
HOMEWORK SET 4
CSCI5527 Deep Learning (Fall 2022)

Due 11:59 pm, Nov 28 2022
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problem
requiring coding, please organize all codes for each problem into a separate Jupyter notebook file
(i.e., .ipynb file). Your submission into Canvas/Gradescope should include the single PDF and all
the notebook files—Please do not zip them! No late submission will be accepted. For each problem,
your should acknowledge your collaborators if any. For problems containing multiple subproblems,
there are often close logic connections between the subproblems. So whenever possible, try to build
on previous ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Problem 1 (Correlation and template matching; 7/15) Theword “convolutional" in convolutional
neural networks is a misnomer. Cross-correlation, which is a close relative of convolution and
commonly used in signal processing, is actually used. In this problem, we explore some basic
properties and applications of the cross-correlation operation. We use the standard notation ⋆ to
denote cross-correlation, as against ∗ which is often used to denote convolution.
(a) For two vectors x ∈ Rn1 , y ∈ Rn2 , the cross-correlation x ⋆ y is obtained as follows:

We fix the position of y, and shift x to the left until x and y only have one overlapped element
spatially, i.e., xn1 with y1 — that’s the starting point. We calculate the inner product of two
overlapped subvectors—in the beginning only two scalars actually. Then we repeatedly do
this: shift x to the right by one element and calculate the corresponding inner product of the
two overlapped subvectors (i.e., think of a sliding window). We end the process until x and
y overlap only at one element, i.e., x1 with yn2 . The cross-correlation x ⋆ y is basically the
vector that collects all the inner product values we have obtained in the left-to-right order. It
is easy to see that x ⋆ y ∈ Rn1+n2−1.
Question: Calculate [3, 2, 1] ⋆ [4, 6, 3, 9]. (0.5/15) For general x, y, is it true that x ⋆ y = y ⋆ x?
If not, what relationship between x ⋆ y and y ⋆ x do you observe? (0.5/15)

(b) In convolutional neural networks, we have building blocks of the form w ⋆ x, where w
represents a group of learnable weights, often called filter following the signal processing
convention. For simplicity, let’s assume w ∈ R3 and x ∈ R4. Show that w ⋆ x can be written
equivalently as Cwx for a certain matrix Cw ∈ R6×4 and write down Cw explicitly in terms
of elements of w. (1/15)

1



(c) To apply reverse-mode auto differentiation, we need to specify ∂
∂w (w ⋆ x), i.e., the associated

Jacobian. Assume again w ∈ R3 and x ∈ R4, can you derive the analytic form of the Jacobian?
(1/15; Hint: is it possible to write w ⋆ x as Cxw for a certain Cx?)

(d) The 2D cross-correlation is a natural generalization of the 1D cross-correlation to matrices,
as illustrated in Fig. 1. Compared to the 1D version, now we start from the top-left corner

Figure 1: Illustration of 2D cross-correlation (image credit: https://arxiv.org/abs/1603.07285; check
out https://github.com/vdumoulin/conv_arithmetic to see the dynamic demonstration under the
Full padding, no strides setting. Note that padding zeros, as indicated as the additional dotted boxes, is
equivalent to ignoring the out-of-boundary elements.)

and end at the bottom-right corner. We scan row by row and inner products are now taken
between the overlapped submatrices. All the inner product values are naturally organized
into a matrix. In the pictorial illustration above, we are considering X ⋆ Y , where X ∈ R3×3

is the gray matrix, and Y ∈ R5×5 is the blue matrix, the resulting green matrix X ⋆ Y ∈ R7×7,
where 7 = 3 + 5 − 1.
Question: In Numpy, implement a 2D cross-correlation function. The function should take in
two general matrices Z1 ∈ Rn1×n2 and Z2 ∈ Rm1×m2 and return the resulting cross-correlation
matrix. To debug your implementation, please generate a couple of random cases and bench-
mark against the Scipy built-in function scipy.signal.correlate2d (remember to set mode =
’full’) https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.
html. (1/15)

(e) Most basic image processing algorithms are implemented as cross-correlation of a small fil-
ter X with the image of interest Y . Check out the examples at the bottom of the page https://
docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html. Use
their image ascent, let’s test your implementation of 2D cross-correlation. Try two filters

X1 =

 −3 0 3
−10 0 10
−3 0 3

 and X2 = X⊺
1 .

Let’s say they generate two resulting matrices G1 = X1 ⋆ Y and G2 = X2 ⋆ Y . Calculate√
G2

1 + G2
2, where the operations (·)2 and √

(·) are applied pointwise. Display your result
(i.e., imshow as in the online example). Does your result look alike the gradient magnitude
plot, except for the image boundaries? (1/15)

(f) Another way of thinking about cross-correlation is template matching. Imagine that X is a
2D pattern of interest. During the cross-correlation process, the inner product measures the
agreement of the 2D pattern and local patches in Y . If the value is relatively large, very likely

2

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


we find a match. After we finish the cross-correlation calculation, we can spot the locations of
the largest values in the cross-correlation matrix as candidate matching locations. Study the
example here https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
correlate2d.html and compare the performance of your implementation with that of the
example using scipy.signal.correlate2d. (1/15)

(g) In practice, we often have multi-channel cross-correlation. Let’s consider the canonical setting:
for an input Y (we use script font to denote tensors) of size H(height)×W (width)×D(depth),
we consider a filter X of size h × w × D, and note that depth of the filter matches the depth of
the input. There are two equivalent ways of thinking about the cross-correlation:

• Summation of 2D cross-correlation. We compute the 2D cross correlations of corre-
sponding layers of the input and the filter, and then sum them up, i.e.,

D−1∑
d=0

X [:, :, d] ⋆ Y[:, :, d] + b, (1)

where b is the bias term;
• Restricted/degenerated 3D cross-correlation. We can generalize the previous 2D cross-

correlation to 3D cases—that will generate a 3D tensor in principle. But, here we do not
shift the filter X in the depth direction and only shift it in the height and width directions.
In other words, at each position we take the inner product of two overlapped 3D “tubes".

Implement multichannel cross correlation (let’s assume b = 0), and test your implementation
with H = W = D = 50 and h = w = 3 by generating a pair of random X and Y and then
comparing your result with that generated by PyTorch from https://pytorch.org/docs/
stable/generated/torch.nn.Conv2d.html. We will assume the padding mode “valid” in
PyTorch, so that the output shape should be H × W for both your implementation and
PyTorch’s. (1/15)

Figure 2: Illustration of different normalization methods

Problem 2 (The normalization zoo; 4/15) Normalization is crucial for practical optimization
success in deep neural networks (DNNs). Simply put, it’s about normalizing each slice of multidi-
mensional data in tensor form into zero-mean, unit variance data,

x̂i = xi − µ

σ
∀ xi inside the slice, µ : slice mean σ : slice standard deviation (2)

and feeding these well-behaved normalized data into the next layer. Different normalization
methods differ in how they form the slices, as illustrated in Fig. 2.

3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


(a) Generate a random 4-way tensor of size H(50) × W (50) × C(20) × N(20), and implement and
apply batch norm, layer norm, and instance norm onto the tensor. Compare your results with
those generated from PyTorch:

• https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html

• https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

• https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html

You can set their trainable scaling factor γ = 1 and shift factor β = 0. Your results might be
slightly different, due to their ε in the denominator. Why do they place that ε there? For your
random data, it’s fine you set their ε = 0. (2/15)

(b) Does normalization reduce the capacity of our DNN? Let’s first think about learning a linear
model, i.e., one-layer DNN with identity activation. Assume the ideal model we hope to
learn is W ∗x + b∗ for a certain (W ∗, b∗) pair. Now batch normalization perform an affine
transformation on all input x ∈ Rn:

x̂ = x − u

σ
= diag (1/σ1, . . . , 1/σn) (x − u) , (3)

where diag(·) reshapes the input vector into a diagonal matrix, and we assume σi > 0 for all i.
Show that there exists a pair (Ŵ , b̂) so that

Ŵ x̂ + b̂ = W ∗x + b∗, (4)

and the pair is independent of the input x. In other words, our capacity to learn the ideal
model is effectively not affected. (1/15)

(c) Can you generalize the above argument to DNNs with multi-layers and nonlinear activations?
(1/15)

Problem 3 (Transfer learning; 4/15) In computer vision and natural language processing, large-
scale datasets are available and high-performing deep models that are already trained on these
datasets, called pretrained models, are readily usable. For example, in Pytorch, a list of pretrained
models on the renowned ImageNet dataset is available here https://pytorch.org/docs/stable/
torchvision/models.html. Since these datasets are large-scale and believed to sufficiently repre-
sent the domain distributions, the features learned tend to be shareable across tasks. For example,
in computer vision, when coming to a new image classification task, it is rare that people will train
a model from scratch. Instead, a pretrained model will be taken and only finetuning of the model
on the new task will be performed.

The different possibilities of finetuning have been explained in class; this webpage provides an
excellent summary https://cs231n.github.io/transfer-learning/. A Pytorch tutotial on im-
plementing transfer learning for vision tasks can be found here https://pytorch.org/tutorials/
beginner/transfer_learning_tutorial.html. In this problem, we will perform transfer learning
for classifying pneumonia from chest x-rays.

(a) Read the instruction for this Kaggle competition https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia, download (you’ll need a kaggle account) and setup the dataset.
(1/15)

4

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://cs231n.github.io/transfer-learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


(b) Set up an appropriate transfer learning pipeline to perform the classification. Feel free to
choose pretrained models you like (or can fit into your resource constraint—large models
can be more powerful, but need powerful GPUs). You may want to play with different
transfer learning strategy, and think about the following factors: (1) do you want to freeze
all or only some of convolutional layers? (2) or do you want to make all trainable, but
only iterate few steps? (3) or may be borrowing the model is sufficient and training can be
done from scratch? You may also want to check out our truncated transfer learning paper
https://arxiv.org/abs/2106.05152. (2/15)
Hint on training: the two classes are not balanced; it may be helpful to put different weights
on the positive and negative samples—e.g., weighting theminority class slightly more than the
dominant class—when constructing the training objective; lots of PyTorch functions already
implement the weighting mechanism, e.g., the weight input in torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.htmlTo learn
more about the complicated issues around learning from imbalanced data, you may want to
check out our paper https://arxiv.org/abs/2210.12234.

(c) A “90%" test: you’ll get 1 point if your classification accuracy exceeds 90%. But make sure to
show all your work in (b) even if you don’t make it 90%. Optionally, you’re also encouraged
to report the balanced accuracy (https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.balanced_accuracy_score.html), and also average precision (https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.
html), but we won’t grade you based on the latter two metrics. (1/15)

5

https://arxiv.org/abs/2106.05152
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://arxiv.org/abs/2210.12234
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

