HOMEWORK SET 2
CSCI5527 Deep Learning (Fall 2022)

Due 11:59 pm, Oct 30 2022

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problem
requiring coding, please organize all codes for each problem into a separate Jupyter notebook file
(i.e., .ipynb file). Your submission into Canvas/Gradescope should include the single PDF and all
the notebook files—Please do not zip them! No late submission will be accepted. For each problem,
your should acknowledge your collaborators if any. For problems containing multiple subproblems,
there are often close logic connections between the subproblems. So whenever possible, try to build
on previous ones, rather than work from scratch.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., @) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. R" is the space of
n-dimensional real vectors, and similarly R™*" is the space of m x n real matrices. The dotted equal
sign = means defining.

Problem 1 (Autoencoder, factorization, and PCA; gradient descent and back-tracking line
search; 6/15) Letx,...,x,, be a collection of points in R" and suppose they are zero-centered,
ie, > x; = 0. We write

Th
i.e., stacking the data points row-wise into a data matrix. Recall that PCA extracts the first (with

r < n) eigenvectors of X7X, collects them columnwise into a matrix U € R™*", and obtains a new
representation of each data point x; as UTx; € R". Geometrically, PCA amounts to deriving the

best rank-r linear subspace approximation to the point set {z1, ...,z }:
1
min — || X - ZU"|3%.
UER™ . UTU=I M
ZeRmxr

So a crucial step in PCA is to compute the subspace basis U. Let’s now generate a synthetic point
set as shown in Fig. 1; see also Probl.ipynb (please do NOT change the random seed and the
dimensions), and complete the following tasks—your A[0, 0] should be approximately 0.2073.
Please submit your code for this problem as a separate .ipynb file, not to be combined with the
codes for other problems. No auto-differentiation is allowed for solving this problem.

(a) Continue the code in Prob1l.ipynb to compute the basis for the best rank-10 subspace ap-
proximation to X, i.e., a matrix A; € R™*10 that contains the first 10 PCA basis vectors.
(0.5/15)

(b) A classic unsupervised learning technique in deep learning is the autoencoder (we’ll cover it
later in the course). The mathematical formulation specialized to our case is

1
. R o T 2
emlgm f(A)= - | X — XAAT|%.

1

(1)
(ii)

(iii)

= default_rng(55272€

30
200

a random dz
ndard no
g ndard normal(size=(m, r))
B@A.T + 0.01*rng.standard_normal(size=(m,n))

) V.m\an,axlé 0, keepdims=True)
print(A[e, 0])

0.20732624780576855

Figure 1: Code segment for generating the data for PCA

Derive the gradient of the objective, i.e., V f (A) (hint: it is much easier to use the Taylor
expansion method rather than the chain rule method). (0.5/15)

Implement the gradient descent method to solve the optimization problem, with back-
tracking line search for the step size (1/15) and appropriate stopping criterion (say, by
checking the gradient norm; 0.5/15).

Let’s say the solution computed from the last step is A;. Now we want to compare
the subspaces represented by A; and A,. We cannot directly do A; — Ay, as from
linear algebra we know that A; and A; can span the same column/range space, but
take very different forms. Instead, a reasonable metric here is the difference between

AAl — AZA%HF’ where A' denotes the
matrix pseudoinverse (https://en.wikipedia.org/wiki/Moore},E27,80%93Penrose_

inverse; in Numpy, you can call this function numpy.linalg.pinv). Report your result
here. Is it close to 0 or not? (0.5/15)

the subspace projectors induced by them, i.e., ’

(c) Consider another formulation, which is normally called factorization:

(1)

(ii)

(iii)

mi

in AZ)=||X - ZAT|%.
AGR'nX107Z€RnL><IO g() || HF

Derive the gradient of the objective, i.e., Vg (A, Z) (hint: it is much easier to use the
Taylor expansion method rather than the chain rule method; also, one can derive the
gradient for one block each time when there are multiple blocks of variables). (1/15)

Implement the gradient descent method to solve the optimization problem, with back-
tracking line search for the step size (1/15) and appropriate stopping criterion (say, by
checking the gradient norm; 0.5/15)

Let’s say the solution computed from the last step is A3. Please compute the subspace
differences between A;, A; and A3 and report your results here. Are they close to 0 or
not? (0.5/15)

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

Problem 2 (Nonlinear least-squares and 2nd order methods; 4/15) Solving linear equation
y = Awz, or equivalently the linear least-squares min, 3 |y — Am||§, is classical. What about

quadratic equations? Suppose we have y; = (aZTa:)2 fori =1,...,m. Given y;’s and a;’s, we want to
recover € R". It turns out all of sudden the problem becomes NP-hard in general.

Fortunately, the case when A is random is qualitatively easier. Let’s explore this a bit. To make
sure we can reproduce your results, please fix a random seed in Numpy similar to Problem 1 to a number
you like. Let’s generate the data as follows: fix n = 20 and m = 100. Pick an & # 0 you like (say
random), and generate a;’s as iid standard normal, and then compute y, .. ., y,, accordingly.

(a) Consider a nonlinear least-squares formulation of the problem

1 m

2
min g3 (s~ (ale)’)"

Derive the gradient and Hessian of the objective (hint: applying Taylor expansion method with
2nd order expansion might be easier than other means; 1/15) and implement the Newton’s
method. If the default step size 1 is not working (you can keep track of the objective value, and
see if it is monotonically decreasing—include a plot of this in your report), try to implement
the backtracking linear search to choose an appropriate step size. Does it solve your problem?
The global minimum should be zero. (1/15)

(b) We did not cover it in the class, but Gauss-Newton method is a specialized method for solving
nonlinear least-squares problems and can be considered as an approximate Newton’s method.
You can learn the method from https://en.wikipedia.org/wiki/Gauss’%E2%80%93Newton_
algorithm, or whatever sources you prefer. Implement the method and check if you find the
global minimum. (2/15)

Problem 3 (MNIST classification with a 2-layer neural network; 2/15) In this problem, we
perform simple digit recognition on the famous MNIST handwritten digit dataset. In case you
haven't heard of it, check the website http://yann.lecun.com/exdb/mnist/. We will set up the
problem in PyTorch, but you are free to choose TensorFlow as well. Here is a PyTorch example for
setting up a whole classifier training pipeline https://pytorch.org/tutorials/beginner/blitz/
cifar10_tutorial.html#training-an-image-classifier. Go through it and try to understand
the example before answering the following questions.

(a) Load the MNIST dataset into workspace. For your information, similar to the CIFAR dataset,
MNIST is a standard dataset in torchvisionhttps://pytorch.org/docs/stable/torchvision/
datasets.html. (0.5/15)

(b) Implement a two-layer neural network for the classification. For any input (vector is a
column by default), the network is o (TW7) W3 (you can optionally add in biases also), and
let’s use o = ReLU and the cross-entropy loss for this multi-class problem https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.

e Implement gradient descent to minimize the loss. You can refer to this example https://
pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch-tensors,
which is very close to what we want to do. No auto differentiation, i.e., backward(), or
PyTorch built-in optimizer allowed. (1/15)

3

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
http://yann.lecun.com/exdb/mnist/
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-an-image-classifier
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-an-image-classifier
https://pytorch.org/docs/stable/torchvision/datasets.html
https://pytorch.org/docs/stable/torchvision/datasets.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch-tensors
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch-tensors

e Report your test accuracy. You can tune around the number of hidden nodes to optimize
the performance. We expect to see at least 95% test accuracy. (0.5/15)

Problem 4 (Automatic differentiation—scalar version; 3/15) Consider the the following three-
variable function

(a)
(b)

(c)

1
f(x1,20,23) = — (129 sinxs + €¥172) . (0.1)
3

Draw the computational graph for this function. (1/15)

List the detailed computational steps to compute the partial derivative 5% atthe point (1, 1.5,2)
using the forward mode. Specifically, provide the numerical values of v; and v; for all i. For
numerical values, you only need to keep four digits after the decimal point. To help you get
started, let’s assume that 1, x5 and z3 are renamed into variables v_», v_; and vg. Then

. Ov_
V_2 = 1, V—g = 81:22 = O, (02)

. Ov_
V-1 = 15, V-1 = 8:1}21 = 1, (03)
m:szgxza (0.4)

Please continue and provide the values for all other nodes in your computational graph.
(1/15)

List of detailed computational steps to compute the partial derivative aa—f at the point (1, 1.5, 2)
2

using the reverse mode. Specifically, provide the numerical values of v; and ; for all ¢. For

numerical values, you only need to keep four digits after the decimal point. (1/15)

