Generative Models: GAN, VAE,
Normalization Flow, Diffusion Models

Ju Sun
Computer Science & Engineering

University of Minnesota, Twin Cities

December 6, 2022

1/69

Supervised learning

supervised learning: find functional relationship between input @ and target y

— Underlying true function: fo

— Training data: {x;,y,} with y, = fo ()

— Choose a family of functions H, so that
Jf € H that is close to fo

— Find f, i.e., optimization

min E;f(ypf(wﬁ)**ﬁ(f)

classification (y also called labels) or regression
object recognition, semantic segmentation, object detection, machine
translation, image captioning, sentiment analysis, etc

2/69

Unsupervised learning

unsupervised learning: discover hidden structure in data, e.g., dimension
reduction (subspace/manifold learning/sparse coding), clustering (e.g., k-means,
spectral clustering), density estimation (e.g., GMM), etc

Clustering

Clustert

=

Clusters

(Credit: https://www.ecloudvalley.com/) i
(Credit: https://machinelearningmastery.com/)

3/69

https://www.ecloudvalley.com/
https://machinelearningmastery.com/

Model distributions

notations: X,Y—RVs or events; x, y—realization of RVs;
P [A]—probability of event A; p: probability density function;
0 in p(-; 0)—parameters in parametrized density p

model p (Z)—generative model, as new samples can be generated

— generate new samples

Pdata (Z>

— quantitative analysis: mean, variance, moments, probability (e.g., rare
events)
— Bayesian learning/latent variable models: X—observations, Z—hidden
variables
PIX | Z]P[Z]
PX]
involving many probability density functions

PZ|X]=

4/69

Challenges

given samples {z;} drawn iid from pgata (Z)

— modeling: which pmodei(Z; 0) gives good approximation?
— computation:

* parameter estimation: invoking maximum likelihood estimation

max Hpmcdel (2::0) <= max g (0) = Zlogpmodel (2:;0)

g (0) can be highly nonconvex and hence hard to solve globally

* quantitative analysis: many quantities, e.g., mean, variance,
moments, likelihood, involve high-dimensional integrals

— sampling: high-dimensional sampling from even a known pmeodel (Z;0) is
expensive, e.g., Markov Chain Monte Carlo (MCMC)

classic methods: mixture models (e.g., GMM), kernel density estimation (Parzen

window method)

5/69

Models we’ll cover

Taxonomy of Generative Models Dred
— GAN
Generative models

Explicit density Implicit density |

| Tractable density Approximate density ‘ Markov Chain ‘

\ GsN
Flow-based methods Variational Markov Chain Diffusion Models

Normalization flow Variational Autoencoder Boltzmann Machine

(Credit: adapted from Stanford CS231N slides)

models focused on direct data generation

— Adversarial Generative Networks (GANs) [Goodfellow et al., 2014]

— Variational Autoencoder (VAE)
[Kingma and Welling, 2013, Kingma and Welling, 2019]

— Diffusion Models [Sohl-Dickstein et al., 2015, Yang et al., 2022]
models focused on density modeling (and data generation)

— Normalization Flow

[Rezende and Mohamed, 2015, Papamakarios et al., 2019] 6 /69

Adversarial generative network (GAN)

7/69

Learning via competition

— task: sample from a high-dimensional
Output: Sample from

training distribution training distribution

— idea: map samples from a simple

Generator L . ..
distribution to samples from the training

distribution

Input: Random noise

— how to: measure the difference between

Credit: Stanford CS231N .. S
(Credit: Stanfor) mapped/training distributions

One solution: introduce a biased critic/discriminator

— Discriminator: try to distinguish
Real or Fake

Discriminator Network

real (training) vs. fake (mapped)
samples

Fake Images Real Images
(from generator) | M i§ ’ (from training set) — Generator: try to “fool” the

discriminator by learning to

Random noise generate realistic-looking images

(Credit: Stanford CS231N) Hope: the generator learns enough
when the competition is stabilized 8 / 69

GAN objective

— Discriminator: try to distinguish real (training) vs. fake (mapped) samples
— Generator: try to “fool” the discriminator by learning to generate
realistic-looking images

Hope: the generator learns enough when the competition is stabilized

minmax Egp,,, log Do, (®) +Ezvp(z)log[l = Do, (G, (2))]
g d N e’
discriminator output discriminator output

for real data for fake data

— discriminator output: (0, 1) indicates likelihood of being real image (e.g.,
by passing sigmoid activations at output)

— discriminate wants to maximize the objective so that Dg, () is close to 1
and Dy, (G, (2)) is close to 0

— generators wants to minimize the objective so that Dy, (Ggg (z)) is close
to 1

9/69

Training GANs: minimax optimization

minmax Eanp,,, 108 Do, (@) + Exnp(z) loglL — Do, (Gs, (2))]
minimax (saddle point) optimization—way harder than minimization
heuristic algorithm: alternate between

— maximize wrt 6, using gradient ascent
I%Z;X Ezrpyyi 108 Do,y () + Bz op(z) log[l — Do, (Ggg (z))]
— minimize wrt 6, using gradient descent

n(}in E.p(z) log[l — De, (Ge, (2))]
g

No guarantee this will work... [Razaviyayn et al., 2020]

10/69

Training GANSs: the trick

minimize wrt 6, using gradient descent
H{;in E.pz)log[l — Dy, (Gg_q (z))]

... but bit of numerical issue

— grad. large when D(G(z)) is large, i.e., generator
is already good

— grad. small when D(G(z)) is small, i.e., generator

LA X o e ww

is not good, esp. at the initial stage—bad!

(Credit: Stanford CS231N)

f

trick:
High gradignt signal mine, E..p(z) —log Do, (Go, (2))
" instead

Cow gradient signal 11/69

GAN training pipeline

for number of training iterations do

T sicpsHo
 Sample minibatch of m noise samples {z(1), ..., (™} from noise prior p,(z).
o Sample minibatch of m examples {z(),...,z(™} from data generating distribution
Paata(T)-

o Update the discriminator by ascending its stochastic gradient:

Vo, [10g Do, (a?) + log(1 - Da, (Go, (=)))

i=1
end for

 Sample minibatch of m noise samples {z(1), ..., z(™} from noise prior p, (z).
® Update the generator by ascending its stochastic gradient (improved objective):

Lo .
Vo, ;log(Ded(Gog(z()))

end for

(Credit: Stanford CS231N)

— often k > 1 in practice to train the discriminator slightly faster

— overall still tricky and involves lots of tuning

12/69

Generate new samples

after training, use the generator to generate new samples

Output: Sample from
training distribution

Generator
Network
Input: Random noise

(Credit: Stanford CS231N)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples

(Credit: [Goodfellow et al., 2014])

13 /69

mode collapse: samples only generated from a subset of original support

Figure 2: Density plots of the true data and generator distributions from different GAN methods

trained on mixtures of Gaussians arranged in a ring (top) or a grid (bottom).

4
08
o®e = 2 1 o"™e | »%e
® o - 1@ '€ Plie ®
i ._»
0a® . . i ® .|
-1 [J 1 i 10 08 [] 5 -1 0 1 1 3 1
(a) True Data (b) GAN (c) ALL (d) Unrolled (e) VEEGAN
6 6 6 6
4 4 4 4
2 2 2 2 -
o 0 0 of E——
2| . » 2 2 2|
” » » | - -4 -
-5 0 NS 0 e 0 NN 0 e 0
(f) True Data (2) GAN (h) ALI (i) Unrolled (j) VEEGAN
(Credit: [Srivastava et al., 2017])

14 /69

What really happens in the competition?

Lemma ([Goodfellow et al., 2014])

For any fixed G, the optimal discriminator D is D¢ () =

Dtrain ()
Dirain () +Pg ()

Then
C(GQ) = mngzwpmin log D (x) + E,p(z)log[l — D (G (2))]

= Eonpyn 108 DG (®) + Earp, log[l — Dg ()]

Ptrain (Jf)
Prain (T) + pg ()

Py ()

= Eorpyain 108 e
o Ptrain (CE) +pg (CE)

+ EmNpg log

Theorem ([Goodfellow et al., 2014])
The global minimizer of C(G) is at pg = Ptrain-

Also, C(G) = Dk (Pt,ainuw) + D <P \|w) — log 4, where Dyt

denotes the KL-divergence KL (P||Q) = [p (x) log f}’g:; dx

15 /69

Wasserstein GAN

— task: sample from a high-dimensional

Output: Sample from training distribution
training distribution
[} — idea: map samples from a simple
Generator

Network distribution to samples from the training
distribution

Input: Random noise
— how to: measure the difference between

Credit: Stanford CS231N - . . .

() mapped/training distributions

Jensen-Shannon (JS) divergence:

D (PI@) = 30 (P11 252 + 10 (@1 £52)

GAN tries to minimize C(G) = 2Djs (Prain|| Py) + const

Are there better measures for the difference?

16 /69

Are all metrics created equal?

measure difference/distance between distributions

Total variation (TV) distance
TV (P||Q) = sup |[P(A) — Q(A)| (F : sigma-algebra)
AeF

e., largest discrepancy of probabilities over all events A’s

Kullback-Leibler (KL) divergence — asymmetric

KL(PIQ) = [p(@)lo %) de

Jensen-Shannon (JS) divergence — symmetric

Dys (PHQ) = %DKL (P || P+Q> + DKL (

P+Q
2

Earth-Mover (EM) or Wasserstein-1 distance (or
Kantorovich—Rubinstein metric)
Wi (P,Q)= inf E)~ —
1(PQ)=__inf By~ llz -yl
17 /69

Earth mover distance/W-distance

m%

(Credit: https://vincentherrmann.github.io/blog/wasserstein/)

problem: move around stacks of earth P. to match the shape/distribution of Py

goal: minimize the total movement effort, measured in distance x volume

.

restrict Py and P, to distributions

— let v be a transport plan, " set of all plans.

- >, 7 (x,y) = P-(y) V y: total move-in mass
matches the target

22,7 (x,y) = Po(z) ¥V x: total move-out mass

matches the original

(Credit: = EMD (P, Bp) = infryer 3, , llz =yl v(2,y) =

https://vincentherrmann.github.io) lnf'Yer E(I{U)N’Y ||:L - y“ 18 / 69

https://vincentherrmann.github.io/blog/wasserstein/
https://vincentherrmann.github.io

Why Wasserstein distance?

P:(0,W),W ~ Uniform(0, 1) 1 6#0
_ - - TV(PIQ) =

Q:(0,V),V ~ Uniform(0, 1) 0 6=
1.0
0.8 :g oo 0 7& 0

- Dk =
0.6 0 0 ==
o log2 6+#0
0.2 - IS =
0 =0

0.0

0.0 0.2 0.4 0.6 0.8 10 - W (P7 Q) = ‘0|

(Credit: [Arjovsky et al., 2017])
W-distance vs. JS-divergence 19/69

Wasserstein GAN (WGAN)

P, = inf E(gz)~ -
Wi (P,Q) 'yell?P,Q) (@)~ [T — Yl

hard to compute due to the minimization with the I" constraint
Lemma (Kantorovich-Rubinstein duality)

Wi (P,Q) =supy, s, <1 Ba~rf(x) —Eanqf (), where|f|, <1
denotes all functions with Lipschitz constant no greater than 1. (A function f
is Lipschitz with a constant C' if ||f (z) — f (y)|| < C ||z — y|| for all z,y.)

WGAN:

nslinr%ax Eznpyain Doy (a:) — EZNP(Z)ng (Gey (Z)) s. t. Hng HL <1.
g9 d
GAN:

H(;in I%ax Ez~piain 108 Do, (x) — Eerpz) — log[1 — Dy, (G9_q (z))]
g 0a

Isn't it just a simple modification?
20/69

WGAN-G

To train

minmax Eavp,, Do, () ~ ExopzyDo, (Go, () s.t. |Do,|, <1

6, 64
the challenge is to enforce the Lipschitz constraint. Two heuristic:
— weight clipping: clip the discriminator 64 into a predefined range (—c,c).
But performance sensitive to choice of ¢
- gradient penalty (GP): ||Dy,||, < 1= ||VzD|| <1, and max achieved
when equality holds = encourage |V D| =1

min max [Bapy, Do, () — Exvpiz) Do, (Go, (2)) -
g d

AEz 5 (HV:EDBd ()] - 1)2] ’

where & = tx + (1 —t) Go, (z) with t ~ uniform (0, 1)

21/69

WGAN-GP training

min max I:]Em'\/ptrain Dy, (x) — Eznp(z) Do, (Geg (z)) -

0y, 64
AEz~5 ([VaDe, ()| — 1)2} ’

where & = tx 4 (1 —t) Go, (z) with t ~ uniform (0, 1)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngiie = 5, @ =
0.0001, 8, =0, B2 = 0.9.
Require: The gradient penalty coefficient), the number of critic iterations per generator iteration
TNeiitics the batch size m, Adam hyperparameters «, 31, B2.
Require: initial critic parameters w, initial generator parameters ;.
1: while @ has not converged do
2 for t = 1, ..., Nerivic do

3 fori=1,..,mdo

4 Sample real data & ~ IP,., latent variable 2 ~ p(z), a random number € ~ U0, 1].
5 T+ Gy(z)

6: & e+ (1—e)a

7 L) ¢ Dy () — Dy () + M|V Dus(@) [l2 — 1)

8: end for

9: w4+ Adam(V, 2 37 L9, w, a, 81, Ba)

10: end for

11: Sample a batch of latent variables {z()}™ | ~ p(z).

122 0+ Adam(Ve: 37, —Dy(Gs(2)),0,a, 81, fa)
13: end while

(Credit: [Gulrajani et al., 2017]) 22 / 69

Deep convolutional GAN (DC-GAN)

both the generator Ggy and discriminator Dg, are deep convolutional
networks [Radford et al., 2015]

zero-padding, zero-dilution, then
the generator based on transposed convolution

® e o @

e. €. © %

(fractionally strided) convolutions

1024

forward stride = 2

https://github.com/vdumoulin/conv_arithmetic

PyTorch implementation:

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

23/69

https://github.com/vdumoulin/conv_arithmetic
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

DC-GAN results

image generation

n T : 'g‘éf;fggg!gg!
- g - |
z interpolation == B ' . .'*‘*' : -H. E)

24 /69

DC-GAN results

image arithmetic

smiling neutral neutral
woman woman man

man man

ith gl
with glasses without glasses without glasses woman vih glasses

25 /69

Conditional GAN

]
a

N —
-
IR TVPIE VR

-

augment additional info to both D and
G inputs [Mirza and Osindero, 2014]

P ey
SN WU~ D

1

WM e ND
BN

NN LN TN D
NN OB R ® P~
S el UL - O

NN WweyR N
NN N OB we — O

AN oS W
RN

Y

ALY

%

Discriminator Dixly) .

text generation + image (cond.)

User tags + annotations _| Generated tags

. &

. A A J

taxi, passenger, line,
transportation, railway
station,

.5l - | railways, si
port, car rails

S Y Y Y X

chicken. fattening,

food. raspberry. delicious, | cookie, house made.
homemade bread, biscuit, bakes

creek, lake, along, near
siver, rocky, treeline, val-
water, iver ley, woods, waters

Tove, people, posing, girl,
people, portrait, female, | youn 1, prety,

baby, indoor ‘women, happy, life 26 / 69

Conditional GAN

image-to-image translation [lsola et al., 2016]

Labels to Stros

training data idea: conditional GAN + regression loss
Paired rooq G(z)
L

} G* :argm(%nmg,xECGAN(G, D)+ \L11(G)

} where £ can(G, D) =E, ,[log D(z,y)]+
Ez,z[l()g(l - D(Iv G(LE, Z))]

L11(G) = Em.y,Z[Hy - G(Ivz)”l]

—~

27 /69

CycleGAN

image-to-image translation without paired data [Zhu et al., 2017]

training data
Unpaired

idea: match distributions with cycle consistency

G’ forward generator

F": backward generator

ey 2
[] I\/I Iv gan

X

,..,ﬁ\'/

A

>

X Y] e

T

forward cycle consistent loss

z — G(z) —>F(G()
y— Fy) —

backward cycle consistent loss

~ T
G(F(y) ~y
28/ 69

More on CycleGAN

two generators = two GANs

¢ . gy
/\\F/ : \F//\

L(G,F,Dx,Dy) =Loax(G. Dy, X,Y)
LS Y + Loan(F, Dx .Y, X)
X L Y
o | . Hosgn . e steney + ALoye(GL F),
velecomsisteney, S\.<_>~. . <__/.\ where Loy (G, F) =Eqp (0 [IF (G () — z(1]
z = G(z) - F(G(z))

+]E.u~mm(y)[”G(F(!/)) = yll]
~ T
y— Fly) = G(F(y) ~y

Lcye looks familiar? autoencoder!

Monet T Photos

Summer Winter

Monet — photo

e
zebra — horse.

photo —Monet H

horse — zebra

Photograph Monet

Van Gogh Cezanne Ukiyo-e

check out more https://junyanz.github.io/CycleGAN/

29/69

https://junyanz.github.io/CycleGAN/

Progressive GAN

Toward high-resolution generation: progressively grow the generator output
(and discriminator input) resolution as training goes on [Karras et al., 2017]

G Latent Latent Latent
v
o) ba
—

H —————

H —————————

H ———— 7

1024x1024

“es =
& i Reals
1024x1024
7

Training progl
Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-

tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.

One the right we show six example images generated using progressive growing at 1024 x 1024.

30,69

BigGAN

Toward high-resolution generation [Brock et al., 2018]

LARGE SCALE GAN TRAINING FOR
HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock* ! Jeff Donahue! Karen Simonyan'
Heriot-Watt University DeepMind DeepMind
ajb5@hw.ac.uk jeffdonahue@google.com simonyan@google.com
ABSTRACT
Despite recent progress in g image i successfully

high-resolution, diverse s.xmples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by reducing the variance of the Generator’s input. Our
modifications lead to models which set the new state of the art in class-conditional
image synthesis. When trained on ImageNet at 128x 128 resolution, our models
(BigGANS) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Dis-
tance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

31/69

Variational autoencoder (VAE)

32/69

Autoencoder vs. Variational autoencoder

Code in autoencoder Code in variational autoencoder

Smile (discrete value) Smile (probability distribution)

)

vs.

(Credit: https://www.jeremyjordan.me/variational-autoencoders/)

— Autoencoder maps each input to a deterministic vector
— Variational Autoencoder maps each input to a (parameterized) distribution

33,69

https://www.jeremyjordan.me/variational-autoencoders/

Variational autoencoder

(smile: 023)

/ :\ N\ Skin tone: 0.02
Smille

: H Gender:-0.18
Beard: 0.71 decoder
Stintone: <+ L»
Glasses:-0.19
Genter. ++—2 &»—»

o { Haircolor: 033)

encoder
Beard '—O—O—Ah (‘smile: 017)

Q Skin tone: 0.28
Glasses:

‘ Gender: 0.1 decoder
Hair color: H_,_A_,. Beard: 0.6
\ / Glasses: -0.14

We expect an accurate
reconstruction for any

Latent distributions Sampled latent attributes sample from the latent
state distributions

{ Hair color: 0.26

(Credit: https://www.jeremyjordan.me/variational-autoencoders/)
— smoothness: nearby codes tend to produce very similar reconstructions
Bayesian generation: to draw an « from p(X, Z), where p(X, Z) = p(X|Z)p(Z)

— Step 1: draw a z ~ p(Z)
— Step 2: draw an & ~ p(X|z)

34/69

https://www.jeremyjordan.me/variational-autoencoders/

Variational AE (VAE)

Model the generation via an explicit density

Sample from the conditional . .
] 2~ p(X | 7 9(2)) - p(Z;0), p(X|Z;0) are easy to
sample from, e.g., N (u, X)

Map the sample to conditional

b7 p(Xzg(n)

— the nonlinear mapping g (2) allows

[2 —— Sample fromthe prior expressive form of p (X | z;¢9(2))
z~p(Z;0)
GANs — task: sample from a high-dimensional

training distribution

Output: Sample from

training distribution — idea: map samples from a simple
distribution to samples from the training

Generator
distribution
Input: Random noise z — how to: measure the difference between

mapped/training distributions (JS,
W-dist, etc)

(Credit: Stanford CS231N)

35,69

Augmenting the encoder

Sample from the conditional

| X

A

Decoder g
network

Z —

Encoder f
network

X'~ p(X |zg(z))
Map the sample to conditional
p(X [z:g(z))

Sample from the approx. posterior

z~q(Z|x:f(x))

= Map the sample to approx. posterior

4(Z | %: f(x) = p(Z] %)
|

—~ /
X=X

36 /69

A VAE example

assume both p(X | z) and ¢ (Z | «) are multivariate Gaussian, i.e., N (i, 3)

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
\

| Hz|z | e |

Encoder network

(Credit: Stanford CS231N)

3769

How to train it?

Model the generation via an explicit density

Sample from the conditional

=z] v p (X | 7 9(2) - p(Z;0), p(X|Z;) are easy to

sample from, e.g., N (u, X)

Map the sample to conditional

g — .
P(X | 2:g(z)) — the nonlinear mapping g () allows

oz —_— Sarz”p‘jf;’(mzth_e;)”” expressive form of p (X | z; 9 (2))

Assume m training samples x1,..., Ty

m

max x;; 0, 9) <= max lo xi; 0,
e Ep(9) = ma 2 gp (20, 9)

— 1 il Z; ;0) d
H&X;og/mm 1219 (2)p(2:0) dz

z

(likely) intractable due to the integral

Monte Carlo sampling approx.? sample z;'s iid from p (z; 0)
Lp(@|zg(2)p(z0) dz~ 5 Ef:kp(a: | z;; 9 (z;))—expensive and hard
to converge 38/69

x—observation, z—Ilatent variable

want:

— p(z)—prior m

— p(x | z)—likelihood/conditional H(;BéXZIOgP(wi% 0,9)
=1

— p(z |)—posterior

Definition (Evidence lower bound (ELBO))

logp () > L (x;q) = logp (x) — D (¢(Z | z) |lp(Z | x)) for any

probability distribution ¢ over Z (remember Dk, (-|-) > 0)

variational inference: find ¢ so that the lower bound is tight as possible (i.e.,
q(Z|x)~p(Z|x) for all &) but remains tractable

idea: restrict to a parameterized family ¢ (7 | x; f (x))

(lots of other ideas in Bayesian inference, e.g., mean-field approximation. See,

e.g., Chapter 19 of [Goodfellow et al., 2017])

3969

How to train it?

need another identity
logp(z) —KL(q(Z | z)p(Z | @) = Eznglogp (x| 2) — D (¢(Z | @) [Ip(2))
maximize the right side instead
— maximizing —DkL (¢ (Z | @) ||p (Z)) ensures q(Z | x) close to the prior
p(2)

— maximizing E.q logp (x | 2) maximizes the likelihood of reproducing

x—minimizing reconstruction error

— overall, maximizing a lower bound to maximize the original

overall objective:

m

=1

40/ 69

How to train it?

overall objective:

H;?;Xzﬂizw(z | @i:f (i) 108D (Ti | 239 (%)) — Do (g (Z | @i f (z4)) |p(2))
=1

set p(Z) ~N(0,I)
build the computational graph for a single sample:

Dki(N(#210: B21e) [| N(O, I))
has an analytic form
q(z]z) ~N (uz\m,Ez\w) — although choice of N is simplistic,

Encoding network

the nonlinear mapping is powerful

/ — all operations are differentiable so

far
Input Data | T |

(Credit: adapted from Stanford CS231N)

4169

How to train it?

overall objective:

m

=1

set p(Z) ~N(0,I)

build the computational graph for a single sample:

(B2jz> Bzjz) > z is arandom function
and hence not differentiable

(Credit: adapted from Stanford CS231N)

Reparametrization trick
([_Lz‘z, Ez‘m) — 2z is a deterministic and
differentiable function for any &

e~N(0,1)

Z = + »!/2e

z|@

| Mo | Loz | W

Encoding network f

as input data, we
don't need to back-
propagate for it

Input Data

(Credit: adapted from Stanford CS231N)

42 /69

How to train it?

log p (1 Poplzs Y|z

Decoder network ‘\9/

sample from Moz 2z T)

\
Encoder network \\/

Input Data ‘

——1

(Credit: adapted from Stanford CS231N)
43 /69

()]
Q
=3
€
©
()]
3
Q
c
[
e
©
b
0
c
0
&)

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

QANANNNNNNNANNN S SNNNSNS
AIVNNNHEEELELL WSS~
VAVt bbhbove e~~~
QUMb VVI e~
QOO NINMNEHKEEBIIVV e~ ——
QO0DNININHMHBBIVIIV 9w = ——
QOOOOHINMMMMBAII IS = ——
COODNNMMMM®DDIDS == — —
CODOMMMMMM®®DDD w0 = —
QOOMMM MMM M®D®DDD D e = —
QOMMM MMM W®® e ———
OO @M MMM 070000 oo —
JANNNEE P PP ®REmm oo~
At PP
GaddddfFrrrrrrrrsan~~
YaddddoTrrrrrrrrsssan~
Yaddddoorrrrrrrrrrann
SAddddTrrrrrrrrTrrraan
SAdAITTTrTrrrrrrIrr™RAN
AFTTTTCCC oo™ RINNN

I|Z) Vary z,
|

(Credit: Stanford CS231N)

Sample x|z from |z ~ N(uz|z, b))
Za:lz

|
z

Sample z from z ~ N(0, I)

@

Hz|z

Decoder network
po(z|2)

Vary z,

the coordinates of the codes potentially correspond to different physical

properties (due to the diagonal covariance prior)

44 /69

VAE

VAE objective:
I{jlan Eong(z | @i (i) logp (xi | z;9 (2:)) — Dru (¢ (Z | @s; f () [Ip(2))
=1

B-VAE objective [Higgins et al., 2017]:

rrqlanZEqu(z | @i f (@) 10gp (i | 259 (wi)) — BDxL (¢ (Z | @is f (2:)) |lp (2))
=1

£ > 1 to put more emphasis on the similarity of ¢ (Z | «;; f (x:)) and p (Z) =
diagonal covariance of p(Z) encourages decorrelation of coordinates in

Z—disentangled representation

45 /69

Vector quantization (VQ)-VAE

7,00

Encoder

Codebook
/660, o)
Embedding 1
Space 1
1
1
‘ 1 zx@ L
¥ S
VL ¢ o 2,x)
o . Y
» N |
alzlx) 7| CNN !
. plxiz,) I
1 B !
3)~ a2l
> Z i) ! 2,00~ a(zh)
5
Posterior categorical distribution: Decoder
1 if k= argmin; [|z¢(x) — e[|z
q(z = exlx) = .
0 otherwise.

(Credit: [Van Den Oord et al., 2017])

Finitely many latent codes, and hence discrete distribution

Code assignment via nearest neighbor search

— Training via minimizing

L= |la — D(ew)|3 + |lsg[E(x)] — el + Sl E(x) — sglex]|

reconstruction loss VQ loss commitment loss

where sg is the stop_gradient operator

— Plus an auto-regressive prior

46 / 69

VQ-VAE-2

VQ-VAE Encoder and Decoder Training Image Generation
Ll
Top va
Level L
3ottom
Level
Encoder I lnecoder
=
Original Reconstruction Generation

(Credit: [Razavi et al., 2019])

— Hierarchical VQ-VAE
— A prior learned on the discrete codebook

— In combination with self-attention enhanced autoregressive prior

47 /69

Proof of the key equality

we'll omit the density probability for simplicity

Dxi(q(Z|z)|[p(Z|x))

. D)
= [atateytog 222

|)
— [o(ala) 1og LE®IP(@)
—(/q(|z) 1 & e m) d
= zZ|xr O O q(z‘m) z
—/q(\)(l gp(x) + lgp(z@))d
= 10 xr z|x) 1o q(2|w) Lz Because z|lz)dz=1
= log p()+/q(|)1gp(z7w)d [a(zle)
q(z|x)

= logp(e) + [a(zfe)log 2 ')p(z)

|z
= logp(z) + Dr(9(2(2)[Ip(2)) = Ezng(zia) log p(2]2).

zZ Because p(z|z)=p(z,z)/p(x)

dz Because p(z,z)=p(z|z)p(z)

So
log p(x) — DxL(q(Z|2)|lp(Z|x)) = Ezng(zle) log p(x|2) — Dkilq(z|)|Ip(2))-

48 /69

Diffusion models

49 /69

Image to noise, and noise back to image

Data «<—— Generating samples by denoising

(Credit: [Yang et al., 2022])

Forward diffusion: image — noise
Reverse diffusion: noise —> image

50/ 69

Forward diffusion

Start from an image xo and a; € (0, 1) for all ¢

Vaizo + /1 — aier where e1 ~ N(0,)
Step 2: x2 = (/azx1 + /1 — azeas where g2 ~ N(0, I)

Step 1: x1

Step T xr = Jarxzr-1 + /1 — arer where ex ~ N(0, I)
Now we have
xrr =/arxr_1 + V1—arer
=ar (\/ﬁmT72 + 41— OCT715T71> ++1—arer
= /arar_jxr_2 + me where € ~ N(0, I)

Keep the induction, we obtain

T T
T = Hatngr 17Hats where € ~ N(0, I)
t=1

t=1

typically a1 > a2 > -+ > ar, and so &1 ~ N(0,I) as T — oo
51/69

Reverse diffusion

Assume the true prob. density in the forward diffusion g(x¢|x:—1). If we also
know g(x¢—1|x:), we can reverse the process

. - . g . t=0 t=1 t=T
Solution via simplification: -
The forward trajectory . e ‘4}
q(xi—1|x¢) is approximated by abxor) i T, |
p9($t71|$z) = 5 e o
N(pg (e, t), Xo(xe,t)), where
The reverse trajectory
po(xe,t) and Xg(xy,t) are Polxor) .)
learnable function parameterized g
by DNNs
The drifting term
— Recall VAE? Holxtt) =X

— Training: minimize
dist(q(x0), pe(xo)) (Credit: [Sohl-Dickstein et al., 2015])

52 /69

minimize dist(q(xo), pe(xo)). If we can cross-entropy loss, then
Lee = —Eqg(z) log po(xo)
= —Ey(z) log (/pe(mo;T)dml;T)
= —Eq(ap) log (/Q(ml:’l‘|$o)w(w))dmm‘)

Q(wlzT\iBo
Po(xo:.7)
= —Ey(ap | (]E(7>
q(zo) 108 1(m1:T\m0)q(m1:T|w0)
po(xTo.T)
< —E,(pn.) log ———
B atwo.r) gQ(wl:T|w0)

q(T1:7|To
= Eq(@o.r) [IOg w

=L
po(xo:.1)] VLB

where VLB means evidence lower bound

53 /69

After further rearrangement,

q(ml:T|w())]
pe(il?o:T)

= Eq[Dri(q(zr|z0) || po (7)) +

L :constant

Lvig = Eq(z. 1) [log

T
> Di(g(@e—1]ae, @) || po(@e—1]a:)) —log po(ao|z1)]
t=2

L _1: KL between Gaussians Lo

54 /69

Diffusion models (and other models in action)

& 0penAl A1 RESEARGH BlOG ABoUT

wen (D

1s a new Al system that can create realistic images and art

from a description in natural language.

2 SIGN UP
FOLLOW ON INSTAGRAM
10 VIEW API DOCS
0 VIEW RESEARCH

4 EXPLORE

https://openai.com/dall-e-2/

https://openai.com/dall-e-2/

Diffusion models (and other models in action)

an espresso machine that makes coffee from human souls, aststation corgi's head depicied as an explosion of a nebula

https://openai.com/dall-e-2/

56 / 69

https://openai.com/dall-e-2/

Diffusion models (and other models in action)

CLIP objective H img
[] |encoder
“a corgi O
playing a -
flame
throwing n
trumpet” 00000 HO
HO-O-
3.8 B3
o) O
prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

https://openai.com/dall-e-2/

57 /69

https://openai.com/dall-e-2/

Normalization flow

58 /69

Modeling density directly

Taxonomy of Generative Models Direct |

GAN
Generative models

Explicit density Implicit density |

| Tractable density Approximate density ‘ Markov Chain ‘

\ GSN
Flow-based methods Variational Markov Chaini Diffusion Models

Normalization flow Variational Autoencoder Boltzmann Machine

(Credit: adapted from Stanford CS231N slides)

Classical ideas:

— (Gaussian) Mixture models

— non-parametric methods, e.g., kernel density estimation

59 /69

Change of variable theorem in probability

Consider a scalar random variable Z and its density 7(z), what's the density of
x = f(z), suppose f is invertible?

df =1

=t | L

dz

p(z) = m(2)

The multivariate version
z~ W(Z),m = f(Z),Z = f_l(m)
df ! ‘

dz :w<f”<w>>\det -

det ——
eda:

p(x) = m(2)

—1

is the Jacobian of the inverse function f~' wrt x

where

60 /69

Normalization flow: idea

fl(zo) @ fz(zz'—l) @ft+1(zi)
l:, 1 \\; (, lj \‘: I:, }j \‘:

’ \
N . N . N .

2o ~ po(2o) 2z; ~ pi(2;) 2k ~ Pk (zK)

(Credit: https://lilianweng.github.io/)

zic1 ~pici(zic1), 2o = fi(zio1), thus zio1 = f; ' (2:)

_ df;?
1 g
pi(zi) = pi1(fi ~(2:)) |det ——
dZi
dfi \~!
= Pi—1 (Zifl) dOt () According to the inverse func theorem.
dz;—1
df |
= Pi—1 (zi—l) det dz According to a property of Jacobians of invertible func.
i—1
i -1
df;
=po(z det :
pol o)jljl dz;_1

61,69

https://lilianweng.github.io/)

Normalization flow: ideas

—1

df;

det
¢ de_1

K
— p(@) = pr(2x) = po(20) [|
Jj=1

det

j—1

K
= logp(x) = log po(z0) Zlog
j=1

So we can do maximum likelihood inference directly:

N
1
max — ;logp(a:g)
f's are parametrized by DNNs with shared weights

Key challenges:

df;

does not vanish
dZ]'_ 1

— ensure that f is invertible so that det

— computational tractability due to det

62 /69

Summary of generative model

GAN: Adversarial !
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Discriminator

D(x)

Flow

T f®

@ [

Generator

Decoder

G(z)

Po(x|z)

[+]

Inverse

(=

(Credit: https://lilianweng.github.io/)

6369

https://lilianweng.github.io/

Suggested reading

64 /69

Suggested reading

— CVPR 2018 tutorial on GANs CVPR2018TutorialonGANs

— NIPS 2016 Tutorial:Generative Adversarial Networks
https://arxiv.org/abs/1701.00160

— An Introduction to Variational Autoencoders [Kingma and Welling, 2019]

— Normalizing Flows for Probabilistic Modeling and Inference
https://arxiv.org/abs/1912.02762

— From GAN to WGAN https://lilianweng.github.io/1il-1log/2017/
08/20/from-GAN-to-WGAN.html

— From Autoencoder to Beta-VAE https://lilianweng.github.io/
1il-10g/2018/08/12/from-autoencoder-to-beta-vae.html

— Flow-based Deep Generative Models https://lilianweng.github.io/
1il-1og/2018/10/13/flow-based-deep-generative-models.html#

types-of-generative-models

— What are Diffusion Models? https:
//lilianweng.github.io/posts/2021-07-11-diffusion-models/

65 /69

CVPR 2018 Tutorial on GANs
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1912.02762
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html#types-of-generative-models
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html#types-of-generative-models
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html#types-of-generative-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

References i

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein
gan. arXiv:1701.07875.

[Brock et al., 2018] Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale
gan training for high fidelity natural image synthesis. arXiv:1809.11096.

[Goodfellow et al., 2017] Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep
Learning. The MIT Press.

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative
adversarial networks. arXiv:1406.2661.

[Gulrajani et al., 2017] Gulrajani, I, Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. (2017). Improved training of wasserstein gans. arXiv:1704.00028.

[Higgins et al., 2017] Higgins, |., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. (2017). beta-vae: Learning basic
visual concepts with a constrained variational framework. In /nternational
Conference on Learning Representations, ICLR 2017.

66 /69

References

[Isola et al., 2016] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016).
Image-to-image translation with conditional adversarial networks.
arXiv:1611.07004.

[Karras et al., 2017] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017).
Progressive growing of gans for improved quality, stability, and variation.
arXiv:1710.10196.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv:1312.6114.

[Kingma and Welling, 2019] Kingma, D. P. and Welling, M. (2019). An introduction
to variational autoencoders. arXiv:1906.02691.
[Mirza and Osindero, 2014] Mirza, M. and Osindero, S. (2014). Conditional

generative adversarial nets. arXiv:1411.1784.

[Papamakarios et al., 2019] Papamakarios, G., Nalisnick, E., Rezende, D. J.,
Mohamed, S., and Lakshminarayanan, B. (2019). Normalizing flows for probabilistic
modeling and inference. Journal of Machine Learning Research, 22(57):1-64, 2021.

67 /69

References

[Radford et al., 2015] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised
representation learning with deep convolutional generative adversarial networks.
arXiv:1511.06434.

[Razavi et al., 2019] Razavi, A., van den Oord, A., and Vinyals, O. (2019). Generating
diverse high-fidelity images with vq-vae-2. arXiv:1906.00446.

[Razaviyayn et al., 2020] Razaviyayn, M., Huang, T., Lu, S., Nouiehed, M., Sanjabi,
M., and Hong, M. (2020). Non-convex min-max optimization: Applications,

challenges, and recent theoretical advances. arXiv:2006.08141.

[Rezende and Mohamed, 2015] Rezende, D. J. and Mohamed, S. (2015). Variational
inference with normalizing flows. arXiv:1505.05770.

[Sohl-Dickstein et al., 2015] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N.,
and Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium
thermodynamics. arXiv:1503.03585.

[Srivastava et al., 2017] Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., and
Sutton, C. (2017). Veegan: Reducing mode collapse in gans using implicit
variational learning. arXiv:1705.07761.

68 /69

References iv

[Van Den Oord et al., 2017] Van Den Oord, A., Vinyals, O., et al. (2017). Neural
discrete representation learning. Advances in neural information processing systems,
30.

[Yang et al., 2022] Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Shao,
Y., Zhang, W., Cui, B., and Yang, M.-H. (2022). Diffusion models: A
comprehensive survey of methods and applications. arXiv:2209.00796.

[Zhu et al., 2017] Zhu, J.-Y., Park, T, Isola, P., and Efros, A. A. (2017). Unpaired
image-to-image translation using cycle-consistent adversarial networks.
arXiv:1703.10593.

69 /69

	Adversarial generative network (GAN)
	Variational autoencoder (VAE)
	Diffusion models
	Normalization flow
	Suggested reading

