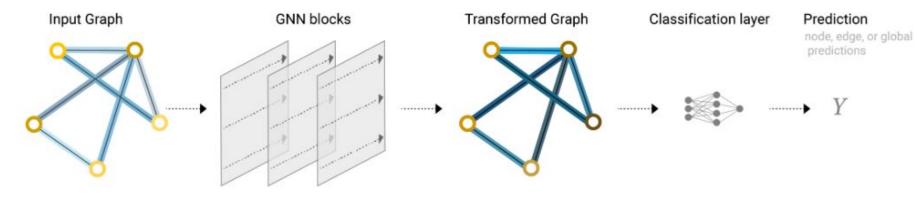
Convolution as performing local info aggregation (or message passing):

- **Neighborhood**: Each time, the conv window focus on a **local neighborhood** of the current pixel
- Aggregation: Conv effectively aggregates the local info by weighted summation



28

Graph in, graph out



An end-to-end prediction task with a GNN model.

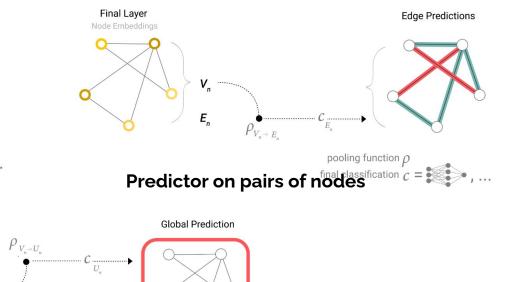
Image credit: https://distill.pub/2021/gnn-intro/

How to make supervised predictions?

Final Layer Node embeddings $V_n - C_{V_{L,n}}$ Final classification $C = \underbrace{V_n}, \dots$ Predictor on the node directly

> Final Layer Node and Edge Embeddings

Image credit: https://distill.pub/2021/gnn-intro/

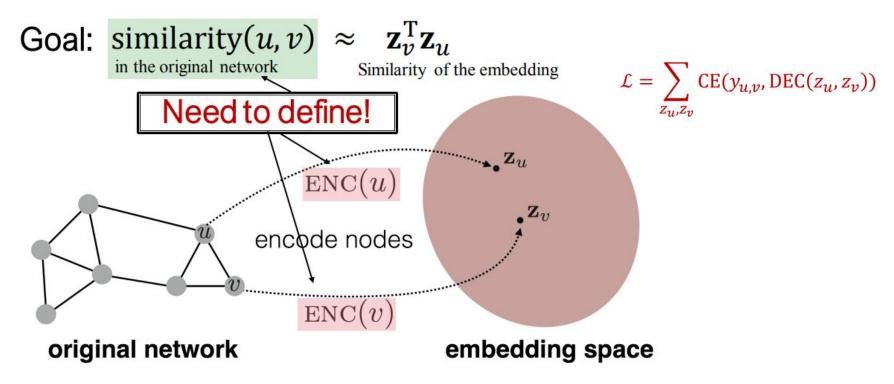


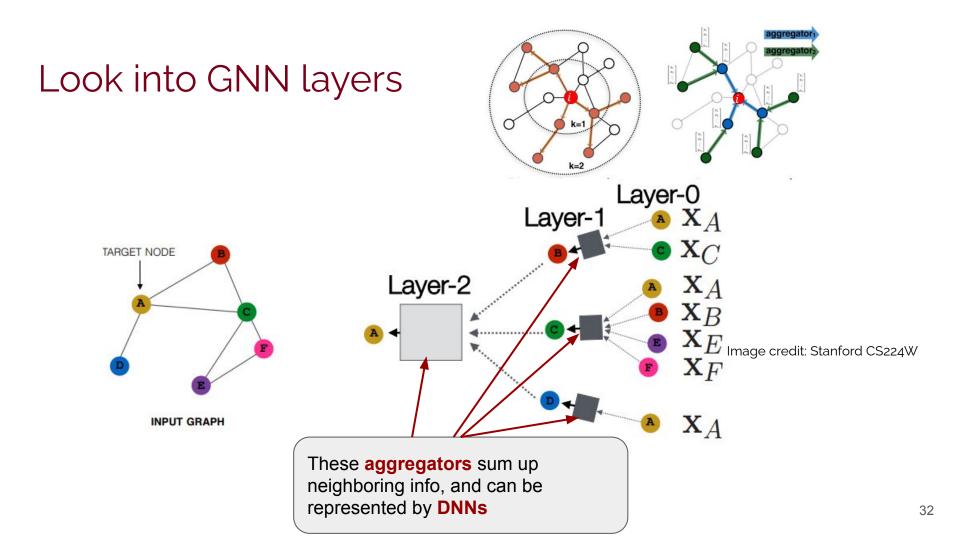
Predictor on pooled feature on whole graph

U,

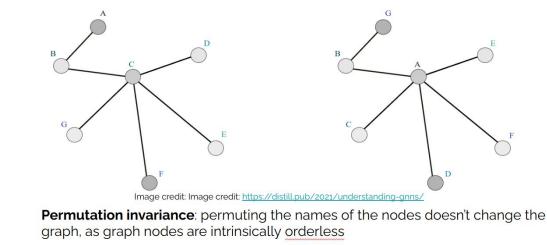
V,

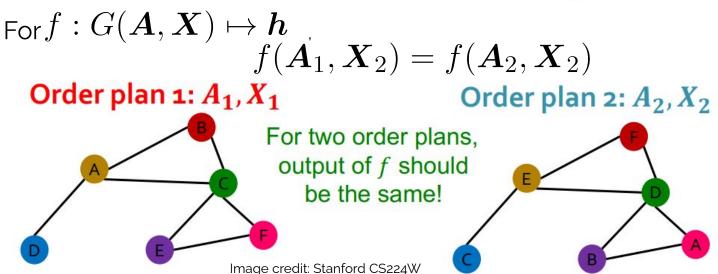
How to perform unsupervised learning?





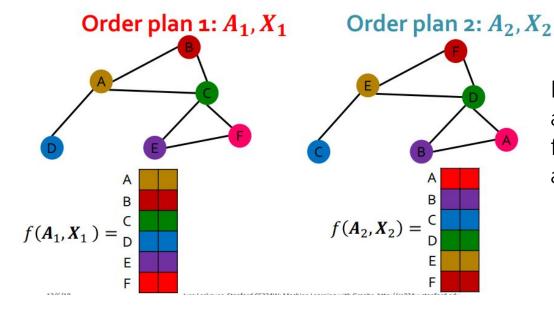
Permutation invariance



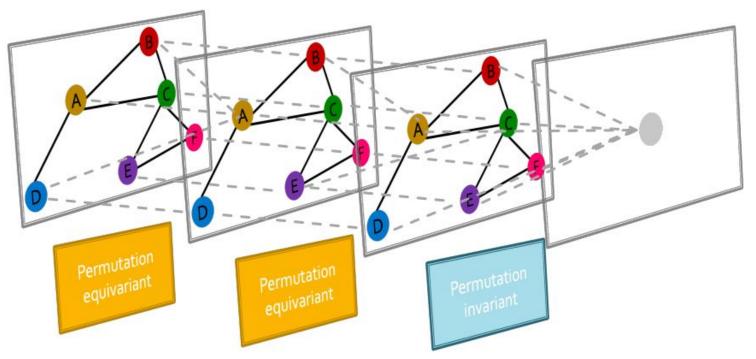


Permutation equivariance

For $f: G(A, X) \mapsto H \in \mathbb{R}^{|N| \times d}$ $f(\Pi A \Pi^{\intercal}, \Pi X) = \Pi f(A, X)$ for any permutation Π



In other words, if the nodes are re-ordered, the learned features are re-ordered accordingly A typical GNN consists of multiple permutation equivariant/invariant layers



Graph convolutional networks (GCNs)

 $h_{v}^{(0)}$ for all $v \in V$. = x_n Node v's ... is just node v's initial original features. embedding. and for $k = 1, 2, \ldots$ upto K: $= ~~ f^{(k)} \left(W^{(k)} \cdot rac{\sum\limits_{u \in \mathcal{N}(v)} h^{(n-1)}_u}{|\mathcal{N}(v)|} + B^{(k)} \cdot rac{h^{(k-1)}_v}{|\mathcal{N}(v)|}
ight)$ $h_v^{(k)}$ Node v's Mean of v's embedding at neighbour's step k. embeddings at step k-1.

Color Codes:

Embedding of node v.

Embedding of a neighbour of node v.

(Potentially) Learnable parameters.

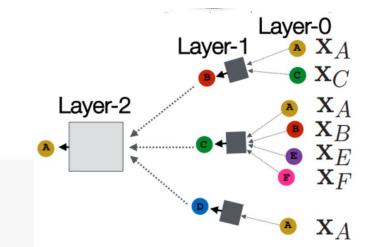
Image credit: https://distill.pub/2021/understanding-gnns/

Node v's

embedding at

step k-1.

for all $v \in V$.



Graph attention networks (GATs)

$h_v^{(0)}$	=	x_v	for all $v \in V$	•		
Node <i>v</i> 's initial embedding.			t node v 's features.			
and for $k=$	$1, 2, \ldots$ upt	o K:				
$h_v^{(k)}$	$= f^{(k)}$	$\left(W^{(i)}\right)$	$(k) \cdot \left[\sum_{u \in \mathcal{N}(u)} \right]$	$lpha_{vu}^{(k-1)}h_{u}^{(k-1)}+lpha_{vv}^{(k-1)}$	$^{(1)}h_v^{(k-1)}\Bigg]\Bigg)$	for all $v \in V.$
Node v's	at			Weighted mean of v 's neighbour's	Node <i>v</i> 's embedding at	

embeddings at step

k - 1.

where the attention weights $\alpha^{(k)}$ are generated by an attention mechanism $A^{(k)}$, normalized such that the sum over all neighbours of each node v is 1

step k-1.

$$lpha_{vu}^{(k)} = rac{A^{(k)}ig(m{h}_v^{(k)}, m{h}_u^{(k)}ig)}{\sum\limits_{w\in\mathcal{N}(v)}A^{(k)}ig(m{h}_v^{(k)}, m{h}_w^{(k)}ig)} ext{ for all } (v,u)\in E.$$

Color Codes:

step k.

Embedding of node v.

Embedding of a neighbour of node v.

(Potentially) Learnable parameters.

Image credit: https://distill.pub/2021/understanding-gnns/

Graph sample and aggregate (GraphSAGE)

$h_v^{(0)}$	=	x_v	for all $v \in V$.	
Node v's		is ju	ıst node v 's	
initial		original features.		
embeddi	ng.			
and for h	-19	unto K		

and for $\kappa = 1, 2, \dots$ up to K:

$$egin{aligned} egin{aligned} egin{aligned} eta_v^{(k)} &=& f^{(k)}\left(W^{(k)}\cdot\left[egin{aligned} \operatorname{AGG}_{u\in\mathcal{N}(v)}(\{h^{(k-1)}_u\}),\ eta^{(k-1)}_v
ight]
ight) \end{aligned}$$

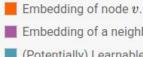
Node v's embedding at step k.

Aggregation of v's neighbour's embeddings at step k-1 ...

... Node v's embedding at step k-1.

... concatenated with ...

Color Codes:



Embedding of a neighbour of node v.

(Potentially) Learnable parameters.

Image credit: https://distill.pub/2021/understanding-gnns/

for all $v \in V$.

Graph isomorphism networks (GINs)

$$h_v^{(0)} = x_v$$
 for all $v \in V.$

... is just node v's original features. embedding.

and for $k = 1, 2, \ldots$ upto K:

Node v's

initial

$$egin{aligned} h_v^{(k)} &= f^{(k)} \left(\sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} + (1 + \epsilon^{(k)}) \cdot egin{smallmatrix} h_v^{(k-1)} \ \end{pmatrix}
ight) \end{aligned}$$

for all $v \in V$.

Node v's	Sum of v's	
embedding at	neighbour's	
step k.	embeddings at	
	step $k-1$.	

Color Codes:

Embedding of node v.

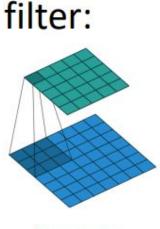
Embedding of a neighbour of node v.

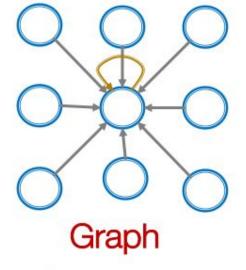
(Potentially) Learnable parameters.

Image credit: https://distill.pub/2021/understanding-gnns/

Node v's embedding at step k-1.

Connection to CNNs and Transformers





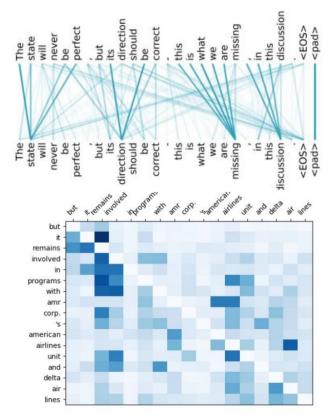
- CNN is GNN that keeps local ordering
- CNN not permutation-invariant

GNN formulation: $\mathbf{h}_{v}^{(l+1)} = \sigma(\mathbf{W}_{l} \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_{u}^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, \dots, L-1\}$

CNN formulation: $\mathbf{h}_{v}^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_{l}^{u} \mathbf{h}_{u}^{(l)} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, \dots, L-1\}$

Image credit: Stanford CS224W

Connection to CNNs and Transformers



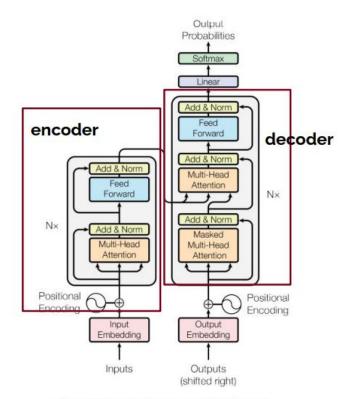
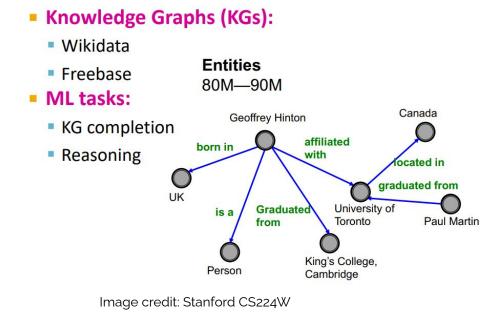


Figure 1: The Transformer - model architecture.

Self-attention (plus feed forward) is a layer of GAT on a complete graph!

Scaling up training

Practical graphs are large yet sparse



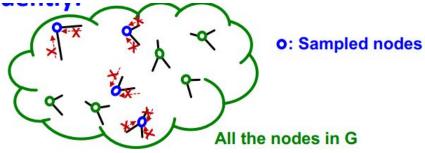
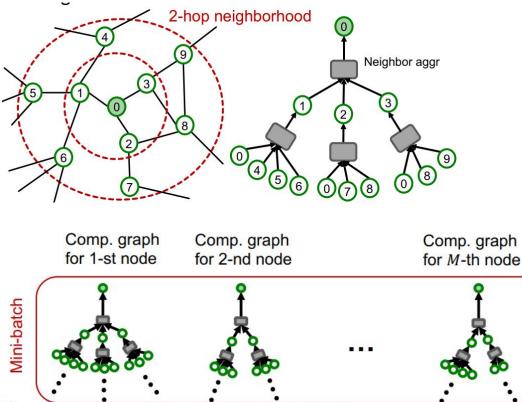
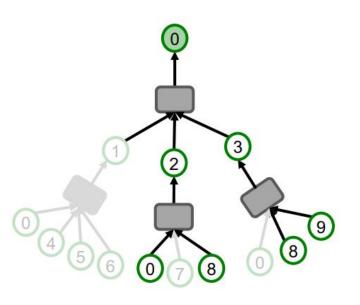


Image credit: Stanford CS224W

- Mini-batch subsampling induces isolated nodes
- No info to aggregate inside the mini-batch for most nodes

Two careful sub-sampling strategies





Neighborhood sampling

Image credit: Stanford CS224W

Two careful sub-sampling strategies

Large graph

Sampled subgraph (small enough to be put on a GPU)

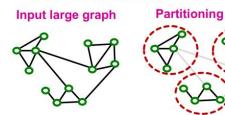
Layer-wise node embeddings update on the GPU

Rationale: important to keep the community structures, i.e., keep the "backbone" nodes

Image credit: Stanford CS224W

Cluster-GCN consists of two steps:

- Pre-processing: Given a large graph, partition it into groups of nodes (i.e., subgraphs).
- Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.



Mini-batch training Message-passing over induced subgraph to compute the loss

Sample

Software

PyTorch Geometric (PyG)

Deep Graph Library (DGL)

https://pytorch-geometric.readthedocs.io/en/latest/

https://www.dql.ai/

Further reading

- What are graph neural networks?
 https://blogs.nvidia.com/blog/2022/10/24/what-are-graph-neural-networks/
- A Gentle Introduction to Graph Neural Networks <u>https://distill.pub/2021/gnn-intro/</u>
- Understanding Convolutions on Graphs
 <u>https://distill.pub/2021/understanding-gnns/</u>
- Graph Neural Networks: A Review of Methods and Applications
 <u>https://arxiv.org/abs/1812.08434</u>
- Stanford CS224W: Machine Learning with Graphs <u>https://web.stanford.edu/class/cs224w/index.html</u>
- Graph Representation Learning https://www.cs.mcgill.ca/~wlh/grl_book/