
HOMEWORK SET 3
CSCI5527 Deep Learning (Fall 2022)

Due 11:59 pm, Nov 13 2022
Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problem
requiring coding, please organize all codes for each problem into a separate Jupyter notebook file
(i.e., .ipynb file). Your submission into Canvas/Gradescope should include the single PDF and all
the notebook files—Please do not zip them! No late submission will be accepted. For each problem,
your should acknowledge your collaborators if any. For problems containing multiple subproblems,
there are often close logic connections between the subproblems. So whenever possible, try to build
on previous ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space of m × n real matrices. The dotted equal
sign .= means defining.

Problem 1 (Automatic differentiation in DNNs; 4.5/15) In principle, we can perform the reverse-
mode auto-differentiation (aka back propagation) for DNNs using scalar variables (If you’re in-
terested in this form, please refer to http://neuralnetworksanddeeplearning.com/chap2.html).
But the scalar version is messy due to the many variables in typical DNNs. More importantly,
modern computing hardware and software environments are optimized for performing direct
matrix/tensor operations. So it makes perfect sense to perform auto-differentiation directly in ma-
trices and tensors. To illustrate the idea, let’s consider a three-layer fully-connected neural network
x 7→ W3σ (W2σ (W1x)), and the following training objective

f (W1, W2, W3) .= 1
2 ∥Y − W3σ (W2σ (W1X))∥2

F , (1)

where the activation σ is ReLU. The computational graph is shown in Fig. 1. Let’s fix a random

Figure 1: Computational graph of Eq. (1).

Figure 2: Data generation

seed 55272022 (as shown in Fig. 2; Note that Numpy has changed their interface and functions
for random number generation in recent versions, and this is the recommended way of fixing the
random seed. Check out https://numpy.org/doc/stable/reference/random/generator.html

1

http://neuralnetworksanddeeplearning.com/chap2.html
https://numpy.org/doc/stable/reference/random/generator.html


for details), and generate Y ∈ R2×50, X ∈ R5×50, W1 ∈ R4×5, W2 ∈ R3×4, and W3 ∈ R2×3 all as
iid Gaussian. You should fix these matrices once generated.

Suppose each node in the computational graph has two fields: .v holds the numerical value
of the variable itself, and .g holds the numerical value of the gradient of f with respect to the
current variable. Recall there are two-stages in reverse-mode auto-differentiation: forward pass
and backward pass.

(a) Forward pass: Now that X.v, Y .v, W1.v, W2.v, W3.v are known, compute the numerical
values of all other variables (i.e., V1.v, V2.v, etc) in the computational graph. You only need
to keep 4 digits after the decimal point. (1/15)

(b) Backward pass: Now we start to work out the backward process. Obvious z.g = 1 as ∇zf = 1
(remember f = z). Moreover, ∇Dz = D. So D.g = D.v. From this point onward, we start
to see the trouble of Jacobians as tensors. For example, V5 = W3V4 and so the Jacobian ∂V5

∂V4is a tensor as both V4 and V5 are matrices—direct implementation involves tensor-matrix
product. Fortunately, we can get around the mess by the crucial observation: by implementing
chain-rule for gradient, we only care about the result of the Jacobian-matrix product here, not
the Jacobian itself. Now if Vi 7→ Vj and we want to compute ∇Vif given ∇Vj f , it turns out

∇Vif = J ⊺
Vi 7→Vj

(
∇Vj f

)
= ∇Vi

〈
Vj , ∇Vj f

〉
.

The last inner product form avoids the Jacobian tensor JVi 7→Vj entirely, and now we only need
to derive the gradient of matrix to scalar functions.

• For V5.g,

∇V5f = ∇V5 ⟨D, D.g⟩ = ∇V5 ⟨Y − V5, D.g⟩ = ∇V5 ⟨−V5, D.g⟩ = ∇V5 ⟨V5, −D.g⟩ = −D.g,

where we recall the fact that ∇X ⟨A, X⟩ = A for any fixed A not dependent on X .
• Y is given data and not optimization variable, so ∇Y f = 0 (In Tensorflow or Pytorch,

these variables do not require gradients so will be directly ignored for gradient calcula-
tion).

• For V4.g,

∇V4f = ∇V4 ⟨V5, V5.g⟩ = ∇V4 ⟨W3V4, V5.g⟩ = ∇V4 ⟨W ⊺
3 V5.g, V4⟩ = W ⊺

3 V5.g.

So V4.g = (W3.v)⊺V5.g.

Question: You should substitute and obtain the numerical values for the above quantities.
Now carry on the backward pass and obtain all the numerical values of gradients for all
variables. (2.5/15)

(c) Go through the tutorials below and learn how to call Pytorch autograd to compute numerical
gradients and read off the gradient values

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html.

Now use it to compute the values of W1.g, W2.g, and W3.g. Do they agree with your results
in part (a)? (1/15)

2

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html


Problem 2 (Stochastic optimization methods for MNIST digital recognition; 4.5/15) In this
problem, we’re going to train a shallow neural network based on different stochastic gradient
descent (SGD) methods that we learned in the lecture. Neural networks modules and autograd
are allowed in this problem, but no built-in optimizers in Pytorch are allowed. You should go
through this tutorial

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

to learn how to use Pytorch torch.nn.sequential to build simple sequential neural networks,
and how to build more complex neural networks by subclassing the torch.nn.Module, before you
attempt the following questions.

We will first load the MNIST dataset into your workspace as in previous homework sets.

(a) Design a 3-layer neural network model. You’re free to choose the architecture, i.e., number
of nodes, activation functions, layers (either fully connected, or even convolutional layers
if you’re comfortable with it). Also, choose an appropriate loss for your training objective.
(0.5/15)

(b) Implement the Adagrad algorithm. You’re free to choose your hyperparameters (initialization,
batch size, learning rate, etc). Please include a plot to how the objective evolves against the
epoch. (1/15)

(c) Implement the RMSprob algorithm. Requirement is the same as (b). (0.5/15)

(d) Implement the Adam algorithm. Requirement is the same as (b). The version covered in our
lecture is a reduced version of Algorithm 1 of the original paper (https://arxiv.org/pdf/
1415.6980.pdf) that also handles the initial instability. Please implement the original version.
(1.5/15)

(e) A “98%" test: MNIST is a relative easy classification task and the state-of-the-art learning
models can achieve near perfect recognition performance. If you get a ≥ 98% test accuracy for
any two of (b), (c), and (d), you get 1 point here. For this, so long as your network remains
3-layer, you are free to adjust your network architecture in (a) and/or adopt any strategy to
avoid overfitting. You may also compare the performance of your implementation with the
built-in (https://pytorch.org/docs/stable/optim.html), but the results you report must
be produced from your own implementation. (1/15)

Problem 3 (Autoencoders, deep factorization, and deep sparse coding; 6/15)

(a) The geometric view of PCA says that PCA tries to fit a subspace to a collection of data points.
From a modeling perspective, this means PCA makes sense only when the data points lie
near a subspace. For example, if xi = Bzi + εi for all i, where B is a basis for a subspace
and εi’s represent small-magnitude noise, trying to find a basis for the subspace spanned by
B may make a lot of sense. What happens when a small fraction of the data points deviate
significantly from the subspace?
To investigate this, let’s generate an orthonormal subspace basis B ∈ R200×20 and 98 random
data points on the subspace as Bzi’s where each zi ∈ R20 is iid Gaussian. So this portion
of data is perfectly clean. Now let’s generate 2 points that are iid Gaussian in R200—these
two points will be far from the subspace B almost surely and they are “outliers". Now we
have 100 data points and we collect them into a data matrix X ∈ R100×200 (Each row is a data

3

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://arxiv.org/pdf/1415.6980.pdf
https://arxiv.org/pdf/1415.6980.pdf
https://pytorch.org/docs/stable/optim.html


point in our convention). Please normalize the 100 data points so that they all have unit ℓ2
norm now. Also, do NOT perform centering to the points for the following steps.

• Perform PCA via SVD or eigen-decomposition on X (again, no centering step) and
numerically compare the subspace spanned by the top 20 singular vectors with B. Re-
member for two subspaces spanned by two bases B1 and B2, their distance can be
measured by ∥B1B†

1 − B2B†
2∥F . What do you observe? (1/15)

• Specializing the factorization formulation for PCA for our setting is

min
A∈R200×20,z′

is∈R20

100∑
i=1

∥xi − Azi∥2
2 . (2)

It’s equivalent to the above PCA we have done of course. Now let’s consider a slight
modified version:

min
A∈R200×20,zi∈R20

100∑
i=1

∥xi − Azi∥2 , (3)

i.e., sum of the ℓ2 norm, but norm squared. Numerically solve this optimization problem
(choose whatever methods you’re comfortable with, and auto-differentiation is also
allowed: remember that PyTorch or TensorFlow can also be used to solve generic uncon-
strained optimization problems, not necessarily deep learning problems). Compare the
subspace obtained here with B. Do you get a better estimate than the plain PCA above?
(2/15)

(b) Read the Science paper Reducing the Dimensionality of Data with Neural Networks (https://
science.sciencemag.org/content/313/5786/504), which has revived deep learning since
2007.

• Reproduce the first two rows of Fig 2(B), i.e., PCA and autoencoder on MNIST. You
should use exactly the same architecture as provided in Fig 1 (right). The original paper
uses layer-wise pretraining for initialization and conjugate-gradient for training. You
probably don’t need these; instead, you can choosemodern initialization and optimization
methods in PyTorch or TensorFlow. If you are unsure how to use PyTorch to build a
neural network and perform training, this tutorial will be helpful: https://pytorch.
org/tutorials/beginner/blitz/neural_networks_tutorial.html (2/15)

• Reproduce the plot in Fig 3, i.e., PCA and autoencoder for visualization in the two-
dimensional space. The autoencoder architecture is described in the caption of Fig 3.
Again, you can use modern initialization and training methods instead of the original.
(1/15)

4

https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

