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Supervised learning

supervised learning: find functional relationship between input x and target y

– Underlying true function: f0

– Training data: {xi,yi} with yi ≈ f0 (xi)

– Choose a family of functions H, so that

∃f ∈ H that is close to f0

– Find f , i.e., optimization

min
f∈H

∑
i

ℓ (yi, f (xi)) + Ω (f)

classification (y also called labels) or regression

object recognition, semantic segmentation, object detection, machine

translation, image captioning, sentiment analysis, etc

2 / 69



Unsupervised learning

unsupervised learning: discover hidden structure in data, e.g., dimension

reduction (subspace/manifold learning/sparse coding), clustering (e.g., k-means,

spectral clustering), density estimation (e.g., GMM), etc

(Credit: https://www.ecloudvalley.com/)
(Credit: https://machinelearningmastery.com/)
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Model distributions

notations: X,Y—RVs or events; x,y—realization of RVs;

P [A]—probability of event A; p: probability density function;

θ in p (·;θ)—parameters in parametrized density p

model p (Z)—generative model, as new samples can be generated

– generate new samples

– quantitative analysis: mean, variance, moments, probability (e.g., rare

events)

– Bayesian learning/latent variable models: X—observations, Z—hidden

variables

P [Z | X] =
P [X | Z]P [Z]

P [X]

involving many probability density functions
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Challenges

given samples {zi} drawn iid from pdata (Z)

– modeling: which pmodel(Z;θ) gives good approximation?

– computation:

* parameter estimation: invoking maximum likelihood estimation

max
θ

∏
i

pmodel (zi;θ) ⇐⇒ max
θ

g (θ)
.
=

∑
i

log pmodel (zi;θ)

g (θ) can be highly nonconvex and hence hard to solve globally

* quantitative analysis: many quantities, e.g., mean, variance,

moments, likelihood, involve high-dimensional integrals

– sampling: high-dimensional sampling from even a known pmodel (Z;θ) is

expensive, e.g., Markov Chain Monte Carlo (MCMC)

classic methods: mixture models (e.g., GMM), kernel density estimation (Parzen

window method)
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Models we’ll cover

(Credit: adapted from Stanford CS231N slides)

models focused on direct data generation

– Adversarial Generative Networks (GANs) [Goodfellow et al., 2014]

– Variational Autoencoder (VAE)

[Kingma and Welling, 2013, Kingma and Welling, 2019]

– Diffusion Models [Sohl-Dickstein et al., 2015, Yang et al., 2022]

models focused on density modeling (and data generation)

– Normalization Flow

[Rezende and Mohamed, 2015, Papamakarios et al., 2019] 6 / 69



Outline

Adversarial generative network (GAN)

Variational autoencoder (VAE)

Diffusion models

Normalization flow

Suggested reading
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Learning via competition

(Credit: Stanford CS231N)

– task: sample from a high-dimensional

training distribution

– idea: map samples from a simple

distribution to samples from the training

distribution

– how to: measure the difference between

mapped/training distributions

One solution: introduce a biased critic/discriminator

(Credit: Stanford CS231N)

– Discriminator: try to distinguish

real (training) vs. fake (mapped)

samples

– Generator: try to “fool” the

discriminator by learning to

generate realistic-looking images

Hope: the generator learns enough

when the competition is stabilized 8 / 69



GAN objective

– Discriminator: try to distinguish real (training) vs. fake (mapped) samples

– Generator: try to “fool” the discriminator by learning to generate

realistic-looking images

Hope: the generator learns enough when the competition is stabilized

min
θg

max
θd

Ex∼ptrain log Dθd (x)︸ ︷︷ ︸
discriminator output

for real data

+Ez∼p(Z) log[1−Dθd

(
Gθg (z)

)︸ ︷︷ ︸
discriminator output

for fake data

]

– discriminator output: (0, 1) indicates likelihood of being real image (e.g.,

by passing sigmoid activations at output)

– discriminate wants to maximize the objective so that Dθd (x) is close to 1

and Dθd

(
Gθg (z)

)
is close to 0

– generators wants to minimize the objective so that Dθd

(
Gθg (z)

)
is close

to 1
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Training GANs: minimax optimization

min
θg

max
θd

Ex∼ptrain logDθd (x) + Ez∼p(Z) log[1−Dθd

(
Gθg (z)

)
]

minimax (saddle point) optimization—way harder than minimization

heuristic algorithm: alternate between

– maximize wrt θd using gradient ascent

max
θd

Ex∼ptrain logDθd (x) + Ez∼p(Z) log[1−Dθd

(
Gθg (z)

)
]

– minimize wrt θg using gradient descent

min
θg

Ez∼p(Z) log[1−Dθd

(
Gθg (z)

)
]

No guarantee this will work... [Razaviyayn et al., 2020]
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Training GANs: the trick

minimize wrt θg using gradient descent

min
θg

Ez∼p(Z) log[1−Dθd

(
Gθg (z)

)
]

... but bit of numerical issue

(Credit: Stanford CS231N)

– grad. large when D(G(z)) is large, i.e., generator

is already good

– grad. small when D(G(z)) is small, i.e., generator

is not good, esp. at the initial stage—bad!

(Credit: Stanford CS231N)

trick:

minθg Ez∼p(Z) − logDθd

(
Gθg (z)

)
instead
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GAN training pipeline

(Credit: Stanford CS231N)

– often k > 1 in practice to train the discriminator slightly faster

– overall still tricky and involves lots of tuning
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Generate new samples

after training, use the generator to generate new samples

(Credit: Stanford CS231N)

(Credit: [Goodfellow et al., 2014])
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What’s wrong?

mode collapse: samples only generated from a subset of original support

(Credit: [Srivastava et al., 2017])
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What really happens in the competition?

Lemma ([Goodfellow et al., 2014])

For any fixed G, the optimal discriminator D is D∗
G (x) = ptrain(x)

ptrain(x)+pg(x)
.

Then

C(G) = max
D

Ex∼ptrain logD (x) + Ez∼p(Z) log[1−D (G (z))]

= Ex∼ptrain logD
∗
G (x) + Ex∼pg log[1−D∗

G (x)]

= Ex∼ptrain log
ptrain (x)

ptrain (x) + pg (x)
+ Ex∼pg log

pg (x)

ptrain (x) + pg (x)

Theorem ([Goodfellow et al., 2014])

The global minimizer of C(G) is at pg = ptrain.

Also, C(G) = DKL

(
Ptrain∥Ptrain+Pg

2

)
+DKL

(
Pg∥Ptrain+Pg

2

)
− log 4, where DKL

denotes the KL-divergence KL (P∥Q) =
∫
p (x) log p(x)

q(x)
dx
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Wasserstein GAN

(Credit: Stanford CS231N)

– task: sample from a high-dimensional

training distribution

– idea: map samples from a simple

distribution to samples from the training

distribution

– how to: measure the difference between

mapped/training distributions

Jensen-Shannon (JS) divergence:

DJS (P∥Q)
.
=

1

2
DKL

(
P ∥ P +Q

2

)
+

1

2
DKL

(
Q ∥ P +Q

2

)
GAN tries to minimize C(G) = 2DJS (Ptrain∥Pg) + const

Are there better measures for the difference?
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Are all metrics created equal?

measure difference/distance between distributions

– Total variation (TV) distance

TV (P∥Q) = sup
A∈F

|P(A)−Q(A)| (F : sigma-algebra)

i.e., largest discrepancy of probabilities over all events A’s

– Kullback-Leibler (KL) divergence — asymmetric

KL (P∥Q) =

∫
p (x) log

p (x)

q (x)
dx

– Jensen-Shannon (JS) divergence — symmetric

DJS (P∥Q) =
1

2
DKL

(
P ∥ P +Q

2

)
+

1

2
DKL

(
Q ∥ P +Q

2

)

– Earth-Mover (EM) or Wasserstein-1 distance (or

Kantorovich–Rubinstein metric)

W1 (P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ ∥x− y∥
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Earth mover distance/W-distance

(Credit: https://vincentherrmann.github.io/blog/wasserstein/)

problem: move around stacks of earth Pr to match the shape/distribution of Pθ

goal: minimize the total movement effort, measured in distance × volume

(Credit:

https://vincentherrmann.github.io)

restrict Pθ and Pr to distributions

– let γ be a transport plan, Γ set of all plans.

–
∑

x γ (x, y) = Pr(y) ∀ y: total move-in mass

matches the target

–
∑

y γ (x, y) = Pθ(x) ∀ x: total move-out mass

matches the original

– EMD (Pr, Pθ) = infγ∈Γ

∑
x,y ∥x− y∥ γ(x, y) =

infγ∈Γ E(x,y)∼γ ∥x− y∥
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Why Wasserstein distance?

P : (0,W ),W ∼ Uniform(0, 1)

Q : (θ, V ), V ∼ Uniform(0, 1)
– TV (P∥Q) =

1 θ ̸= 0

0 θ = 0

– DKL =

∞ θ ̸= 0

0 θ = 0

– DJS =

log 2 θ ̸= 0

0 θ = 0

– W1 (P,Q) = |θ|

(Credit: [Arjovsky et al., 2017])

W-distance vs. JS-divergence 19 / 69



Wasserstein GAN (WGAN)

W1 (P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ ∥x− y∥

hard to compute due to the minimization with the Γ constraint

Lemma (Kantorovich-Rubinstein duality)

W1 (P,Q) = supf :∥f∥L≤1 (Ex∼P f (x)− Ex∼Qf (x)), where ∥f∥L ≤ 1

denotes all functions with Lipschitz constant no greater than 1. (A function f

is Lipschitz with a constant C if ∥f (x)− f (y)∥ ≤ C ∥x− y∥ for all x,y.)

WGAN:

min
θg

max
θd

Ex∼ptrainDθd (x)− Ez∼p(Z)Dθd

(
Gθg (z)

)
s. t. ∥Dθd∥L ≤ 1.

GAN:

min
θg

max
θd

Ex∼ptrain logDθd (x)− Ez∼p(Z) − log[1−Dθd

(
Gθg (z)

)
]

Isn’t it just a simple modification?
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WGAN-GP

To train

min
θg

max
θd

Ex∼ptrainDθd (x)− Ez∼p(Z)Dθd

(
Gθg (z)

)
s. t. ∥Dθd∥L ≤ 1

the challenge is to enforce the Lipschitz constraint. Two heuristic:

– weight clipping: clip the discriminator θd into a predefined range (−c, c).

But performance sensitive to choice of c

– gradient penalty (GP): ∥Dθd∥L ≤ 1 =⇒ ∥∇xD∥ ≤ 1, and max achieved

when equality holds =⇒ encourage ∥∇xD∥ = 1

min
θg

max
θd

[
Ex∼ptrainDθd (x)− Ez∼p(Z)Dθd

(
Gθg (z)

)
−

λEx̃∼p̃

(
∥∇x̃Dθd (x̃)∥ − 1

)2]
,

where x̃ = tx+ (1− t)Gθg (z) with t ∼ uniform (0, 1)
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WGAN-GP training

min
θg

max
θd

[
Ex∼ptrainDθd (x)− Ez∼p(Z)Dθd

(
Gθg (z)

)
−

λEx̃∼p̃

(
∥∇x̃Dθd (x̃)∥ − 1

)2]
,

where x̃ = tx+ (1− t)Gθg (z) with t ∼ uniform (0, 1)

(Credit: [Gulrajani et al., 2017]) 22 / 69



Deep convolutional GAN (DC-GAN)

both the generator Gθg and discriminator Dθd are deep convolutional

networks [Radford et al., 2015]

the generator based on transposed

(fractionally strided) convolutions

zero-padding, zero-dilution, then

convolution

forward stride = 2

https://github.com/vdumoulin/conv_arithmetic

PyTorch implementation:

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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DC-GAN results

image generation

z interpolation
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DC-GAN results

image arithmetic
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Conditional GAN

augment additional info to both D and

G inputs [Mirza and Osindero, 2014]

image + label (cond.)

text generation + image (cond.)
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Conditional GAN

image-to-image translation [Isola et al., 2016]

training data idea: conditional GAN + regression loss
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CycleGAN

image-to-image translation without paired data [Zhu et al., 2017]

training data
idea: match distributions with cycle consistency

G: forward generator F : backward generator
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More on CycleGAN

two generators =⇒ two GANs

Lcyc looks familiar? autoencoder!

check out more https://junyanz.github.io/CycleGAN/
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Progressive GAN

Toward high-resolution generation: progressively grow the generator output

(and discriminator input) resolution as training goes on [Karras et al., 2017]
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BigGAN

Toward high-resolution generation [Brock et al., 2018]
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Outline

Adversarial generative network (GAN)

Variational autoencoder (VAE)

Diffusion models

Normalization flow

Suggested reading
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Autoencoder vs. Variational autoencoder

(Credit: https://www.jeremyjordan.me/variational-autoencoders/)

– Autoencoder maps each input to a deterministic vector

– Variational Autoencoder maps each input to a (parameterized) distribution
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Variational autoencoder

(Credit: https://www.jeremyjordan.me/variational-autoencoders/)

– smoothness: nearby codes tend to produce very similar reconstructions

Bayesian generation: to draw an x from p(X,Z), where p(X,Z) = p(X|Z)p(Z)

– Step 1: draw a z ∼ p(Z)

– Step 2: draw an x ∼ p(X|z)
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Variational AE (VAE)

Model the generation via an explicit density

– p(Z;θ), p(X|Z;θ) are easy to

sample from, e.g., N (µ,Σ)

– the nonlinear mapping g (z) allows

expressive form of p (X | z; g (z))

GANs

(Credit: Stanford CS231N)

– task: sample from a high-dimensional

training distribution

– idea: map samples from a simple

distribution to samples from the training

distribution

– how to: measure the difference between

mapped/training distributions (JS,

W-dist, etc)
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Augmenting the encoder
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A VAE example

assume both p(X | z) and q (Z | x) are multivariate Gaussian, i.e., N (µ,Σ)

(Credit: Stanford CS231N)
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How to train it?

Model the generation via an explicit density

– p(Z;θ), p(X|Z;θ) are easy to

sample from, e.g., N (µ,Σ)

– the nonlinear mapping g (z) allows

expressive form of p (X | z; g (z))

Assume m training samples x1, . . . ,xm

max
θ,g

m∏
i=1

p (xi;θ, g) ⇐⇒ max
θ,g

m∑
i=1

log p (xi;θ, g)

⇐⇒ max
θ,g

m∑
i=1

log

∫
z

p (xi | z; g (z)) p (z;θ) dz

(likely) intractable due to the integral

Monte Carlo sampling approx.? sample zj ’s iid from p (z;θ)∫
z
p (x | z; g (z)) p (z;θ) dz ≈ 1

K

∑K
j=k p (x | zj ; g (zj))—expensive and hard

to converge
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Get around

x—observation, z—latent variable

– p(z)—prior

– p(x | z)—likelihood/conditional

– p(z | x)—posterior

want:

max
θ,g

m∑
i=1

log p (xi;θ, g)

Definition (Evidence lower bound (ELBO))

log p (x) ≥ L (x; q)
.
= log p (x)−DKL (q (Z | x) ∥p (Z | x)) for any

probability distribution q over Z (remember DKL(·|·) ≥ 0)

variational inference: find q so that the lower bound is tight as possible (i.e.,

q (Z | x) ≈ p (Z | x) for all x) but remains tractable

idea: restrict to a parameterized family q (Z | x; f (x))

(lots of other ideas in Bayesian inference, e.g., mean-field approximation. See,

e.g., Chapter 19 of [Goodfellow et al., 2017])
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How to train it?

need another identity

log p (x)− KL (q (Z | x) ∥p (Z | x)) = Ez∼q log p (x | z)−DKL (q (Z | x) ∥p (Z))

maximize the right side instead

– maximizing −DKL (q (Z | x) ∥p (Z)) ensures q(Z | x) close to the prior

p(Z)

– maximizing Ez∼q log p (x | z) maximizes the likelihood of reproducing

x—minimizing reconstruction error

– overall, maximizing a lower bound to maximize the original

overall objective:

max
g,f

m∑
i=1

Ez∼q(Z | xi;f(xi)) log p (xi | z; g (xi))−DKL (q (Z | xi; f (xi)) ∥p (Z))
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How to train it?

overall objective:

max
g,f

m∑
i=1

Ez∼q(Z | xi;f(xi)) log p (xi | z; g (xi))−DKL (q (Z | xi; f (xi)) ∥p (Z))

set p (Z) ∼ N (0, I)

build the computational graph for a single sample:

(Credit: adapted from Stanford CS231N)

– although choice of N is simplistic,

the nonlinear mapping is powerful

– all operations are differentiable so

far

41 / 69



How to train it?

overall objective:

max
g,f

m∑
i=1

Ez∼q(Z | xi;f(xi)) log p (xi | z; g (xi))−DKL (q (Z | xi; f (xi)) ∥p (Z))

set p (Z) ∼ N (0, I)

build the computational graph for a single sample:

(Credit: adapted from Stanford CS231N) (Credit: adapted from Stanford CS231N)
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How to train it?

(Credit: adapted from Stanford CS231N)
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Generate new samples

(Credit: Stanford CS231N)

the coordinates of the codes potentially correspond to different physical

properties (due to the diagonal covariance prior)
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β-VAE

VAE objective:

max
g,f

m∑
i=1

Ez∼q(Z | xi;f(xi)) log p (xi | z; g (xi))−DKL (q (Z | xi; f (xi)) ∥p (Z))

β-VAE objective [Higgins et al., 2017]:

max
g,f

m∑
i=1

Ez∼q(Z | xi;f(xi)) log p (xi | z; g (xi))− βDKL (q (Z | xi; f (xi)) ∥p (Z))

β > 1 to put more emphasis on the similarity of q (Z | xi; f (xi)) and p (Z) =⇒
diagonal covariance of p(Z) encourages decorrelation of coordinates in

Z—disentangled representation
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Vector quantization (VQ)-VAE

(Credit: [Van Den Oord et al., 2017])

– Finitely many latent codes, and hence discrete distribution

– Code assignment via nearest neighbor search

– Training via minimizing

L = ∥x−D(ek)∥22︸ ︷︷ ︸
reconstruction loss

+ ∥sg[E(x)]− ek∥22︸ ︷︷ ︸
VQ loss

+β∥E(x)− sg[ek]∥22︸ ︷︷ ︸
commitment loss

where sg is the stop gradient operator

– Plus an auto-regressive prior
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VQ-VAE-2

(Credit: [Razavi et al., 2019])

– Hierarchical VQ-VAE

– A prior learned on the discrete codebook

– In combination with self-attention enhanced autoregressive prior
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Proof of the key equality

we’ll omit the density probability for simplicity

DKL(q(Z|x)∥p(Z|x))

=

∫
q(z|x) log q(z|x)

p(z|x)dz

=

∫
q(z|x) log q(z|x)p(x)

p(z,x)
dz Because p(z|x)=p(z,x)/p(x)

=

∫
q(z|x)

(
log p(x) + log

q(z|x)
p(z,x)

)
dz

= log p(x) +

∫
q(z|x) log q(z|x)

p(z,x)
dz Because

∫
q(z|x)dz=1

= log p(x) +

∫
q(z|x) log q(z|x)

p(x|z)p(z)dz Because p(z,x)=p(x|z)p(z)

= log p(x) +DKL(q(z|x)∥p(z))− Ez∼q(z|x) log p(x|z).

So

log p(x)−DKL(q(Z|x)∥p(Z|x)) = Ez∼q(z|x) log p(x|z)−DKL(q(z|x)∥p(z)).
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Outline

Adversarial generative network (GAN)

Variational autoencoder (VAE)

Diffusion models

Normalization flow

Suggested reading
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Image to noise, and noise back to image

(Credit: [Yang et al., 2022])

Forward diffusion: image −→ noise

Reverse diffusion: noise −→ image
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Forward diffusion

Start from an image x0 and αi ∈ (0, 1) for all i

– Step 1: x1 =
√
α1x0 +

√
1− α1ε1 where ε1 ∼ N(0, I)

– Step 2: x2 =
√
α2x1 +

√
1− α2ε2 where ε2 ∼ N(0, I)

– · · ·
– Step T : xT =

√
αTxT−1 +

√
1− αT εT where εT ∼ N(0, I)

Now we have

xT =
√
αTxT−1 +

√
1− αT εT

=
√
αT

(√
αT−1xT−2 +

√
1− αT−1εT−1

)
+

√
1− αT εT

=
√
αTαT−1xT−2 +

√
1− αTαT−1ε where ε ∼ N(0, I)

Keep the induction, we obtain

xT =

√√√√ T∏
t=1

αt x0 +

√√√√1−
T∏

t=1

αt ε where ε ∼ N(0, I)

typically α1 > α2 > · · · > αT , and so xT ∼ N(0, I) as T → ∞
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Reverse diffusion

Assume the true prob. density in the forward diffusion q(xt|xt−1). If we also

know q(xt−1|xt), we can reverse the process

Solution via simplification:

q(xt−1|xt) is approximated by

pθ(xt−1|xt)
.
=

N(µθ(xt, t),Σθ(xt, t)), where

µθ(xt, t) and Σθ(xt, t) are

learnable function parameterized

by DNNs

– Recall VAE?

– Training: minimize

dist(q(x0), pθ(x0)) (Credit: [Sohl-Dickstein et al., 2015])
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Training

minimize dist(q(x0), pθ(x0)). If we can cross-entropy loss, then

LCE = −Eq(x0) log pθ(x0)

= −Eq(x0) log
(∫

pθ(x0:T )dx1:T

)
= −Eq(x0) log

(∫
q(x1:T |x0)

pθ(x0:T )

q(x1:T |x0)
dx1:T

)
= −Eq(x0) log

(
Eq(x1:T |x0)

pθ(x0:T )

q(x1:T |x0)

)
≤ −Eq(x0:T ) log

pθ(x0:T )

q(x1:T |x0)

= Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= LVLB

where VLB means evidence lower bound
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Training

After further rearrangement,

LVLB = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= Eq[DKL(q(xT |x0) ∥ pθ(xT ))︸ ︷︷ ︸

LT :constant

+

T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1: KL between Gaussians

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
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Diffusion models (and other models in action)

https://openai.com/dall-e-2/
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Diffusion models (and other models in action)

https://openai.com/dall-e-2/
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Diffusion models (and other models in action)
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Modeling density directly

(Credit: adapted from Stanford CS231N slides)

Classical ideas:

– (Gaussian) Mixture models

– non-parametric methods, e.g., kernel density estimation
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Change of variable theorem in probability

Consider a scalar random variable Z and its density π(z), what’s the density of

x = f(z), suppose f is invertible?

p(x) = π(z)

∣∣∣∣ dzdx
∣∣∣∣ = π(f−1(x))

∣∣∣∣df−1

dx

∣∣∣∣
The multivariate version

z ∼ π(z),x = f(z),z = f−1(x)

p(x) = π(z)

∣∣∣∣det dzdx
∣∣∣∣ = π(f−1(x))

∣∣∣∣det df−1

dx

∣∣∣∣
where

df−1

dx
is the Jacobian of the inverse function f−1 wrt x
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Normalization flow: idea

(Credit: https://lilianweng.github.io/)

zi−1 ∼ pi−1(zi−1), zi = fi(zi−1), thus zi−1 = f−1
i (zi)

pi(zi) = pi−1(f
−1
i (zi))

∣∣∣∣det df−1
i

dzi

∣∣∣∣
= pi−1(zi−1)

∣∣∣∣det( dfi
dzi−1

)−1
∣∣∣∣ According to the inverse func theorem.

= pi−1(zi−1)

∣∣∣∣det dfi
dzi−1

∣∣∣∣−1

According to a property of Jacobians of invertible func.

= . . .

= p0(z0)

i∏
j=1

∣∣∣∣det dfj
dzj−1

∣∣∣∣−1
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Normalization flow: ideas

pi(zi) = p0(z0)
i∏

j=1

∣∣∣∣det dfj
dzj−1

∣∣∣∣−1

=⇒ p(x) = pK(zK) = p0(z0)
K∏

j=1

∣∣∣∣det dfj
dzj−1

∣∣∣∣−1

=⇒ log p(x) = log p0(z0)−
K∑

j=1

log

∣∣∣∣det dfj
dzj−1

∣∣∣∣
So we can do maximum likelihood inference directly:

max
θ

1

N

N∑
ℓ=1

log p(xℓ)

f ’s are parametrized by DNNs with shared weights

Key challenges:

– ensure that f is invertible so that det
dfj

dzj−1
does not vanish

– computational tractability due to det
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Summary of generative models

(Credit: https://lilianweng.github.io/)
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Suggested reading

– CVPR 2018 tutorial on GANs CVPR2018TutorialonGANs

– NIPS 2016 Tutorial:Generative Adversarial Networks

https://arxiv.org/abs/1701.00160

– An Introduction to Variational Autoencoders [Kingma and Welling, 2019]

– Normalizing Flows for Probabilistic Modeling and Inference

https://arxiv.org/abs/1912.02762

– From GAN to WGAN https://lilianweng.github.io/lil-log/2017/

08/20/from-GAN-to-WGAN.html

– From Autoencoder to Beta-VAE https://lilianweng.github.io/

lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

– Flow-based Deep Generative Models https://lilianweng.github.io/

lil-log/2018/10/13/flow-based-deep-generative-models.html#

types-of-generative-models

– What are Diffusion Models? https:

//lilianweng.github.io/posts/2021-07-11-diffusion-models/
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