
HOMEWORK SET 5
CSCI5527 Deep Learning (Fall 2022)

Due 11:59 pm, Dec 18 2022

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problem
requiring coding, please organize all codes for each problem into a separate Jupyter notebook file
(i.e., .ipynb file). Your submission into Canvas/Gradescope should include the single PDF and all
the notebook files—Please do not zip them! No late submission will be accepted. For each problem,
your should acknowledge your collaborators if any. For problems containing multiple subproblems,
there are often close logic connections between the subproblems. So whenever possible, try to build
on previous ones, rather than work from scratch.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Problem 1 (Recurrent neural networks; 4/15) In this problem, we will solve a simple text-based
sentiment analysis problem. The dataset can be found here https://www.kaggle.com/kazanova/
sentiment140. This github site https://github.com/bentrevett/pytorch-sentiment-analysis
includes detailed tutorials on performing sentiment analysis using basic and advanced RNNmodels
in PyTorch on the classical IMDb dataset. Please go over the tutorials and feel free to adapt the
codes there.

(a) Read the instruction from the Kaggle website and load the data from the sentiment140 dataset.
We will use the text field to predict the target, i.e., polarity. The text field is not as clean as the
IMDb dataset, e.g., the “@ xxxx" part is probably not useful for sentiment analysis. Perform
data clean-up when necessary. There is a single data file in the dataset. Please split it into
60% training, 20% validation, and 20% test. (1/15)

(b) Design and train a sentiment analysis model on the data. Again, feel free to start with the
above-mentioned sentiment analysis tutorial and adapt the models there. (2/15)

(c) A “85%" test: you’ll get 1 point if your classification accuracy exceeds 85%. (1/15)

Problem 2 (Attention and Tranformers; 6/15) In this problem, we will practice the basics of
the attention mechanism and try to get a precise understanding of the building components in
Transformers.

(a) Take 10 random digit images from MNIST, one for each class, and then vectorize them. These
are the source vectors. Then take another target vector from class “5". Write code to calculate
the (cross-)attentionweightsw and the inducedweighted sumover the source vectors—you’re
free to choose any attention variant we talked of in class or in the literature, e.g., dot-product
attention, multiplicative attention, etc. Reshape and display your weighted sum as an image—
same size as the original MNIST images. Also, display the attention matrix. Does “5" have a
high correlation with “5" in the source vectors? (1.5/15)

1

https://www.kaggle.com/kazanova/sentiment140
https://www.kaggle.com/kazanova/sentiment140
https://github.com/bentrevett/pytorch-sentiment-analysis


(b) Each encoder layer in the Transformer model consists of multi-head self-attention layer fol-
lowed by a shallow feedforward network applied to each position separately and identically.
Implement an encoder layer; you probably need to check out the related sections of the
original paper https://arxiv.org/abs/1706.03762 or other online resources to figure out
the details. PyTorch has a built-in implementation https://pytorch.org/docs/stable/
generated/torch.nn.TransformerEncoderLayer.html; unfortunately, due to the random-
ness in the internal weights at initialization, it is not easy to benchmark your implementation
against the built-in. (2/15)

(c) Check out this tutorial on French-to-English translation using a RNN-based Seq2Seq model:
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html. Now:
(1) Replace the embeddings with pre-trained word embeddings such as word2vec or GloVe;
(2) Replace the model with a Transformer-based encoder-decoder model (the WMT 2014
English-to-French translation task in the original Transformer paper https://arxiv.org/abs/
1706.03762 might be helpful also); you can use PyTorch built-in Transformer implementation
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html, retrain the
model, and compare your result with that obtained from the RNN-based Seq2Seq model.
(2.5/15)

Problem 3 (Generative models; 5/15) Finally, we’re here to generate new fashionable items!
In other words, we will train generative models based on the famous Fashion-MNIST dataset
https://github.com/zalandoresearch/fashion-mnist, which is available as a PyTorch stan-
dard dataset https://pytorch.org/docs/stable/torchvision/datasets.html#fashion-mnist.
There are numerous implementations of the following algorithms on the Internet; you can occasion-
ally consult these online resources when feeling uncertain, but your implementations must be your
own work.

(a) Train a GAN and generate 10 new items after training. For the GAN, you can use either the
original form, or any modified variation, e.g., W-GAN. (2/15)

(b) Modify the above implementation into a conditional GAN, i.e., with class labels as input
augmentation for both generator and discriminator. Repeat the training and generation, and
show at least 1 new item from each class and visually compare your new results with those
from (a). (1/15)

(c) Implement and train a variational autoencoder (VAE), and also generate 10 random samples
from it. As is standard in VAE, let’s assume the approximate posterior q (z|x) and the condi-
tional p (x|z) take multivariate Gaussian form with diagonal covariance structure. Sec. 3 and
Appendix C of the original paper https://arxiv.org/abs/1312.6114 may help you to clear
up doubts. Make sure to implement the reparametrization trick so that auto differentiation
can be performed. (2/15)

2

https://arxiv.org/abs/1706.03762
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://github.com/zalandoresearch/fashion-mnist
https://pytorch.org/docs/stable/torchvision/datasets.html#fashion-mnist
https://arxiv.org/abs/1312.6114

